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Pattern formation in reaction-diffusion systems is an important self-organizing mechanism in nature. Dy-
namics of systems with normal diffusion do not always reflect the processes that take place in real systems
when diffusion is enhanced by a fluid flow. In such reaction-diffusion-advection systems diffusion might be
anomalous for certain time and length scales. We experimentally study the propagation of a chemical wave
occurring in a Belousov-Zhabotinsky reaction subjected to a quasi-two-dimensional chaotic flow created by the
Faraday experiment. We present a novel analysis technique for the local expansion of the active wave front and
find evidence of its superdiffusivity. In agreement with these findings the variance �2�t�� t� of the reactive
wave grows supralinear in time with an exponent ��2. We study the characteristics of the underlying flow
with microparticles. By statistical analysis of particle trajectories we derive flight time and jump length
distributions and find evidence that tracer-particles undergo complex trajectories related to Lévy statistics. The
propagation of active and passive media in the flow is compared.
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I. INTRODUCTION

The propagation of passive and active tracers in chaotic
flows is a field of study of enormous interest for a variety of
different disciplines reaching from biology over chemistry
and physics as far as financial mathematics and social studies
�1–4�. Especially the influence of advection on the spa-
tiotemporal development of active media is of relevance for
many natural systems such as plankton species in the ocean,
atmospheric chemistry or convection in the earth mantle �5�.
For these reaction-diffusion-advection systems it is of crucial
interest to define typical dynamics as pattern formation or the
speed of propagation. An experimentally and theoretically
well studied active system, producing spatiotemporal pat-
terns and reaction fronts, is the Belousov-Zhabotinsky reac-
tion �BZ� �6� that we use in this study. For the induction of a
fluid flow we use the Faraday experiment, which consists in
the vertical vibration of the fluid. This vibration excites sur-
face waves and bulk fluxes �7–9�.

Reaction fronts of target waves in reaction-diffusion sys-
tems travel with a constant velocity v front that is usually ob-
tained from the Fisher-Kolmogorov-Petrovskii-Piskunov
�FKPP� prediction,

v front = 2�Dk , �1�

where D is the molecular diffusion constant and k is the
reaction rate �6,10,11�. Reaction-diffusion-advection systems
are often described by replacing the molecular diffusion con-
stant D with an effective diffusion constant D�. However,
recent experiments have shown that the FKPP prediction
does not hold for the case of enhanced diffusion caused by a
fluid flow that induces chaotic mixing �11�. Additionally, nor-
mal enhanced diffusion might not be a good approximation
for some important time and length scales of a chaotic flow.
In this case the assumption that the underlying random walk
of the reactants can be described by a probability function

with a finite second moment �i.e., Gaussian distribution� does
not hold. This raises the question how dynamics change
when the system exhibits superdiffusion.

Superdiffusion is defined as the supralinear growth of the
variance �2�t� of the probability density function �PDF�
P�r� , t�

�2�t� � t�, with � � 1. �2�

The PDF gives the probability to find a particle at position r�
at time t. In one dimension the variance �2�t� can be written
as

�2�t� = �
−�

�

�x − �x��2P�x,t�dx , �3�

where �x� is the expectation value of the PDF.
Superdiffusive behavior of tracers can arise due to a va-

riety of different processes. In real flows, superdiffusion is an
effect created by the imperfection of the turbulence, i.e., the
existence of coherent structures in the velocity field �12,13�.
The microscopic theory underlying this general random walk
is called continuous time random walk �CTRW� and was
formulated by Montroll and Weiss �14� and extended to the
multistage random walk theory �MSRW� by Shlesinger and
Klafter �15�. This probabilistic point of view is especially
useful in systems where the full information about the under-
lying velocity field and its evolution in time is not known, as
it is the case in our experiments. Passive particles that expe-
rience superdiffusive transport for certain time and length
scales in chaotic flows have been studied experimentally
�16–21� and numerically �22–26� by a variety of different
groups. Even though numerical and theoretical studies of
reaction-superdiffusion systems exist, they focus �to our
knowledge� on one dimensional systems and can be divided
into two different classes of which the first deals with
bistable reaction processes �27–29� while the second class
deals with oscillatory or excitable reaction dynamics �30�.
Experimental studies of active media in this context are more
scarce �7,11,31–33�. The difficulties of studying active media*Corresponding author; alejandra@fmares.usc.es
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experimentally with a probabilistic approach arise from the
dilemma that the underlying statistics are only valid for point
particles in the flow while active media is studied in terms of
concentration fields. Expressions for the PDFs �or equally:
concentrations c�r� , t�� that solve the master equations in the
continuum limit �CL� depend strongly on the specific under-
lying microscopic random walk process �4,34� and do not
have a simple closed formulation. A consequence of this di-
lemma is the intricacy of finding measureable variables
�other than the variance growth of the concentration-field�
that can be compared to the existing theory.

