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We analyze a model quantum dynamical system subjected to periodic interaction with an environment,
which can describe quantum measurements. Under the condition of strong classical chaos and strong decoher-
ence due to large coupling with the measurement device, the spectra of the evolution operator exhibit an
universal behavior. A generic spectrum consists of a single eigenvalue equal to unity, which corresponds to the
invariant state of the system, while all other eigenvalues are contained in a disk in the complex plane. Its radius
depends on the number of the Kraus measurement operators and determines the speed with which an arbitrary
initial state converges to the unique invariant state. These spectral properties are characteristic of an ensemble
of random quantum maps, which in turn can be described by an ensemble of real random Ginibre matrices.
This will be proven in the limit of large dimension.
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I. INTRODUCTION

Time evolution of an isolated quantum system can be de-
scribed by unitary operators. Quantum dynamics corresponds
then to an evolution in the space of quantum pure states since
a given initial state ��� is mapped into another pure state
����=U���, where U=exp�−iH�. Here H represents a Her-
mitian Hamiltonian of the system and the time t is set to
unity.

If the underlying classical dynamics is chaotic the Hamil-
tonian H or the evolution operator U can be mimicked by
ensembles of random unitary matrices �1,2�. In particular,
spectral properties of an evolution operator of a deterministic
quantum chaotic system coincide with predictions obtained
for the Dyson ensembles of random unitary matrices �3�. The
symmetry properties of the system determine which en-
semble of matrices is applicable. For instance, if the physical
system in question does not possess any time-reversal sym-
metry, one uses random unitary matrices of the circular uni-
tary ensemble �CUE�. If such a symmetry exists and the
dimension of the Hilbert space is odd one uses symmetric
unitary matrices of the circular orthogonal ensemble �COE�
�4�.

If the quantum system S is not isolated, but it is coupled
with an environment E, its time evolution is not unitary. One
needs then to characterize the quantum state by a density
operator �, which is Hermitian, �=�†, positive, ��0, and
normalized, Tr �=1. Time evolution of such an open system
can be described in terms of master equations �5�, which
imply that the dynamics takes place inside the set of quan-
tum mixed states.

The coupling of the system S with an environment E can
heuristically be described by adding to the Hamiltonian an
anti-Hermitian component, H→H�=H− i�WW†, where W is
an operator representing the interaction between both sys-
tems �6�. The corresponding ensembles of non-Hermitian
random matrices with spectrum supported on the lower half
of the complex plane were studied in �7,8�. For any positive
value of the coupling strength parameter � the dynamics of

the system is not unitary and eigenvalues of the evolution
operator move from the unit circle inside the unit disk �see
Fig. 1b��. A similar situation occurs if one takes into account
dissipation in the system. Such a dynamics of eigenvalues of
a nonunitary evolution operator in the complex plane was
analyzed by Grobe et al. �9� and later reviewed by Haake �1�.

Time evolution of an open quantum system can also be
described in terms of a global unitary dynamics V, which
couples together a system SA with another subsystem SB,
followed by averaging over the degrees of freedom describ-
ing the auxiliary subsystem. Technically, the image of an
initial state � of the system is obtained by a partial trace over
the subsystem SB, ��=TrB�V�� � ��V†�, where � denotes the
initial state of the environment. The map ��=���� defined in
this way is completely positive and preserves the trace, so it
is often called a quantum operation �10,11�. Note that in this
approach both interacting subsystems SA and SB are set on an
equal footing. The second system, usually referred to as an
“environment,” is in fact treated symmetrically, and one may
also consider a dual operation, in which the partial trace is
taken over the principal subsystem SA-compare Fig. 1�c�. A
quantum map can be described by a superoperator �, which
acts on the space of density operators. If N denotes the size
of a density matrix �, the superoperator is represented by a
matrix � of size N2. In general such a matrix is not unitary,
but it obeys a quantum analogue of the Frobenius-Perron
theorem, so its spectrum is confined to the unit disk �12�.
Spectral properties of superoperators representing some ex-
emplary interacting quantum systems were analyzed in
�13–16�. It is worth to add that spectra of quantum superop-
erators are already experimentally accessible: Weinstein et
al. �17� study spectra of superoperators corresponding to an
NMR realization of exemplary quantum gates.

For a quantum operation � there exists an invariant state
�=����. In a generic case of a typical �random� operation
such an invariant state is unique �12�. If the action of the map
is repeated n times any initial quantum state � converges to
� exponentially with the discrete time n. The rate of this
convergence is governed by spectral properties of the super-
operator, which can be characterized by the spectral gap,
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defined as the difference between moduli of the two largest
eigenvalues.

The main aim of this work is to analyze spectra of evolu-
tion operators representing interacting quantum systems. We
demonstrate that under the condition of strong classical
chaos and strong decoherence these spectral properties are
universal and correspond to an ensemble of random opera-
tions �12�. In other words, we explore the link between quan-
tum chaotic dynamics and ensembles of random matrices.
The analysis performed earlier for unitary quantum dynamics
�1� �see Fig. 1�a�� is extended for a more general case of
nonunitary time evolution of interacting quantum systems.
This problem can be described by an approach closely re-
lated to the one used earlier to characterize quantum dissipa-
tive dynamics. To describe spectra of such nonunitary evo-
lution operators Grobe et al. �9� applied random matrices of
the complex Ginibre ensemble �18�.

The key idea of this work can be visualized in Fig. 2,
which shows a bridge established between interacting quan-
tum systems, appropriate ensembles of random operations
and ensembles of Ginibre matrices. Since a superoperator
describing one-step evolution operator can be represented as
a real matrix �19�, we are going to apply random matrices of
the real Ginibre ensemble �20,21�. In particular, we investi-
gate time evolution of initially random pure states in a deter-
ministic model of quantum baker map periodically subjected
to quantum measurements, study the speed of their conver-
gence to the invariant state and compare the results with

those obtained for an appropriate ensemble of random opera-
tions. This paper is organized as follows. In Sec. II we intro-
duce several versions of a deterministic model system: the
quantum baker maps subjected to a measurement process.
We analyze spectral properties of the corresponding evolu-
tion operator and investigate the spectral gap. A different, yet
complementary approach is advocated in Sec. III, in which
we study ensembles of random quantum operations. Our nu-
merical results show that such ensembles can be useful to
describe spectra of deterministic chaotic systems strongly in-
teracting with an environment. In Sec. IV a relation between
random quantum operations and ensembles of random matri-
ces is analyzed. We prove that in the large N limit the statis-
tical properties of superoperators associated with random
maps coincide with the predictions of the real Ginibre en-
semble. The paper ends in Sec. V with concluding remarks
which complete the reasoning sketched in Fig. 2. Necessary
definitions of different classes of quantum maps are collected
in the Appendix.

II. DETERMINISTIC SYSTEM: QUANTUM BAKER MAP
SUBJECTED TO MEASUREMENTS

We start our work analyzing deterministic quantum sys-
tems which evolve periodically in time. In this section we
introduce a generalized version of quantum baker map and
investigate properties of the associated evolution operator.

We shall concentrate on quantum dynamical systems, the
classical analogues of which are known to be chaotic. Fol-
lowing the model of Balazs and Voros �22� we consider the
unitary operator describing the one-step evolution model of
quantum baker map,

B = FN
†�FN/2 0

0 FN/2
� . �1�

Here FN denotes the Fourier matrix of size N, �FN� jk

=exp�ijk /2	N� /	N, and it is assumed that the dimension N
of the Hilbert space HN is even.

The standard quantum baker map B may be generalized to
represent an asymmetric classical map,
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FIG. 1. Schematic representation of �a� an isolated quantum
system S characterized by a Hamiltonian H and a unitary evolution
operator U=exp�−iH�; �b� open quantum system S. The influence of
an environment E can be described by an anti-Hermitian part of the
Hamiltonian, −i�WW†; and �c� interacting systems S and E, in
which the global evolution is unitary, and the nonunitarity of the
evolution of SA is due to the partial trace over the subsystem SB.
Panels �a��– �c�� show exemplary spectra of the corresponding evo-
lution operators, which belong to the unit disk on the complex plane
z=x+ iy.
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FIG. 2. Under the assumption of strong chaos and large deco-
herence a deterministic dynamics of �a� an interacting quantum sys-
tem can be described by �b� an ensemble of random operations
�completely positive, trace preserving maps�. These, in turn, can be
mimicked by �c� random matrices of the real Ginibre ensemble,
�which do not imply CP and TP properties�.
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BK = FN
†�FN/K 0

0 FN−N/K
� , �2�

where K�2 is an integer asymmetry parameter chosen in
such a way that the ratio N /K is integer. The standard model,
obtained in the case K=2, corresponds to the classically cha-
otic dynamics characterized by the dynamical entropy H
equal to ln 2 �23�. This system can be considered as a two-
dimensional lift of an one-dimensional nonsymmetric shift
map,

fK�x� = 
Kx/�K − 1�: x � �0,�K − 1�/K�
Kx − K + 1: x � ��K − 1�/K,1�� . �3�

Chaos in such a system can be characterized by its dynamical
entropy, equal to the mean Lyapunov exponent, averaged
with respect to the invariant measure of the classical system.
Since the uniform measure is invariant with respect to the
map fK, the dynamical entropy h is equal to the mean loga-
rithm of the slope dfK /dx,

h�K� =
1

K
ln K +

K − 1

K
ln

K

K − 1
. �4�

The entropy is maximal in the case K=2, while in the limit
K→
 the entropy tends to zero. Hence the larger value of
the parameter K is, the weaker chaos in the classical system
becomes.

In the case of the quantum system acting on the
N-dimensional Hilbert space the largest possible value of the
asymmetry parameter reads K=N. Thus the limiting case of
the classically regular system cannot be obtained for any
finite N. The limit of vanishing dynamical entropy, h→0,
can be approached only in the classical limit N→
 of the
quantum system.

A generalized variant of a nonunitary baker map intro-
duced by Saraceno and Vallejos described a dissipative quan-
tum system �24�. In this work we study another model of
noninvertible quantum baker map analyzed in �13,25�, which
is deterministic, conserves the probability, and is capable to
describe projective measurements or a coupling with an ex-
ternal subsystem. Such a nonunitary dynamics can be repre-
sented as a quantum map and written in its Kraus form—for
necessary definitions see the Appendix.

In general there exist M different outcomes of the mea-
surement process and thus the map is described by a collec-
tion of M Kraus operators. The simplest nontrivial case of
M =2 corresponds to dividing of the phase space into two
parts, which we can choose to be the “lower” and the “up-
per” parts. Such a measurement scheme allows one to write
down the quantum operation corresponding to the “sloppy
baker map,” in which both pieces of the classical phase space
are not placed precisely one by another, but in each step an
overlap of a positive width takes place. In the classical model
the upper piece of the phase space is shifted down by � /2
�see Fig. 3�c�� so the invariant measure lives in the rectangle
of the width �1−��. To represent the shift in the quantum
analogue of the map one uses a unitary translation operator V
such that VN=1N and any momentum eigenstate �k� is shifted

by one, V�k�= �k+1�. Hence the shift down by � /2 is realized
by the unitary operator, V−N�/2. Thus the stochastic map de-
scribing the quantum sloppy map �13�

�BK,�
��� = DbBK�BK

† Db
† + DtBK�BK

† Dt
†, �5�

consists of two Kraus operators, which act on the unitarily
rotated state ��=BK�BK

† ,

Db = FN
†�1N/2 0

0 0
�FN,

Dt = V−N�/2FN
†�0 0

0 1N/2
�FN. �6�

The operator Db describes the projection on the lower part of
the phase space, while the definition of the operator Dt in-
cludes also the operator representing the shift of the upper
domain down by � /2. Observe that the parameter � may
take any real value from the unit interval �0,1�. However, the
case �=0 corresponds to the baker map without the shift but
with a measurement, so it does not reduce to the standard
unitary baker map BK.

One can also consider another classical model of double
sloppy map, in which both domains are simultaneously
shifted by � /4 towards the center of the phase space �26�
�Fig. 3�d��. To write down the corresponding quantum
model BK,�,� one needs thus to modify both Kraus opera-
tors, Db→VN�/4Db and Dt→V−N�/4Dt.

Both variants of the model can be further generalized by
allowing for a larger number M of measurement operators,
represented by projectors on mutually orthogonal subspaces.
For simplicity we assume here that the dimensionalities of all
these subspaces are equal and read N /M. Varying the param-
eter M one may thus control the degree of the interaction of
the baker system with the environment and study the relation
between the decoherence in the interacting quantum system
and the spectrum of the corresponding superoperator.
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FIG. 3. Sketch of the classical dynamical system acting on the
torus: �b� reversible asymmetric �K=4� baker map BK, �c� irrevers-
ible sloppy baker map BK,� in which in each step the upper part of
the phase space is shifted down by � /2, �d� double sloppy baker
map BK,�,� in which both parts of the phase space are shifted ver-
tically by � /4.
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Increasing the asymmetry parameter K one can decrease
the degree of classical chaos. To increase the degree of chaos
one may just apply the quantum baker map twice, since the
classical dynamical entropy of such a composite map is
equal to 2 ln 2. In general one can allow for an arbitrary
number of L of unitary evolutions, and replace unitary B by
BL. Alternatively one can say that the nonunitary measure-
ment operation is performed only once every L periods of the
unitary evolution. Choosing the parameter L to be of order of
N one can assure that the quantum dynamics is as “chaotic”
as allowed by the quantum theory, what can be quantitatively
characterized by the quantum dynamical entropy �27–29�.

Therefore the generalized model of quantum sloppy baker
map we are going to analyze here depends on the classical
asymmetry parameter K, the width of the classical shift �,

the number of free evolutions L, and the quantum parameter
M denoting the number of measurement operators,

�B�,K,L,M
��� = �

m=1

M

Dm�BK�L��BK
† �LDm

† . �7�

Additionally, for each set of parameters of the model one can
choose the appropriate set of projection operators Dm which
correspond to the shift applied on one or on two parts of the
classical phase space.

Note that the measurement process can also be interpreted
as an interaction with a measurement apparatus, described by
an auxiliary Hilbert space of M dimensions. