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Resonance spectra of two-dimensional dielectric microwave resonators of circular and square shapes have
been measured. The deduced length spectra of periodic orbits were analyzed and a trace formula for dielectric
resonators recently proposed by Bogomolny et al. �Phys. Rev. E 78, 056202 �2008�� was tested. The observed
deviations between the experimental length spectra and the predictions of the trace formula are attributed to a
large number of missing resonances in the measured spectra. We show that by taking into account the system-
atics of observed and missing resonances the experimental length spectra are fully understood. In particular, a
connection between the most long-lived resonances and certain periodic orbits is established experimentally.
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I. INTRODUCTION

Trace formulas relate the density of states of a quantum
system to the periodic orbits �POs� of the corresponding clas-
sical system. They were first introduced by Gutzwiller �1–3�
and have since then found numerous applications not only to
quantum systems but also to wave-dynamical systems such
as electromagnetic �4,5� or acoustic �6� resonators. In addi-
tion concepts from quantum chaos and semiclassics are
nowadays also applied to open dielectric resonators �also
called dielectric billiards�, which are used, e.g., as microlas-
ers, as sensors or in optical circuits �7,8�. Especially the oc-
currence of scarred resonance states �9,10� and the connec-
tions between the emission properties of microlasers and
POs have gained considerable attention. It has been estab-
lished that the directions of maximal emission from a micro-
laser with, e.g., quadrupole shape are determined by the un-
stable manifolds of certain POs �11,12�. Recently, a trace
formula for two-dimensional �2D� dielectric billiards was
proposed in �13�. This trace formula provides a connection
between the resonance density of a dielectric resonator as a
wave-dynamical system and the POs of the corresponding
classical ray-dynamical billiard system and is a continuation
of ideas developed in �14,15�.

The objective of the present work is an experimental test
of the trace formula �13� with 2D dielectric resonators. Due
to radiation losses, the resonances of a dielectric billiard have
finite lifetimes. The lifetimes � j depend on the individual
resonances, and the corresponding resonance widths � j
=1 /� j range over several orders of magnitude. Therefore, the
spectrum consists of a mixture of resonances with very small
up to extremely large widths, and only the sharp long-lived
resonances can be clearly identified. Thus, only a part of the
resonances is actually observed in an experiment. This is an
important difference to hard-walled billiards, for which com-
plete spectra can be measured using superconducting micro-
wave resonators �5,16,17�. The task of the present work is to

demonstrate that nevertheless the measured incomplete spec-
trum can still be interpreted by means of the trace formula.
Furthermore, long-lived resonances, which play an important
role in microlasers, and their relation to certain POs are in-
vestigated. It should be noted that flat microlasers are usually
approximated as 2D systems by introducing the so-called
effective index of refraction, even though the precision of
this approximation is not always under control �18�. The ap-
plicability of the trace formula on such flat three-dimensional
systems within this 2D approximation will be the subject of
a future publication.

Microwave resonators provide a suitable testbed for the
investigation of dielectric resonators because of their macro-
scopic dimensions and the large spectral range accessible
experimentally. Here, we use flat dielectric plates of different
shapes and materials as passive resonators and put them be-
tween two copper plates. Then, up to a certain frequency,
they are described by a 2D scalar Helmholtz equation �16�.
Three different resonators with regular classical dynamics
were investigated: a circular and a square one made of Teflon
each with index of refraction n�1.4 and a square resonator
made of alumina �Al2O3� with n�3. The paper is organized
as follows. Details of the trace formula are briefly summa-
rized in Sec. II and the experimental setup is described in
Sec. III. The results for the circular Teflon resonator, the
square Teflon resonator, and the square alumina resonator are
presented in Secs. IV–VI, respectively. Section VII con-
cludes with a discussion of the results and a summary.

II. TRACE FORMULA FOR DIELECTRIC RESONATORS

As already noted above, trace formulas relate the density
of states of a wave- dynamical system to a sum over all POs
of the corresponding classical ray-dynamical system. An
open 2D dielectric resonator is a flat cylinder whose cross-
sectional area has an arbitrary shape made of a dielectric
material with index of refraction n�1 surrounded by air �or
another material with lower index of refraction�. The corre-
sponding classical system is the billiard with the same shape.
Rays travel freely inside the billiard domain S and are par-*richter@ikp.tu-darmstadt.de
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tially reflected back inside and partially transmitted outside
the billiard according to the Fresnel formulas �19� when they
hit the boundary �S. The wave equations used for such 2D
dielectric resonators are �20�

�� + n2k2���r��, r� inside S ,

�� + k2���r��, r� outside S . �1�

The wave number k is related to the frequency f via k
=2�f /c, where c is the speed of light in vacuum. Below a
certain frequency only transverse magnetic �TM� field modes
are excited in the resonator setup considered here �see Sec.
III�. Accordingly, the wave function � corresponds to the z
component of the electric field, Ez, and both the wave func-
tion and its normal derivative are continuous along the
boundary �S. In such a resonator there are only quasibound
states or resonances, which are characterized by complex
frequencies f j, where Re�f j� is the resonance frequency and
� j =−2 Im�f j� is the resonance width �full width at half maxi-
mum� �7�. The resonance frequencies and widths are ob-
tained by fitting Lorentzians to the measured frequency spec-
tra. The spectral density of states is defined as