Figure 1 shows different patterns we have observed in a
Belousov-Zhabotinsky reaction exposed to a horizontal flow
produced by the Faraday experiment �8,9�. The most striking
pattern observed is an activator wave that periodically propa-
gates through the entire reactor �Figs. 1�d�–1�f��. We will
focus on this activator wave and will refer to it as advection
phase wave �33�. In this paper, we propose a novel approach
for the analysis of the propagation of a chemical wave in a
superdiffusive flow that is based on the simple assumption
that in a first approximation small volumes of the activator
experience random displacements just as particles would. In
Sec. II, a description of the experimental setup and procedure
for the measurements with active and passive media in the
flow is given. Section III describes the statistical analysis
techniques used and puts special emphasis on the theory of
the underlying stochastical processes. In Sec. IV, the results
are presented. We show that the flow is superdiffusive and
that particles in the flow experience Lévy walks which re-
sults in superdiffusion and an anomalous variance growth
�2�t�= t�, with ��1. We find that the reactive front on the
time and length scales measured also propagates superdiffu-

sively and that the velocity of the front propagation is not
constant. Finally, in Sec. V, we compare and discuss the re-
sults from active and passive media experiments.

II. EXPERIMENTAL PROCEDURE

A. Setup

Figure 2 shows a schematic of the experimental setup.
The experiments are conducted in a circular reactor of 30 cm
diameter with an inner border that reduces capillary effects
�35� �Inset Fig. 2�. A large diameter of the reactor is chosen
to reduce boundary effects in the center of the reactor where
measurements are performed. The reactor is fixed on top of
an electromagnetic shaker �TIRAvib S511, TIRA GmbH�
that produces vertical vibration. The acceleration of the re-
actor is modulated as g�t�=g0+a cos�wt�, where g0 is the
gravitational acceleration. The shaker supplies a 75 N rated
peak force, a maximum acceleration of 50 g0, a maximum
rated travel of 10 mm and a clean frequency range of 2 Hz to
7000 Hz, as specified by the manufacturer. It is connected to
a power amplifier which receives a sinus signal from a func-
tion generator �HP 33120A�. The acceleration and the fre-
quency of forcing of the reactor are measured by a piezoelec-
tric accelerometer �PCB piezotronics M353B18� and a power
signal conditioner �PZB piezotronics 480C02� and finally
read out by an oscilloscope �HP 54645�. The reactor where
the chemicals are deposited is made of transparent plexiglass
and illuminated from below by a custom made backlight.
The selected field of view is 8.0�10.7 cm2 and is kept con-
stant throughout all experiments. Images are recorded with a
monochrome firewire camera �Guppy, AVT� at a frame rate

FIG. 1. �Color online� Patterns observed for the BZ reaction subjected to different frequencies and accelerations of vertical vibration
�Faraday Experiment�. Transitional changes in the patterns are observed and different regions of pattern formation can be distinguished as the
forcing increases. �a� Without forcing the typical targets and spirals of the BZ reaction are observed �6�. �b� and �c� For a forcing of
f =20 Hz and f =30 Hz �a=1 g0� filamentary patterns develop. �d�-�f� For a forcing of f =60 Hz and a=0.5 g0 a single advection phase
wave propagates through the reactor.
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of 60 Hz and a resolution of 480�640 pixel2, so that
1 pixel	0.017 cm. For further processing images are
stored to a hard disk and analyzed off-line as described in
Sec. III.

The Faraday waves obtained in the experiments have all
rectangular or hexagonal shape for the forcing range studied
and a fluid layer of 2 mm. The wavelength is 0.5 cm–1.0 cm
and the dominant wave frequency is half the forcing fre-
quency �subharmonic response� �8,36�. For all forcings ap-
plied the wave pattern observed is time-dependent, i.e., for
the lower forcings defects in the Faraday wave pattern travel
through the reactor and for higher forcings the defects domi-
nate the pattern.

It is known that Faraday patterns exhibit well-defined
order-disorder transition for increasing forcing frequency and
amplitude, leading from standing waves to a disordered state
where the translational correlation length drops dramatically
and the orientational correlations of the patterns also de-
creases �36�. This disorder in the patterns is sometimes re-
ferred to as spatiotemporal chaos �37�. Thus the higher the
forcing strength and the frequency the more rapid are the
fluctuations of the observed patterns. The fluctuation or de-
fects in the ordered wave patterns are due to a transverse
amplitude modulational instability.

Fluid flows induced by this wave patterns are termed spa-
tiotemporally chaotic, an intermediate case between low-
dimensional chaotic systems and fully developed turbulence
�16�. Particles on the surface of these flows can undergo very
complex trajectories and the properties of the transport can
be described by statistical means �16,18,19�. Additionally, in
a thin fluid layer such as in the experiment �2 mm�, convec-
tive fluxes are induced that may enhance the long range dis-
placement of particles in the flow �38�.

B. Experiments with chemical reaction

The recipe for the aqueous solution of the BZ reaction
was chosen in order to obtain a high contrast for recording.
The exact concentrations are: cyclohexandion 1 M, sulfuric
acid 6 M, sodium bromate 1 M and ferroin 0.025 M. With
these concentrations the BZ reaction is in the oscillatory re-
gime as was measured by means of spectroscopy. The reac-
tants are mixed in strictly the same order for each experiment
and stirred for 60 min. Then the reactants are poured into the
reactor on top of the shaker. The reactor is filled up to a
height of 2 mm and inert argon gas is injected for 15 min to
avoid oxygen inhibition in the BZ dynamics �39,40�. The
recipient is then closed with a transparent plexiglass cover
and the BZ reaction is left to rest for another 15–20 min until
the typical patterns of an BZ reaction, targets and spirals,
occur �Fig. 1�a��. Then the forcing is slowly switched on and
another 15 min are given to the system to become resonant
before recording is started. During the recording the strength
of the forcing is continuously monitored with an accelerom-
eter. Experiments are performed for a frequency range of
10–70 Hz �in steps of 10 Hz� and accelerations a of 0.5 g0,
0.75 g0, 1 g0, and 1.5 g0. The upper limit of the forcing
range is given by the onset of droplet formation on the sur-
face of the liquid and wetting of the cover which makes
recording unfeasible. The room temperature was kept con-
stant at 23�1 °C during all experiments.

C. Experiments with particles

For the experiments with particles pure water is chosen as
fluid media because it gives a better contrast for image analy-
sis than the BZ solution and has very similar properties con-
cerning density, viscosity and surface tension. The particles
�Black CromoSpheres, Brookhaven Instruments� have a
mean diameter of 502�24 �m with a density of
d	1.06 g /cm3 slightly higher than the density of water at
room temperature �23 °C, 1.00 g /cm3�. Despite that higher
density particles usually float on the surface of the fluid and
only a few particles sink and are thus sorted out. For the
experiment with the particles the same reactor as for the
chemical experiments is used, changing only the transparent
cover with a nearly identical one that has a hole of the di-
ameter 0.5 cm to facilitate the application of the particles.
Particles are applied to the reactor one after the other and the
trajectories are recorded until the particles leave the field of
view. Experiments are performed for a frequency range of
30–60 Hz �in steps of 10 Hz� and an acceleration of
a=1 g0. In order to ensure the validity of the free particle
approximation, the Stokes number S that quantifies the
Stokes drag needs to be small, S	1 �21�. It can be calculated
as S	Ud2 /18
L where U is a typical velocity of the par-
ticles, d is their diameter, 
 is the viscosity and L is a typical
length scale of the flow. In our experiments the Stokes num-
ber S is of the order 10−2 so the particles behave sufficiently
passive.

III. ANALYSIS

The analysis is split into two parts. The first introduces
analysis concepts used for the passive particles in the flow

FIG. 2. �Color online� Schematic diagram of the experimental
setup. A circular reactor made of plexiglass is filled with liquid �BZ
or water� up to a height of 2 mm. The reactor is fixed on top of an
electromagnetic shaker and vertical vibrations produced by the
shaker induce Faraday waves and fluxes in the liquid. To minimize
influence of capillary effects on the creation of Faraday waves the
reactor is constructed with an inner border that closes up with the
liquid surface �35�. BZ experiments are conducted under an inert
atmosphere of argon. Experiments are illuminated with a backlight
and monitored with a camera.
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and the second part focuses on the description of the analysis
technique applied to the advection phase wave in the BZ
reaction. The analysis of the advection phase wave is based
on the assumption that some characteristics of the particle
motion also represent the movement of finite fluid volumes.

A. Analysis of the random walks of the particles

The chaotic dynamics of a particle in a fluid flow is an
intermediate case in between completely random �noninte-
grable� and completely regular �integrable� kinetics. CTRW
is an important model for the description of this chaotic dy-
namics and can be applied to experimental measurements of
particle trajectories �for a discussion of different models see
�41��.

1. Concepts of continuous time random walk theory

We want to summarize some of the important concepts of
CTRW theory following the arguments presented elsewhere
�15,34,42,43�. In CTRW theory the trajectory of a particle in
a fluid flow is described statistically by three elementary
functions, the jump length distribution p��R�, the waiting
time distribution ���twait� and the flight time distribution
q��tflight�. A walker �a particle� is assumed to make a jump
of length �R and duration �tflight to a resting point where it
rests a time �twait until the next jump. From these three dis-
tributions the expression for the probability density function
P�r� , t� to find a particle at time t at the point r� can be derived
�15�. Thus, also the evolution of the variance �2�t� �Eq. �3��
can be written in terms of these three distributions
�41,44,45�. In a real turbulent flow the particle is never at rest
and the waiting time can be neglected. Hence, P�r� , t� is cal-
culated using only the jump length and the flight time distri-
bution and, importantly, some assumption about the coupling
of the jump length and flight time which introduces the con-
cept of Lévy walks �15,44,46�. Lévy walks arise when the
jump length and the flight time distribution are coupled such
that longer jumps take longer times to complete due to a
finite velocity of the particles in real flows. The coupled
probability of a jump to last a time �tflight and overcome
thereby a distance �R can be written as �15�


��R,�tflight� = p��R
�t�q��tflight� �4�

or equivalent


��R,�tflight� = q��tflight
�R�p��R� , �5�

where we consider that �R is the jump distance 
r�
 and the
process is isotropic. The probabilities in Eqs. �4� and �5�
obey the experimentally useful relationships �15�

�
�R


��R,�tflight� = q��tflight� �6�

and

�
�t


��R,�tflight� = p��R� . �7�

These independent probability distributions on the right hand
side of Eqs. �6� and �7� can be measured experimentally by

defining the turning points of the trajectory of the random
walker. The distance between these turning points is defined
as the jump length �R and the duration of the jump as the
flight time �t. Superdiffusion ��2�t�� t� ,��1� occurs when
the flight time and the jump length distributions have heavy
tails of the form

q��tflight� � �t−� �8�

p��R� � �R−�p. �9�

In order to obtain the variance growth from Eqs. �8� and �9�,
two different coupling laws have been studied theoretically
by different authors �15,44,45,47�. The first coupling model,
for turbulent flows, was suggested by Shlesinger and Klafter
�15�

q��tflight
�R� = ���t −

�R



V��R�

 , �10�

where � denotes the �-function and V��R� is an expression
for turbulent velocity. They show that if this coupling is con-
sidered for the calculation of P�r� , t� it leads to an exponent
�turb of the variance growth �Eq. �3��,

�turb =�
3 if ��p − 1� �

1

3

2 +
3

2
�2 − �p� if

1

3
� ��p − 1� �

5

3

1 if ��p − 1� �
5

3

� . �11�

The second frequently discussed coupling is of the form

q��tflight
�R� = ���t
 − �R� , �12�

where the temporal and the spatial step are coupled by a �
function. For a given time step �t the points that can be
reached with one spatial step lie on a shell around the start-
ing point and the exponent 
 which can be calculated from
�p and � defines the scaling between the time and the spatial
steps. This coupling leads to a different expression for the
variance growth exponent, here denoted as �
 that is more
complicated and thus not shown here �for a detailed descrip-
tion see �44,45��. These two different couplings will be used
for an estimation of the variance growth exponent � from the
measurements of exponents �p and �.

