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Chimera states occur in networks of coupled oscillators, and are characterized by having some fraction of the
oscillators perfectly synchronized, while the remainder are desynchronized. Most chimera states have been
observed in networks of phase oscillators with coupling via a sinusoidal function of phase differences, and it
is only for such networks that any analysis has been performed. Here we present the first analysis of chimera
states in a network of planar oscillators, each of which is described by both an amplitude and a phase. We find
that as the attractivity of the underlying periodic orbit is reduced chimeras are destroyed in saddle-node
bifurcations, and supercritical Hopf and homoclinic bifurcations of chimeras also occur.
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Networks of coupled oscillators and their synchronization
properties have been studied for many years �1,2�. One par-
ticular class of interest involves phase oscillators, where each
oscillator is described by a single angular variable �3,4�. The
use of such phase models is justified when the attraction to
an underlying limit cycle is “strong” relative to the effects of
other oscillators in the network �1,3,5�. Recently a number of
investigators have studied “chimera” states in networks of
phase oscillators �6–18�, in which some fraction of the oscil-
lators synchronize while the remainder run freely, even
though the oscillators may be identical. Early analyses of
these states �6,7,10,12–17� used a self-consistency argument
which can be traced back to Kuramoto �5� to show existence
of chimeras. Later work �8,9,11,19� used the remarkable an-
satz of Ott and Antonsen �20,21� to derive differential equa-
tions governing the evolution of order parameters of the sys-
tems under study, allowing one to determine the stability of
chimera states and the bifurcations they may undergo.

It has long been known that networks of identical phase
oscillators, coupled through a sinusoidal function of phase
differences, have nongeneric behavior �18,22–24�. Most chi-
mera states have been observed in such idealized networks,
and in order to determine whether chimeras might be ob-
served in real physical systems one should investigate their
robustness with respect to, for example, heterogeneity in in-
trinsic frequencies, or variations in oscillator amplitude. The
first issue has already been addressed �8,9�, and here we
investigate the second.

Several authors have observed chimeras in net-
works of oscillators described by more than one variable
�6,7,15,16,25,26�, so they are known to exist, but these au-
thors have either provided no analysis, or have reduced their
�identical� oscillators to phase oscillators in order to analyze
their dynamics using the approaches mentioned above. In
this paper we give the first analysis of a chimera state in a
network of planar oscillators in which the reduction to phase
oscillators is not performed.

The model we consider is
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for j=N+1, . . .2N, where Xj �C, and � ,� ,� ,� and � are
real parameters.

These equations describe a pair of populations of N
Stuart-Landau oscillators with all-to-all coupling within each
population of strength �, and all-to-all coupling between the
two populations of strength �. Such oscillators are related to
the normal form of a Hopf bifurcation, and are a specific
example of �−� oscillators �1,5,27�. Such a pair of coupled
populations of oscillators has been studied by several authors
�11,28,29�, and can be thought of as the simplest “network of
networks” that one could study.

Defining Xj =rje
i�j, Eq. �1� can be written
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and Eq. �2� can be written as a similar pair of equations.
From Eq. �3� we see that as �→0, the rate of attraction to the*c.r.laing@massey.ac.nz
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limit cycle rj =1 ∀ j becomes infinite, and Eq. �4� reduces to
Eq. �1� of �11� �after a redefinition of ��, i.e., our system
reduces to a previously-studied network of phase oscillators.
We will investigate the dynamics of Eqs. �1� and �2� when
��0. By allowing the radius r to vary, we expect a wider
variety of behavior than that seen in networks of phase os-
cillators; for example, oscillator death and chaos �30�. For
comparison with previous results we define 	=
 /2−� and
we let �= �1+A� /2, �= �1−A� /2, where A is a parameter
�11�.

First, we show a chimera state for Eqs. �1� and �2�; see
Fig. 1. Panel �a� shows a snapshot of all � j at an arbitrary
time. We see that population two �with N+1� j�2N� has
completely synchronized �all rj �1.0019�, while oscillators
in population one �with 1� j�N� remain incoherent. Panel
�b� shows that oscillators in population one lie on a closed
curve �a slight distortion of the unit circle� in the complex
plane. Panel �c� shows the angular density of the oscillators
in population one. It is nonuniform, i.e., these oscillators are
not completely incoherent, and it was the dynamics of this
density that Abrams et al. �11� studied, using the parametri-
zation of Ott and Antonsen �20�. In this chimera state the
oscillators in population two have a constant angular velocity
and radius, and the distributions in panels �b� and �c� of Fig.