��k� = −
1

�
�

j

Im�kj�
�k − Re�kj��2 + �Im�kj��2 . �2�

The density of states can generally be decomposed into a
smooth part �also known as Weyl term �21�� and a fluctuating
part, �=�Weyl+�fluc, where the smooth part is related to the
area A and perimeter U of the resonator and the fluctuating
part to the POs of the classical billiard. For a 2D dielectric
resonator the smooth part of the density of states is �13�

�Weyl�k� =
An2

2�
k + r̃�n�

U

4�
. �3�

Here, r̃ is related to the boundary conditions. It is defined as

r̃�n� = 1 +
n2

�
�

−�

� dt

t2 + n2 R̃�t� −
1

�
�

−�

� dt

t2 + 1
R̃�t� , �4�

where for TM modes

R̃�t� =
�t2 + n2 − �t2 + 1
�t2 + n2 + �t2 + 1

. �5�

In the case of a regular classical billiard the semiclassical
expression for �fluc reads as �13�

�fluc
scl �k� = �

po

� n3

�3Bpo	Rpo	�kei�nk�po+	po� + c.c. �6�

Here, Bpo
Apo /��po, where Apo is the area of the billiard in
configuration space covered by the family of POs with length
�po, Rpo denotes the product of all Fresnel reflection coeffi-
cients resulting from reflections at the boundary of the bil-
liard, and 	po denotes the phase changes accumulated at the
reflections �i.e., arg�Rpo�� and the caustic points �13,21�. The
details of �po, Bpo, 	po, and Rpo for the dielectric circle and
square billiards are given in Appendixes A and C. For
r̃=−1 this trace formula equals that of a closed 2D quantum

billiard with Dirichlet boundary conditions except for some
additional terms involving the index of refraction n which
reflect the larger optical length or volume of the resonator
and the contributions of the Fresnel coefficients. The semi-
classical expression �Weyl+�fluc

scl is a good approximation to
the density of states ��k� defined by Eq. �2� in the semiclas-
sical limit k→�. The Fourier transform �FT� of �fluc

scl �k�,

�̃scl��� = �
kmin

kmax

dk�fluc
scl �k�e−ikn�, �7�

yields the length spectrum which has peaks at the lengths �po
of the periodic orbits. For a test of the trace formula we
compare it with the FT of the fluctuating part of the density
of states,

�̃��� = �
kmin

kmax

dk���k� − �Weyl�k��e−ikn�

= �
j

e−ikjn� − FT
�Weyl� . �8�

The summation in Eq. �8� is over all resonances with kmin
�Re�kj��kmax. Short-lived resonances are suppressed be-
cause of the factor exp�−nl	Im�kj�	� appearing in Eq. �8� as
compared to long-lived resonances.

III. EXPERIMENTAL SETUP

A sketch of the experimental setup is shown in Fig. 1: a
plate made of a dielectric material �Teflon or alumina� is
placed between two copper plates. Then below the frequency

f2D =
c

2nd
, �9�

only TM modes with homogeneous electric field in the z
direction �TM0� exist. Here, d is the thickness and n is the

RF cable

dielectric plate

copper plate

copper plate

antenna

d

R

a

a/4

a/4

(b)

(a)

FIG. 1. Schematic picture of the experimental setup �not to
scale�. �a� Side view: the dielectric plate is placed between two
copper plates. Two dipole antennas entering the resonator through
small holes in the top plate are placed next to the sidewalls of the
dielectric plate. The dipole antennas are attached to a vectorial net-
work analyzer via rf cables. �b� Top view: the solid lines denote the
contour of the copper plates; the dashed lines denote that of the
dielectric plates �circle with radius R and squares with side length
a�. The crosses indicate the positions of the antennas.
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index of refraction of the dielectric plate. Below this fre-
quency, the resonator can be treated exactly as a 2D system
�16�. Microwave power is coupled into and out of the reso-
nator with two dipole antennas. A vectorial network analyzer
�PNA 5230A by Agilent Technologies� is used to measure the
complex transmission amplitude S21�f�, where the modulus
squared of S21 equals the ratio

	S21�f�	2 =
Pout

Pin
�10�

between the power Pin coupled in by antenna 1 and the
power Pout coupled out via antenna 2 for a given frequency f .
The dipole antennas are put next to the sidewalls of the di-
electric plates �see Fig. 1�a��, so that they can couple to the
evanescent fields of the resonance modes. Their positions are
indicated in Fig. 1�b�. The measured transmission amplitude
	S21	 at a resonance frequency rises with the electric field
strengths Ez at the positions of the two antennas �22�. In the
case of the circle billiard, Ez
cos�m	� with 	 and m being
the azimuthal angle and quantum number, respectively, so
two antennas placed on opposite sides of the billiard ensure
optimal coupling to all resonances. In the case of the square
billiards, the antennas were placed offside any symmetry
axes, so that they couple to resonance states of all symmetry
classes. It was checked that the results presented here do not
depend on the specific positions. The influence of waves re-
flected at the edges of the copper plates can be neglected.
Details concerning the three different dielectric billiards are
given in the corresponding sections. Since the indices of re-
fraction of the dielectric plates are only known with an un-
certainty of a few percent, the precise values of n of the
different plates were deduced from the length spectra by ad-
justing n such that the positions of the peaks in the length
spectra match the lengths of the corresponding POs �23�, as
will be shown below. The quality factors Qj =Re�f j� /� j of
the measured resonances are always smaller than those ex-
pected theoretically because there are Ohmic losses in the

copper plates and the antennas and absorption in the dielec-
tric material in addition to the pure radiation losses.

IV. CIRCULAR TEFLON RESONATOR

The first resonator investigated is a circular disk made
of Teflon �Grünberg Kunststoffe GmbH�. The resonator
�called the Teflon circle in the following� has a radius
of R=274.9 mm and a thickness of d=5.0 mm. Its index
of refraction deduced from the length spectrum is n
=1.419�0.001. Therefore, the critical angle for total internal
reflection �TIR� is 
crit=44.8°. The dipole antennas were
placed along the diameter of the disk on opposite sides �see
Fig. 1�b��. A measured frequency spectrum is shown in Fig.
2, with a frequency of 10 GHz corresponding to kR=57.6.
The spectrum features several families of almost equidistant
sharp resonances. These can be labeled with azimuthal and
radial quantum numbers �m ,nr�, and each family consists of
resonances with the same nr and different m. The quality
factors of the resonances are typically Q=1000–5000. Since
the radiation losses 	Im�fm,nr

�	 increase with increasing nr,
only modes with small nr are observed in the measured spec-
trum. Modes with higher nr are visible at higher frequencies
�compare, e.g., �18��. An angular momentum of �m can be
attributed to each resonance. In the ray picture, a trajectory
with this angular momentum has an angle of incidence 

with respect to the surface normal given by �24�

sin 
 =
m

n Re�kj�R
. �11�

These trajectories are in general not POs. Two examples of
trajectories associated with a resonance with nr=1 and with
one with nr=2 are shown as insets in Fig. 2. These show that
a larger nr corresponds to a smaller angle of incidence 
,
because for a given resonance frequency �i.e., Re�kj�� a mode
with higher radial quantum number nr has a smaller azi-
muthal quantum number m, and a smaller angle of incidence

Frequency (GHz)

|S
2
1
|

nr = 1

nr = 2

α

2 4 6 8 10 12 14
0

0.05

0.1

nr = 1
nr = 2

nr = 3

nr ≥ 4

FIG. 2. Frequency spectrum of the Teflon circle. The modulus of the transmission amplitude S21 is plotted with respect to the frequency
f . The classical trajectories associated with two resonances with nr=1 and nr=2 are shown as insets, and 
 denotes the angle of incidence
with respect to the surface normal of these trajectories. The bars above the graph denote the frequency regimes in which modes with certain
radial quantum numbers nr are observed.
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results in larger radiation losses. The trajectories that are lo-
cated close to the boundary of the circle have a large caustic
�dashed inner circle� and are therefore called whispering gal-
lery modes �WGMs�. Indeed, all the long-lived resonances in
the measured spectrum are of the WGM type. The bars above
Fig. 2 indicate the frequency regimes in which modes with
different radial quantum numbers can be observed. Most of
the observed resonances have nr=1–3 and only a few have
nr�4.

In Fig. 3 the integrated resonance density N�f�, which
denotes the number of resonances below a given frequency f ,
is shown. The resonances observed in the measured spectrum
�solid line� were counted twice because all modes with m
�0 are twofold degenerate. The dashed line is obtained from
Weyl’s law �Eq. �3��. Only modes up to 20.5 GHz� f2D are
considered in the following. The comparison of Weyl’s law
and the integrated resonance density in Fig. 3 illustrates that
the long-lived resonances yield only a small part of the
whole spectrum. The length spectrum for the Teflon circle is
shown in Fig. 4. The full line is the length spectrum obtained
from the measured frequency spectrum via Eq. �8�, the
dashed line corresponds to the complete spectrum calculated
by solving the Helmholtz equation for the dielectric circle
�24�, and the dotted line is the semiclassical expression
	�̃scl���	 from Eq. �7�. All Fourier transforms were performed
using the Welch function as window function to smooth the
resulting curves �25�. The positions of the peaks of the ex-
perimental length spectrum depend sensitively on the index
of refraction n used in the FT �cf. the term exp�−ikn�� in Eq.
�8��. The positions of the peaks only coincide with the
lengths of the POs if the correct value of n is used, and thus
n is determined by matching these. The lengths of the differ-
ent POs and the circumference are indicated by the arrows.
The POs in the circle billiard have polygon and star shapes
and are characterized by their periods and rotation numbers
�q ,��, where q is the number of reflections at the boundary
and � is the number of turns around the center, e.g., the �4,1�
orbit is a square and the �5,2� orbit a pentagram. For the
lengths considered in Fig. 4, only polygonal POs exist ��
=1�. The orbits with q�8 are not indicated in the figure

because their amplitudes Bpo decrease rapidly with increas-
ing q �see Appendix A�. The semiclassical expression �dotted
line� and the calculated length spectrum �dashed line� agree
very well except for the case of the square orbit. Its angle of
incidence 
=45° is close to the critical angle for TIR. Thus,
further corrections for Rpo must be taken into account �13�.
No discernible peaks are visible for orbits with angles of
incidence smaller than the critical angle. The overall shape of
the experimental length spectrum is reproduced by the cal-
culated length spectrum, but it has smaller peak amplitudes,
as to be expected due to the large number of missing reso-
nances. In fact, in some cases the amplitudes of the peaks in
the experimental length spectrum are as large as 80% of
those in the calculated one. Thus, indeed the 10% most long-
lived modes suffice to reproduce most of the peaks expected
semiclassically. Interestingly, the agreement between the ex-
perimental and the calculated length spectra is better for the
higher-order polygon orbits such as the hexagon and the hep-
tagon, and worst for the square orbit. This might be ex-
plained by the fact that the experimental spectrum consists
only of WGMs �see Fig. 2�.

To achieve a better understanding of the correspondence
between different families of resonances and the different
POs in the length spectrum, the measured spectrum was di-
vided into subspectra with radial quantum numbers nr
=1,2 ,3 and nr�4. The radial quantum numbers were iden-
tified by comparison with the calculated spectrum and by
following the different series in the spectrum. First, only
modes with nr=1 are considered, which form a family of
almost equidistant resonances. Note that spectra containing
only one such family are often encountered in microlaser and
microcavity applications �e.g., �15,26��. The length spectrum
for the modes with nr=1 is depicted in Fig. 5. Only reso-
nances up to a certain frequency fmax were considered for the
three different curves: the solid line shows the length spec-
trum for all modes with nr=1, the dashed line shows that for
modes up to 15 GHz, and the dotted line shows that for
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FIG. 3. The integrated resonance density N�f� for the Teflon
circle. The solid line is deduced from the measured frequency spec-
trum in Fig. 2; the dashed line is deduced from Weyl’s law. All in
all, 716 resonances were identified in the spectrum up to 20.5 GHz,
which is only about 10% of the total number of resonances.
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FIG. 4. Length spectrum for the Teflon circle. The full line
results from the measured spectrum, the dashed line results from a
complete calculated spectrum, and the dotted line shows the semi-
classical expression 	�̃scl���	. The arrows indicate the lengths of the
depicted POs and of the circumference 2�R of the circle. The semi-
classical expression and the calculated length spectrum agree well
except for the square orbit. The experimental length spectrum has
smaller amplitudes than the calculated one. However, the deviations
are smaller for the higher-order polygon orbits.
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modes up to 10 GHz. Each curve has only one peak and, as
expected, the position of the peak is close to the lengths of
the high-order polygons, but the position of the peak does
not correspond to any particular PO, instead it only depends
on fmax. This can be understood by analyzing the frequency
spectrum in more detail. The resonance frequencies, respec-
tively, wave numbers for TM modes with small nr can be
approximated as

Re�km,nr
� =

m

nR
+

xnr

nR
�m

2

1/3

−
1

R�n2 − 1
, �12�

where xj is the modulus of the jth zero of the Airy function
Ai�x� �27�. Therefore, the resonance spacing between modes
with the same radial quantum number nr is

�k =
1

nR
+

xnr

6nR
�m

2

−2/3

, �13�

and the smallest resonance spacing ��k�min is determined by
the highest azimuthal quantum number m or resonance fre-
quency fmax, respectively. Since the resonance spacing is al-
most constant, only one peak is expected in the FT of the
spectrum, and its position is related to ��k�min. These obser-
vations are also made for the other two measured families
�see Fig. 6�a��.

As a next step, we consider the length spectrum taking
into account several families of resonances in Fig. 6�b�. The
combination of just two families �solid length spectrum� is
enough to obtain multiple peaks, whose positions are indeed
very close to the lengths of the POs. This effect can be ex-
plained as an interference between the different families �see
Appendix B�. Moreover, the resonances with nr=1 and 2
contribute mainly to the high-order polygons such as the
hexagon and the heptagon, whose lengths are in the region
where the corresponding single-family length spectra �full
and dashed lines in Fig. 6�a�� are maximal. The resonances
with nr=3 �added to obtain the dashed length spectrum in

Fig. 6�b�� mainly contribute to the pentagon orbit, which
again lies in the length region where the corresponding
single-family length spectrum is maximal, and the few re-
maining resonances �added to obtain the dotted length spec-
trum� provide contributions to the pentagon and square or-
bits. So there is indeed a connection between the trajectories
to which the different resonances correspond and the POs in
the length spectrum to which they contribute, and the devia-
tions between the peak amplitudes of the measured and cal-
culated length spectra are larger for the square and pentagon
orbits �see Fig. 4� because the most long-lived states corre-
spond to the higher-order polygons. These results were also
confirmed by investigations with a complete calculated spec-
trum �not shown here�. Additional losses due to, e.g., absorp-
tion in the Teflon material further reduce the amplitudes of
the experimental length spectrum, but this is only a second-
ary effect due to the generally high quality factors of the
Teflon circle.

V. SQUARE TEFLON RESONATOR

The second resonator investigated is a square disk made
of Teflon �called the Teflon square in the following� with side
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FIG. 5. Length spectrum for a single resonance family. Only
modes with radial quantum number nr=1 were considered and only
up to a certain frequency fmax �solid line: 20.5 GHz; dashed line:
15 GHz; dotted line: 10 GHz�. The arrows denote the lengths of
some POs and of the circumference 2�R of the circle. Apparently,
the position of the maximum of 	�̃���	 only depends on the fre-
quency fmax and is not related to any PO.
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FIG. 6. Length spectra for different resonance families. �a� Only
one radial quantum number taken into account each �solid line: nr

=1; dashed line: nr=2; dotted line: nr=3�. �b� Several families com-
bined. The solid line is the length spectrum for the families with
radial quantum numbers nr=1 and 2 combined, the dashed line is
for nr=1, 2, and 3 combined, and the dotted line is for all reso-
nances �identical with the solid line in Fig. 4�. The peaks of the
length spectra in �b� originate from the interference between the
different resonance families, and the main contributions of the dif-
ferent families are focused on different orbits.
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length a=300.0 mm, thickness d=5.1 mm, and index of re-
fraction n=1.430�0.001, which corresponds to 
crit=44.4°.
Its frequency spectrum is shown in Fig. 7, with a frequency
of 10 GHz corresponding to ka=62.9. The spectrum features
a single family of broad equidistant resonances atop an os-
cillating background. This background results from direct
transmission between the two antennas. The quality factors
of the resonances are in the range of Q=100–500, which is
an order of magnitude lower than for the Teflon circle due to
the larger radiation losses of the Teflon square. The reso-
nances can be explained as superscarred states �15� localized
on the family of the diamond PO �inset of Fig. 7�. As the
angle of incidence of the diamond orbit, 
po=45°, is very
close to the critical angle, the radiation losses are large. The
resonance frequencies can be approximated �15� up to O� 1

m �
as

nL Re�km� = �m + 2i ln�r�45°�� = �m + 4� , �14�

with L=�2a being half the length of the diamond PO and m
being the longitudinal quantum number of the superscar. The
phase �=arctan��1–2 /n2� is related to the Fresnel reflection
coefficient via r�45°�=exp�−2i��, and the term 4� accounts
for the reflections at the dielectric boundaries of the square.
The resonance frequencies computed from Eq. �14� are indi-
cated by the arrows in Fig. 7 and show good agreement with

the measured spectrum. Apparently, the observed resonances
are superscarred states with longitudinal quantum numbers in
the regime of m�35–80 and first transverse excitation.
States with higher transverse excitation are not observed. All
in all, 49 resonances were counted up to 20.5 GHz that is
only 2% of the approximately 2220 resonances expected ac-
cording to Weyl’s law.

In Fig. 8, the experimental length spectrum �solid line in
the top graph� and the semiclassical expression 	�̃scl���	 �bot-
tom graph� for the Teflon square are shown. The arrows in-
dicate the lengths of the different POs in the square, and
dashed arrows are used for those POs not contained by TIR.
The indices �nx ,ny� indicate half the number of bounces of
the PO in x and y directions; see insets in Fig. 8, for ex-
amples. Details for the semiclassical amplitudes of the POs
are given in Appendix C. Only the �1,1� orbit �diamond� and
its repetitions are contained by TIR, and the experimental
length spectrum only shows peaks at these lengths in agree-
ment with the semiclassical prediction. Thus, the very simple
structure of the frequency spectrum can be attributed to the
single PO �plus its repetitions� contained by TIR. The trace
formula also predicts a small peak at the length of the �1,0�
orbit �Fabry-Perot orbit; left inset of Fig. 8�, which however
is not observed experimentally. The same applies for all
other orbits not contained by TIR �indicated by the dashed
arrows�. The peak amplitudes of the experimental length
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FIG. 7. Frequency spectrum of the Teflon square. The series of equidistant resonances atop the slowly oscillating background are
superscarred states localized on a family of POs including the diamond orbit �shown as inset�. The arrows indicate the computed resonance
frequencies of the superscarred states, and the corresponding quantum numbers m=35 and m=80 are indicated for two examples,
respectively.
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spectrum are, however, less than 15% of the semiclassical
prediction. Moreover, they decay exponentially with the
number � of repetitions, while the semiclassical amplitudes
decay algebraically with 1 /�� �see Appendix C�. This is
related to the facts that, first, only a single family of super-
scarred resonances is observed in the spectrum, i.e., the reso-
nator essentially behaves like a one-dimensional system and,
second, that the resonances have a finite lifetime. Starting
with a single family of modes with resonance frequencies
given by Eq. �14�, one obtains

�fluc
�ss��k� =

2nL

�
�
�=1

�

cos�2�nLk − 8��� �15�

as the semiclassical density of states �21�. The FT of �fluc
�ss��k�,

i.e., the length spectrum for a single family of superscars
�ss�, is plotted as dashed line in the top graph in Fig. 8 and
has a constant peak amplitude for all repetitions � of the
diamond orbit. The agreement with the experimental length
spectrum is better. However, Eq. �15� does not take into ac-
count that the system is open; in fact only the real part of k,
i.e., the resonance frequencies, not the widths � are consid-
ered. The ratio of the peak amplitudes of the experimental
length spectrum �full line� and the superscar length spectrum
�dashed line� is shown in Fig. 9�a� with respect to the lengths
�po of the �repeated� diamond orbit. The solid line is a fit of
the function

A0 exp�− n�po��/c� , �16�

with A0=1.09 and �=56.1 MHz, which roughly matches the
widths of the measured resonances. Indeed, Fig. 9�b� shows
that the experimental length spectrum �top graph� and the FT
of �fluc

�ss��k� multiplied with the fitted exponential decay corre-
sponding to the finite lifetimes of the resonances �lower
graph� agree with high precision.

The example of the Teflon square demonstrates that a di-
electric billiard with just a single dominant PO �the diamond
orbit in this case� may act as an effectively one-dimensional
system. Note that for a larger index of refraction or for
higher frequencies, further families of superscarred states
�i.e., with higher transverse excitation� might become visible
in the frequency spectrum. Furthermore, the Teflon square is

an example where a single family of resonances is directly
related to one PO, which is in contrast to the case of the
dielectric circle billiard �see Fig. 5 and corresponding text�.
The reason for this is that the resonances in the dielectric
square are �super�scarred states, while those in the circle bil-
liard are not. It appears that the relation of a single resonance
family to POs depends on the specific case and needs careful
analysis.

VI. SQUARE ALUMINA RESONATOR

The third resonator investigated is a square disk made of
alumina �Morgan Advanced Ceramics� with side length a
=300.0 mm, index of refraction n=3.050�0.008, and thick-
ness d=8.3 mm. The critical angle is 
crit=19.1°. A mea-
sured frequency spectrum of the resonator �called the alu-
mina square in the following� is shown in Fig. 10, with 5
GHz corresponding to ka=31.4. The spectrum features many
sharp resonances, and 212 resonances were identified in the
range of 1.4–6.1 GHz �without taking into account possible
degeneracies�, compared to 1035 resonances expected ac-
cording to Weyl’s law. The quality factors are in the regime
of Q=200–2000. The radiation losses are generally smaller
than for the Teflon square due to the higher index of refrac-
tion, but the absorption losses in the alumina material are
somewhat larger than in the Teflon material. In contrast to
the case of the Teflon square, the spectrum shows no obvious
structure of equidistant resonances, so the simple superscar
model from Sec. V cannot be applied here because it takes
into account only one family of periodic orbits with an angle
of incidence of 45°. However, it can be generalized in a
simple way �28�. We assume a ray with wave vector �kx ,ky�
traveling in the square, where the x and y axes are parallel to
the sides of the square, and the resonance condition after one
round trip is

e2iakxr2��� = 1,

e2iakyr2��/2 − �� = 1, �17�

with r��� being the Fresnel reflection coefficient and � being
the angle of incidence on the vertical sides. An approximate
solution is
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FIG. 9. �a� Ratio between the peak amplitudes of the experimental and the superscar length spectra. The diamonds are the relative
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=56.1 MHz. �b� Experimental length spectrum �top graph� and superscar length spectrum multiplied with the exponential fit �bottom graph�.
The two curves show excellent agreement.
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kxa = mx� + i ln�r���� ,

kya = my� + i ln�r��/2 − ��� , �18�

where �mx ,my� are the x and y quantum numbers and the
angle of incidence is approximated as �=arctan�my /mx�. The
wave number is k=�kx

2+ky
2 /n. This simple semiclassical ap-

proximation can be regarded as a generalized superscar
model. A similar model was proposed in �29�. The case mx
�my, ��45° corresponds to the simple superscar model
used in Sec. V and resonance frequencies as in Eq. �14� are
obtained. The resonance frequencies computed according to
Eq. �18� are indicated by arrows in the magnified part of the
spectrum �lower graph in Fig. 10�. The quantum numbers are
given together with �̃=arctan�ky /kx���, which is the angle
of incidence on the vertical sides corresponding to the wave
vector �kx ,ky�. In most cases, the measured and the computed
resonance frequencies agree very well, and only in some
cases they slightly deviate. Moreover, there are very few
cases �e.g., at 2.7 GHz� where we cannot find a clear corre-
spondence between a measured resonance and a computed
mode. Only modes which are found in the measured spec-
trum are indicated. Modes with quantum numbers mx�my
are doubly degenerate. It should be noted that Eq. �18� pre-
dicts complex resonance frequencies �Im�k��0� for �̃
�
crit, that is, losses due to refractive escape and lossless
modes �Im�k�=0� for �̃�
crit. Note that in the latter case
other radiative loss mechanisms e.g., due to the corners �30�
are not accounted for. Accordingly, the model does not pro-
vide a complete description for the widths of these modes.
All modes found in the measured spectrum have �̃�
crit.
One would intuitively expect that the losses increase with �̃
approaching 
crit=19.1° starting with �̃=45°. Accordingly,
the spectrum should be dominated by an equidistant series of

resonances corresponding to �̃�45°, as was observed in the
case of the Teflon square. However, a closer inspection of the
spectrum shows no clear correlation between �̃ and the
widths or amplitudes of the resonances. We attribute this
effect to interaction between superscar and background states
�31�. This would also explain why the computed resonance
frequencies agree precisely with the measured ones only in
some cases. Preliminary numerical computations confirm
this interpretation of the effect, but it is not yet completely
understood and will be the subject of further investigations.
In summary, the generalized superscar model explains the
general structure of the spectrum well, but not all of its de-
tails like, e.g., the resonance widths.

The length spectrum for the alumina square is shown in
Fig. 11. The experimental length spectrum �upright graph in
the top panel� features several peaks corresponding to POs,
but most of the peaks hardly stand out above the noise level.
The peak amplitudes of the experimental length spectrum are
below 35% of those expected semiclassically �bottom panel�,
which is far less than for the Teflon circle, even though 20%
of the total number of resonances was found in the case of
the alumina square as compared to 10% in the case of the
Teflon circle. A similar proportion between the number of
resonances and the peak amplitudes was also found in nu-
merical calculations for the alumina square. The reason why
a larger percentage of observed resonances in the case of the
alumina square results in smaller peak amplitudes compared
to the case of the Teflon circle is not understood, but we
surmise that this is related to qualitative differences in the
distribution of resonance widths for the circle and the square
billiard. No peaks corresponding to POs not confined by TIR
�indicated by dashed arrows� can be identified, as for the
Teflon circle and square, respectively. For the observed ones
the ratio of the experimental and the semiclassical ampli-
tudes varies significantly. This is illustrated in Fig. 12, where
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FIG. 10. Frequency spectrum of the alumina square. In contrast to the cases of the Teflon circle and square, the structure of the spectrum
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it is plotted with respect to the angle of incidence 
po. Every
trajectory in the square is characterized by two different
angles of incidence �see Appendix C�, of which the smaller
one is used here. As in the case of the Teflon circle, even
though they are still confined by TIR, POs with an angle of
incidence close to the critical angle have significantly
smaller relative peak amplitudes compared to those with 
po
much larger than 
crit. Finally, we compare the experimental
length spectrum to the generalized superscar model intro-
duced above. To this end, we calculate a spectrum according
to Eq. �18�, but omit all modes with angle �̃ below a certain
cutoff angle �co, and include only one of the degenerate dou-
blet modes since possible degeneracies are not taken into

account in the experimental length spectrum either. The cut-
off angle is chosen as �co=28° to ensure that the number of
resonances �215� obtained from 1.4–6.1 GHz is similar to
that in the experiment �212�. The lower part of Fig. 10 shows
that indeed almost all measured resonances correspond to a
�̃��co. Note also that the relative amplitudes in Fig. 12 start
to decrease at a similar angle. Since the generalized super-
scar model does not provide a description of the resonance
widths in the cases considered here, we assume a uniform
resonance width of �=8 MHz as obtained from an estimate
of the typical resonance width found in the measured spec-
trum. The resulting length spectrum is shown as an inverse
graph in the top panel of Fig. 11. It agrees well with the
experimental length spectrum except for the cases of the
�1,1� and �2,2� orbits, for which the amplitudes are signifi-
cantly larger than those of the experimental length spectrum.
These deviations cannot be explained yet. Nevertheless, even
though the generalized superscar model cannot reproduce all
details of the frequency and length spectra of the alumina
square, most of the experimental findings are well described
by this simple semiclassical approximation if taking into ac-
count only the resonances which are observed in the experi-
ment. It should be noted that the semiclassical trace formula
�Eq. �6�� for the dielectric square can be deduced from Eq.
�18� when all of the modes are considered �28�.

The case of the alumina square demonstrates again that
the long-lived observable resonances contribute mainly to
those POs with angle of incidence far away from the critical
angle, indicating that corrections to the semiclassical trace
formula must be taken into account for POs close to it. Fur-
thermore, the larger index of refraction and thus greater num-
ber of POs contained by TIR are reflected in a more compli-
cated structure of the frequency spectrum. In conclusion, not
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only the shape of a dielectric billiard, but also its index of
refraction, i.e., the critical angle for TIR, drastically influ-
ences the structure of its frequency and length spectra.

VII. CONCLUSIONS

We have measured the frequency spectra of three 2D di-
electric microwave resonators with different shapes and in-
dices of refraction. The length spectra were determined from
the measured data and compared to the predictions of the
trace formula proposed in �13�. Even though the number of
resonances identified in the measured spectra is only a frac-
tion between 2% and 20% of the total number of resonances,
the experimental length spectra show peaks connected with
the classical POs as predicted, but the amplitudes of the
peaks are smaller than the semiclassically expected ones.
The differences between experimental and semiclassical
peak amplitudes depend strongly on the angles of incidence
of the PO: POs which are not contained by TIR are not
observed in the experimental length spectra, even if a finite
amplitude is predicted semiclassically. This was the case for
all of the passive resonators investigated here, but there are
indications that they may appear in the length spectra of
strongly pumped microlasers �32�. Furthermore, even POs
contained by TIR have much smaller amplitudes if their
angles of incidence are close to the critical angle. Apparently,
there are two different effects. First, the strict semiclassical
approximation derived in the limit k→�, when applied for
large but finite k, requires modifications which are especially
important close to the critical angle. From the soluble case of
the disk it follows that the reflection coefficient for such
scattering is noticeably smaller than that predicted by the
usual Fresnel formulas �19,33�. Second, it appears that long-
lived resonances that can be observed experimentally mainly
correspond to orbits which are not only confined by TIR, but
also have an angle of incidence much larger than the critical
angle. The examples of the Teflon and alumina square bil-
liards further demonstrate that there is a connection between
the number of POs contributing to the length spectrum and
the complexity of the frequency spectrum. Therefore, it
could prove useful for the design of resonators to consider
the type and number of POs confined for a certain billiard
geometry and index of refraction. In general, the systematics
of observed long-lived and not observed short-lived reso-
nances must be taken into account for a full understanding of
the experimental length spectra. Special care must be taken
in the case of spectra with only one or two families of reso-
nances. In general, there is no direct relation to certain POs.
Only the case of �super�scarred states may be an exception to
this rule, as the case of the Teflon square billiard demon-
strates.

In conclusion, we have demonstrated that the length spec-
tra of dielectric resonators may be described by the trace
formula, offering another tool to understand the correspon-
dence between the ray and wave pictures of these devices.
An advantage of the trace formula is that it only needs the
spectrum, but not the field distributions as an input. On the
other hand, the trace formula just gives information about a
group of resonances in general, but not on the individual

resonances, and at least a few dozens of resonances are
needed in order to apply it. So far, the trace formula has
merely been tested for passive systems with regular classical
dynamics. Systems with chaotic or mixed dynamics or with
an active medium �like microlasers� pose interesting future
problems.
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APPENDIX A: THE PERIODIC ORBITS
IN THE DIELECTRIC CIRCLE BILLIARD

The POs in the circle billiard are characterized by their
period and rotation numbers �q ,��, where q is the number of
reflections at the boundary and � is the number of turns
around the center. Their lengths are

�po�q,�� = 2Rq sin���/q� , �A1�

and the amplitudes and phases appearing in Eq. �6� are

Bpo =
Apo

��po

�2fpo, with fpo = �1, q = 2�

2, otherwise,
� �A2�

	po =
�

4
− q

�

2
+ q arg�r�
po�� . �A3�

Here, r�
� is the Fresnel reflection coefficient for angle of
incidence 
 with respect to the surface normal and electric
field perpendicular to the plane of incidence �TM polariza-
tion� and 
po=� /2−�� /q is the angle of incidence of the
PO. The area of the billiard covered by �the family of� the
�q ,�� orbit�s� is Apo=�R2 sin2��� /q�. These terms are iden-
tical to the case of a hard-walled circle billiard if r�
po�=
−1 �see, e.g., �21,34��. The amplitude Bpo
sin3/2��� /q�, so
Bpo→0 for q /�→�. Therefore, the contribution to the
length spectrum of the infinitely many orbits with length
close to the circumference is vanishingly small.

APPENDIX B: LENGTH SPECTRUM FOR TWO
RESONANCE FAMILIES OF THE DIELECTRIC

CIRCLE BILLIARD

Beginning with expression �12� for the resonance fre-
quencies of the WGMs, a trace formula for the spectrum
with just one or two resonance families can be derived. The
�approximate� inverse of Eq. �12� is

m = Ak − Bxnr
k1/3 +

n
�n2 − 1

, �B1�

with A=nR, B= �nR /2�1/3, and xj being the modulus of the
jth zero of the Airy function. Following Chap. 3.2 of �21� we
obtain
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�1nr
�k� = 4�A −

1

3
Bxnr

k−2/3
�
�=1

�

cos�2���Ak − Bxnr
k1/3��

�B2�

as the fluctuating part of the density of states for a single
resonance family. A factor of 2 was introduced to account for
the degeneracy of the resonances and the last term in Eq.
�B1� was neglected. Adding up two of these terms for differ-
ent radial quantum numbers and applying a trigonometric
addition theorem results in

�2nr
�k� � 8�A −

1

3
Bx̄k−2/3


��
�=1

�

cos�2���Ak − Bx̄k1/3��cos���B�xk1/3� ,

�B3�

for two resonance families �e.g., nr=1 and 2� with x̄= �x2
+x1� /2 and �x=x2−x1. The first cosine term is a fast oscil-
lating function, while the other terms are only slowly varying
in k, and the FT of �2nr

is computed using the stationary
phase approximation. The result is

�̃2nr
��� =

2�n

�
� 3

�
�
�=1

�

ei	�
�4 �2

3
��Bx̄
3

�2��A − �n�5

�cos���B�x
� 2

3
��Bx̄

2��A − �n
� . �B4�

The details on the stationary phase 	� are omitted. It should
be noted that this expression �for each � individually� is only
valid if the stationary point lies within the integration inter-
val, which is the case for ��2��R�1− 1

3nR �nR /2�1/3x̄kmax
−2/3�.

For the same reason the positions of the maxima in Fig. 5
depend on fmax. The modulus of the cosine term in Eq. �B4�
is maximal if its argument equals q�, i.e., for

�max�q,�� = 2�R��1 −
x̄

6
���x

q

2� . �B5�

The numerical values of �max�q ,�� are close to the lengths
�po�q ,�� of the POs with �q ,�� for large q /�, as shown in
Table I, which explains why the length spectrum for just two
families of resonances in Fig. 6�b� features peaks at the
lengths of these POs. Indeed, it can be shown that

�po�q/� → �� = 2�R��1 −
1

6
���

q

2� , �B6�

and that the zeros xj of the Airy function fulfill x̄��x�2��2

for x̄= �xj+1+xj� /2 and �x=xj+1−xj.

APPENDIX C: THE PERIODIC ORBITS IN
THE DIELECTRIC SQUARE BILLIARD

A PO traversing the square billiard 2nx �2ny� times in the
x �y� direction is denoted by the two indices �nx ,ny�. The
length of the PO is

�po�nx,ny� = 2a�nx
2 + ny

2, �C1�

where a denotes the side length of the square. Since all fami-
lies of POs cover the whole billiard area, the amplitudes and
phases entering Eq. �6� are

Bpo =
Fpo

�2

a2

��po

=
Fpo

2

a3/2

�4 nx
2 + ny

2
, �C2�

with Fpo=2 in the case of diamond and Fabry-Perot orbits
and Fpo=4 for all other POs �34�, and

	po = −
�

4
+ arg�Rpo� . �C3�

Like for all regular billiards, Bpo
1 /��po and especially
Bpo
1 /��, where � is the number of repetitions of a PO.
The total Fresnel coefficient is Rpo=r2nx�
po�r2ny�
po� �, and
the angles of incidence on the vertical and horizontal side-
walls are 
po=arctan�ny /nx� and 
po� =� /2−
po, respectively.
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