2. Definition of experimental random walk process

The particle position data r��t� obtained from our experi-
ments has a temporal resolution of 60 Hz and a subpixel
spatial resolution. In order to obtain the jump length distri-
bution p��R� and the flight time distribution q��t� the turn-
ing points of the random walk in radial direction have to be
defined. Figure 3 shows a random walk derived by this defi-
nition. As the isotropy of the flow is indispensable for this
definition, the congruence of the jump distributions in x- and
y-direction of the image coordinates has been verified. An
arbitrary starting point r��t0� from the position data is selected
as the first turning point. The point r��tn� where the radial
distance
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�Rn = 
r��t0� − r��tn�
 �13�

reaches its first maximum is set as the next turning point and
the new starting point for the algorithm.

We obtain the jump length distributions Eq. �6� and flight
time distributions Eq. �7� from the random walk and estimate
the heavy-tail exponents �p and � Eqs. �8� and �9� by fitting
�see Fig. 4�. The exponents �p and � together with a theo-
retical assumption of the coupling law for �t and �R as
introduced in Eqs. �10� and �11� determine the exponent � of
the variance growth. In Sec. IV A, the variance growth ex-
ponents �
 and �turb will be calculated from �p and � and
compared to the directly measured values of the variance
growth.

B. Analysis of the wave front

Figure 1 shows the different regimes observed in the BZ
patterns in dependence of the forcing acceleration and fre-

quency and the resulting flow. Without forcing, the typical
target and spiral patterns of the BZ reaction can be seen �Fig.
1�a��. Above a critical forcing the patterns observed exhibit
important structural changes. For weak forcing �forcing ac-
celeration and forcing frequency low, e.g., f =20 Hz,
a=0.75 g0�, targets and spirals are only slightly stretched
�not shown�. Then, for a higher forcing filamentary patterns
appear �Figs. 1�b� and 1�c�, e.g., f =20 Hz, a=1 g0�. For an
even stronger forcing multiple advection phase waves appear
in different parts of the reactor �not shown� and finally, if the
forcing is further augmented, a single advection phase wave
propagates from one side of the reactor to the other �Fig.
1�d�–1�f�, e.g., f =60 Hz, a=0.5 g0�. When the forcing is
too strong, all patterns disappear and the media becomes
totally homogeneous �7� �see Fig. 7 for an overview of the
parameter range where advection phase waves are observed�.
This is remarkable, especially because after switching off the
forcing the typical spirals and targets reappear again. This
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FIG. 3. �Color online� a� A typical random walk trajectory �forcing: 60 Hz, a=1 g0� where the turning points �black squares� are obtained
from recorded data points shown in b�. The random walk shows a variety of different scales of the jump length �R. The lack of a typical
length scale leads to heavy-tailed jump length distributions that cause superdiffusion. b� The original measured data of the trajectory �red
dots�. Note the small high frequency oscillations of the particle due to the Faraday waves. This oscillations do not contribute to the overall
displacement of the particle. c� Detail from the highlighted frame in a� and b� presented in order to illustrate the definition of the turning
points �data: red dots, turning points: black squares�. Whenever the distances between the current turning point r��t0� and two following data
points r��tn+1� and r��tn� behaves as �Rn+1��Rn the data point r��tn� is chosen as a new turning point and the same procedure is applied to
it. In this way successively a set of turning points is obtained �see also Sec. III A 2�. The high oscillations due to the Faraday waves are
mostly filtered out by this procedure.
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circumstance itself already suggests that the advection phase
wave is not a mere effect of enhanced mixing but critically
depends on the detailed dynamics of the flow. The absence of
any pattern above a critical forcing seems to coincide with
droplet formation on the surface of the liquid and thus with
an instability of the Faraday waves.

The direct way to characterize the front dynamics of the
advection phase wave is the measurement of the variance
growth of the activator spot in time. Exemplary measure-
ments of the variance growth have been realized. The vari-
ance was calculated from the images as the weighted sum of
the squared radii of the area covered by the advection phase
wave at time t: �r

2�t�=�rr
2wr�t�, where wr�t� is the number

of occurrence of radius r. However, the initiation of an ad-
vection phase wave in the middle of the field of view by
chance is a rare event as it normally starts at the boundary of
the reactor, presumably due to perturbations. Provoked ini-
tiation of an advection phase wave within the field of view
by introduction of a silver wire �48� proved to be difficult.

We therefore designed an analysis for the front propaga-
tion in analogy to the jump length distribution in the particle
random walk described above. We define a probability
���R ,�t� to find a volume of high activator concentration
after a time �t at a distance �R to a beforehand defined
front. This analysis is realized by an algorithm that detects
the front line of an advection phase wave in an image It and
then draws n new equidistant lines �masks� where maskn is n
pixels apart from the front line and n� �1,2 ,3 , . . . ,N�. Once
these N masks are created, the intersection of image It+�t
with each mask of the image It is calculated. This counts how
many pixels at a distance n away from the front have become
activated after a time �t. This procedure is applied on each
image pair It and It+�t while the advection phase wave passes
through the field of view �around 400–500 images� and the
jump distribution ���R ,�t� for jumps ahead of the front is
obtained. Fitting a Lévy function �49,50� to the data allows
for the extraction of an exponent �r that describes the heavy
tail behavior of the distribution ���R ,�t���R−�r��t�. For a
random walk in one �two� dimension �r�3 ��4� implies
that the walker experiences large displacements that lead to
Levy walks and superdiffusion.

IV. RESULTS

This section is divided in two parts. First, the results for
the particle experiments are presented and it is shown that
the flow produced by the Faraday experiment is superdiffu-
sive for forcing frequencies f �40 Hz, while at 30 Hz the
flow is not superdiffusive. In the second part we show that
the front of the advection phase wave also propagates super-
diffusively and accelerated.

A. Particles

Figure 4 shows the jump length distributions p��R� ob-
tained for different forcing frequencies �at a=1 g0�. Jump
length exponents �p are estimated by power-law fitting to the
recorded data. The flight time distribution exponents 
 are
obtained in the very same way from the corresponding dis-
tributions �not shown�. In Table I, the exponents of the jump
length and the flight time distributions are summarized. Us-
ing CTRW theory the exponents �
 and �turb for the variance
growth are calculated from �p and 
 as described in Sec. I
and shown in Table I. For the values of the exponents �p and

 extracted from these fittings CTRW theory predicts super-

FIG. 4. �Color online� Jump length distributions of the particle
experiments p��R� �Eq. �9�� for the different forcing frequencies
derived from the data �log-log scale�. The exponents �p �2.8�0.1,
2.6�0.1, 2.2�0.1, 1.7�0.1� are obtained by fitting a power law
�dashed line� to the jump length distributions for the different forc-
ing frequencies �30 Hz, 40 Hz, 50 Hz, 60 Hz, and a=1 g0�.

TABLE I. List of exponents �p �jump length distribution� and � �flight time distribution� �Eqs. �8� and
�9�� for the particle random walks �at a=1 g0�. From these values we calculate the theoretically derived
variance growth exponents ��
, �turb� and compare it to the measured ones �exp. At higher frequencies the
theoretical values exceed the measured ones and overestimate the superdiffusivity considerably.

30 Hz 40 Hz 50 Hz 60 Hz

Experiment �p 2.8�0.1 2.6�0.1 2.2�0.1 1.7�0.1

� 1.9�0.2 2.3�0.2 1.9�0.2 1.8�0.2

�exp 1.0�0.1 1.3�0.1 1.4�0.1 1.3�0.1

From theory �
 	1.4 	1.5 	1.7 	2.1

�turb 	1 	1.1 	1.7 	2.45
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diffusion, ��1, except for �turb�30 Hz�. This indicates the
lack of a typical scale in the dynamics of the flow, even
though there is a largest scale as the experimental setup has
finite boundaries.

Figure 5 shows the measured variance growth directly
obtained from particle trajectories. The experimental vari-
ance growth exponents �exp are extracted by power-law fits
to the data. The directly measured variance growth for a
forcing of f =50 Hz at a=1 g0 is shown for time scales of
considerable importance for the dynamics compared to ve-
locity values in the range of some cm/s. The variance is
calculated from 200 different experiments. Clearly a transi-
tion from a ballistic growth of the variance �	2 to a super-
diffusive 1��exp�2 can be observed in the data and is ac-
counted for by two different fitting regimes.

The experimentally obtained values of �exp for the differ-
ent forcing frequencies are also found in Table I to facilitate
comparison to the derived values �
 and �turb. The inset in
Fig. 5 shows the velocity autocorrelation function
C=v� t+�tvt� / �
v� t+�t

vt� 
�. This function sheds light on the time
scales �corr on which the flow is still correlated. The ballistic
growth of the variance changes to superdiffusive around that
correlation time �corr.

Comparing the different variance growth exponents � in
Table I, we find a transition from normal diffusion to super-
diffusion in the flow in between 30–40 Hz �at a=1 g0� for
�exp and �turb. The values of exponent �
 do not show this
transition. In contrast to the derived �
 and �turb the directly
obtained �exp does not show a strong increase toward higher
values of the forcing frequency. This suggests that the real
coupling in between �t and �R in the flow differs from the
two theoretical ones and that they overestimate the superdif-
fusion.

B. Active media

The superdiffusion in the flow is also observable in the
dynamics of the advection phase wave. Figure 6 shows that
the jump length distribution of the front ���R ,�t� is well
described by a Lévy function while a Gaussian strongly un-
derestimates the probability for long jumps of activator vol-
ume. An exponent � is obtained from the Lévy fit �49,50�,
where �r=�+1 is the behavior of the heavy tail of
���R ,�t�. An exponent �r��t��3 signifies that on local
time and length scales the front propagates superdiffusively
and the volumes of high activator concentration exhibit Lévy
walks.

Figure 7 shows the exponents �r��t� as a function of the
frequency and the amplitude of the forcing for two different
�t ��t=1 /60 s and �t=2 /60 s�. We find that the exponent
�r��t� decreases with increasing forcing, i.e., long jumps get
more probable. Also long jumps are slightly more probable
for larger times �t �Fig. 7�b��. Figure 7 also visualizes the
limited parameter range for which an advection phase wave
exists. The white fields represent forcing parameters where
no clear single advection phase wave could be observed.

Figure 8 shows the variance growth �r
2�t�� tr

� of a cen-
tered advection phase wave in time. We find that for an ex-
periment with a forcing frequency of f =50 Hz at a=1 g0
the variance of the advection phase wave monitored grows
with an exponent �r=3.4�0.2 and that the mean displace-
ment in radial direction �r�t�� grows with �=1.7�0.2 �data
not shown�. For other forcing strengths and triggered advec-
tion phase waves, values of �r lie in the same range.

We conclude that �r�2 and ��1 which indicates that the
front of the advection phase wave travels in an accelerated
way and not with a constant velocity. Qualitative observa-
tions suggest that intervals of propagation with constant ve-
locity interchange with intervals of constant acceleration
when parts of the front move rapidly forward with jets oc-
curring in the flow.

FIG. 5. Variance growth of the particle experiments �50 Hz,
a=1 g0, log-log scale�. Two different regimes can be identified: Up
to a correlation time �corr the variance growth is close to ballistic
�dashed line� while above that time the variance grows superdiffu-
sively �dash-dotted line� with an exponent �exp=1.4�0.1. For com-
parison a power-law with an exponent �=1 as expected for normal
diffusion is plotted �continuous line�. Inset: The correlation time
�vertical bar� can also be estimated from the velocity autocorrela-
tion function.

FIG. 6. The probability distribution ���R ,�t� for activator vol-
umes to jump a distance �R perpendicular to the reaction front is
well fitted by a Lévy function �continuous line�. A Gaussian distri-
bution �dashed line� underestimates the probability of large dis-
placements. The dash dotted line shows the heavy tail behavior of
the Lévy fit from which the exponent �r=2.7�0.1 is obtained. An
exponent �r�3 expresses that the activator volumes experience
Lévy walks which can lead to superdiffusion. Data �50 Hz, a
=1 g0, �t=1 /60 s� are shown on log-log scales and obtained from
around 550 image pairs using the masking algorithm described in
Sec. III B.
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V. DISCUSSION

The quasi-two-dimensional flow produced by the Faraday
experiment experiences a transition from normal diffusion to
superdiffusion around a forcing frequency of 30–40 Hz
�a=1 g0�. This has been shown by analyzing the trajectories
of micro-particles applied to the flow at different forcing
frequencies. Two different analysis techniques were used:

application of concepts from CTRW theory and direct mea-
surement of the variance growth.

The BZ reaction subjected to the Faraday experiment ex-
hibits important structural changes in dependency of the
forcing parameters. For a limited parameter range a single
advection phase wave can be observed that propagates from
one side of the reactor to the other. The propagation of the
wave front is analyzed with the described masking algo-
rithm. Probability distributions for jumps of activator vol-
umes perpendicular to the reaction front are obtained for dif-
ferent forcings. The distributions are well fitted by Lévy
functions which allows for the extraction of heavy-tail expo-
nents �r��t�. These exponents are a measure for the prob-
ability of long jumps. A value �r��t��3 indicates superdif-
fusion on the considered time scale. The values �r��t�
decrease for higher forcings and longer times �t which
means that long jumps become more probable. Exemplary
variance measurements for the advection phase wave show a
variance growth in time that is supralinear which signifies
that the wave front propagates accelerated and the front ve-
locity increases with time.

Comparison of the results obtained from particle experi-
ments with the results from the analysis of the advection
phase wave indicates that superdiffusivity of the flow is an
important requirement for the occurrence of an advection
phase wave. The transition of the flow from normal diffusion
to superdiffusion observed with the particles happens around
the same frequency �40 Hz,a=1 g0� as the transition in the
BZ reaction from filamentary patterns to advection phase
wave occurrence. However, a direct quantitative comparison
of the analyzed variables �as the variances �exp and �r or the
jump length distribution exponents �p and �r��t�� from the
particle experiments and the advection phase wave experi-
ments is awkward for a variety of reasons. First, the micro-
scopic description of a random walk with reaction differs
from a description of a passive random walk, because there
is an additional reaction probability for the activator. To our
knowledge such statistical descriptions of random walks with
active media exist only for bistable reactions �27–29,51,52�
and not for oscillatory or excitable media as we have studied
in our experiment. Second, the suggested analysis of the re-
action front using the masking algorithm is only valid for
short time steps �t when the overall shape of the front be-
tween two images has not changed much. Therefore, the ex-
ponents �r��t� depend on the time step and can only be
reliably derived for short times �t. In spite of this limitation,
the masking algorithm can be an option for the description of
the dynamics of systems where variance growth measure-
ments are not practicable. Especially the application of the
masking algorithm to the reactive waves occurring in bigger
reactors or in nature might be worthwhile where it can be
unfeasible to capture the whole reactive wave with a suffi-
cient spatial resolution. In particular, when length and time
scales of practical importance are small compared to the
scales of the entire reactive wave, the propagation of the
irregular front can be characterized by the masking algo-
rithm. Possible applications could be waves in geophysical
flows like plankton blooms in the ocean �2� or depletion of
ozone layer �53�, among others.

FIG. 7. �Color online� Heavy-tail exponent �r��t� obtained
from jump length distribution of the reaction front. The exponent
decreases for higher forcing �in frequency and in amplitude� and
longer times �a� �t=1 /60 s, b� �t=2 /60 s� which indicates that
the probability to make a long jump increases. For all advection
phase waves analyzed the exponent is in the range 2��r��t��3
and thus superdiffusive propagation of the front is expected. A
single advection phase wave that propagates through the whole re-
actor can only be observed for a confined range of the forcing
parameters �colored fields�.

FIG. 8. Variance growth of a centered reactive wave
�asterisks��50 Hz,a=1 g0�. A power-law �r

2�t�� t�r with �r

=3.4�0.2 fits the data after a continuous spot has formed �continu-
ous line�. This indicates that the front of the advection phase wave
propagates in an accelerated way in the superdiffusive flow. Top:
Binary image series shows the expansion of the active spot ��t
	0.84 s in between frames�.
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In conclusion, we have found that the quasi-two-
dimensional flow in our reactor is superdiffusive for certain
forcing parameters. In a BZ reaction subjected to this flow an
advection phase waves occurs that propagates with acceler-
ated front velocities. The local propagation of the wave front
can be characterized by an exponent �r��t�, which defines
the probability for large jumps of activator volumes perpen-
dicular to the reaction front.
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