1 remain stationary. It is worth noting that the chimera state
shown in Fig. 1 is attracting, i.e., nearby states are attracted
to it, unlike the corresponding chimera states in networks of
identical phase oscillators which are neutrally stable �11,18�.
Allowing both the radius and the phase of the oscillators to
vary seems to eliminate the nongeneric behavior seen in net-
works of identical, sinusoidally coupled phase oscillators, in
the same way that making the oscillators non-identical does
�8,9�.

We briefly digress to analyze the chimera state shown
in Fig. 1 in the limit �→0, i.e., rj =1∀ j. Let � j =� for
N+1� j�2N and move to a coordinate frame rotating with
angular velocity  in which � is constant. Using rotational
invariance, set �=0. Then, from the equation for population
two,

0 = � −  − � − � sin � + �S �5�

and �using Eq. �5�� each oscillator in population one satisfies
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= � sin � − �S − � sin�� + �� + �S cos � − �C sin � ,

�6�

where S�N−1	k=1
N sin��k−�� and C�N−1	k=1

N cos��k−��. In
the limit N→�, S and C are constant and can be replaced by
the expected values of sin��−�� and cos��−��, respectively,
calculated using the angular density, ����, which is propor-
tional to the reciprocal of the velocity, d� /dt �7,12�. Thus
chimera states are described by the simultaneous solution of
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where ����=K�d� /dt�−1 and K is a normalization factor such
that �0

2
����d�=1. Following solutions of Eqs. �7� and �8� as
parameters are varied one can find regions of parameter
space in which chimera states exist, in agreement with the
results of Abrams et al. �11� �results not shown�. Equation
�6� can be interpreted as saying that in a chimera state, each
oscillator in population one follows a periodic orbit, and is
nonlinearly driven by its own mean field. This effect is
known to be capable of destroying completely synchronous
behavior �31�. We now analyze the chimera state in Eqs. �1�
and �2� for ��0 using a similar argument, showing that it
can be described by a single complex number.

Let Xj =Y for N+1� j�2N and go to a rotating coordi-
nate frame such that Y is constant in this frame. Rotate the
frame so that Y is real and positive. Then from Eq. �2� we
have

0 = i�� − �Y + �−1�1 − �1 + ��i�Y2�Y + e−i���Y + �X̂� ,

�9�

where X̂�N−1	k=1
N Xk, and each oscillator in population one

satisfies
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FIG. 1. �Color online� A chimera state for Eqs. �1� and �2�.
�a�: A snapshot of the � j. �b�: rj as a function of � j �relative to �N+1�
for j=1, . . .N. �c�: The density of the � j’s, relative to �N+1,
for j=1, . . .N. Parameters: N=500, �=0, �=0.05, 	=0.08,
A=0.2, �=−0.1.
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dX

dt
= i�� − �X + �−1�1 − �1 + ��i��X�2�X + e−i���X̂ + �Y� .

�10�

Given X̂, the real part of Eq. �9� can be solved for Y, and the
imaginary part of Eq. �9� can be used to show that each
oscillator in population one satisfies

dX

dt
= i��Y2 + � sin � − ��/Y�Im�e−i�X̂��X

+ �−1�1 − �1 + ��i��X�2�X + e−i���X̂ + �Y� , �11�

i.e., each oscillator in population one is driven in a nonlinear
way by the mean field of population one. Thus our self-
consistency equation, i.e., the analog of Eqs. �7� and �8�, is

X̂ =
1

T�X̂�


0

T�X̂�
X�t;X̂�dt , �12�

where X�t ; X̂� is a periodic solution of Eq. �11� with period

T�X̂�. The main difference between Eqs. �7� and �8� and Eq.

�12� is that X�t ; X̂� must be found by numerically integrating
Eq. �11� to find a periodic solution, whereas the periodic
solution of Eq. �6� need not be found—only the density, ����,
proportional to the reciprocal of the angular velocity, is
needed.

Having found a solution of Eq. �12�, it can be numerically
continued as parameters are varied. Typical results are shown
in Fig. 2 where we vary �. We see that for these parameter
values the solution of Eq. �12� can be continued to �
�0.109, where it appears to undergo a saddle-node bifurca-
tion. For � small, points on the lower branch in panels �a�–�e�
correspond to the stable chimera known to exist �11� when
�=0, while the upper branch corresponds to the saddle chi-
mera. A typical solution of Eq. �11� is shown in Fig. 2�f�.

The saddle-node bifurcation seen in Fig. 2 can be fol-
lowed as a second parameter, say �, is varied. The result is
shown in Fig. 3 �dashed curve�. We see that as � is increased,
the range of values of � for which a chimera state exists also
increases. However, the curve of saddle-node bifurcations in
Fig. 3 relates only to the existence of chimeras �found
through a self-consistency argument similar to that of Kura-
moto �5�� not their stability. Numerical simulations of Eqs.
�1� and �2� show that a stable stationary chimera which exists
to the right of the dashed curve in Fig. 3 can undergo a
supercritical Hopf bifurcation as parameters are varied, lead-
ing to a “breathing” chimera �8,9,11�. These oscillatory states
then seem to be destroyed in a homoclinic bifurcation as
parameters are further varied. Numerically determined
curves of Hopf and homoclinic bifurcations are shown in
Fig. 3. These curves are conjectured to terminate at a Takens-
Bogdanov bifurcation on the curve of saddle-node bifurca-
tions, which seems to be the generic arrangement for chimera
states �8,11,19�. Varying A or 	 rather than � results in a
similar arrangement of saddle-node, Hopf and homoclinic
bifurcation curves �results not shown�.

To the left of the dashed curve in Fig. 3 and above the
curve of homoclinic bifurcations, the perfectly synchronous

state �Xj =Xk∀ j ,k� is stable. Despite the radii of our oscilla-
tors being able to vary, we have not been able to find oscil-
lator death or more exotic dynamics by varying parameters.
Perhaps this is not too surprising, since nonidentical oscilla-
tors �which we have not considered here� and strong cou-
pling relative to the attraction to the limit cycle �i.e., the
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FIG. 2. �Color online� The solution of Eq. �12�. �a�: Re�X̂�; �b�:
Im�X̂�; �c�: Y; �d�:  and �e�: T�X̂�, as functions of �. �f�: Real and
imaginary parts of the self-consistent solution of Eq. �11� for pa-
rameter values shown with a circle in panels �a�–�e�. Parameters:
	=0.08, A=0.2, �=−0.01.
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FIG. 3. �Color online� Bifurcation curves in the �−� plane for
chimera solutions of Eqs. �1� and �2�. Hopf and homoclinic bifur-
cations were found by direct simulation of Eqs. �1� and �2�.
A=0.2, 	=0.08, N=500.
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opposite limit from that considered here� seem to be required
to observe oscillator death �30,32�.

In principle, the stability of the chimera states studied
here, and thus the location of the Hopf bifurcation seen in
Fig. 3, could be determined using the ideas presented in Sec.
6 of Matthews et al. �30�. However, a difficulty arises be-
cause we do not have an analytic expression for the chimera
state around which to linearize—the density, ��r ,��, of os-
cillators in population one can only be found indirectly by
numerically solving Eq. �11�. �Note that the stability or oth-
erwise of the periodic solution of Eq. �11� that we find is not
related to the stability of the chimera state. Solving Eq. �11�
is just a convenient way of finding the invariant density for
population one.�

For chimeras to be observable in a physical system they
must be generic, and not only occur in networks of identical
phase oscillators with all-to-all coupling via a sinusoidal
function of phase differences, which are known to have un-
usual properties �18,22–24�. Their persistence when phase
oscillators are made nonidentical has been characterized pre-
viously �8,9�, and in this paper we have shown that chimeras

also persist �within limits� when both the amplitude and
phase of the oscillators are allowed to vary.

One caveat is that the system studied here has all-to-all
coupling, both within and between populations. It would be
interesting to determine whether this is necessary in order to
observe chimeras. Indeed, this raises a more general question
as to which network topologies support chimeras. Also, the
system �Eqs. �1� and �2�� is invariant under the phase shift
Xj �ei�Xj ∀ j, where � is a real constant. This seems to be
the reason that, in a chimera state, the synchronous popula-
tion undergoes uniform rotation at fixed radius in the com-
plex plane, and we can describe the incoherent population as
having a stationary distribution in a uniformly rotating coor-
dinate frame. It would be of interest to study chimeras in
networks for which this is not the case. Addressing these two
issues would help determine the general robustness of chi-
meras, and thus the likelihood of them having relevance to
the physical world.

I thank Steve Strogatz for useful correspondence concern-
ing the work presented here.
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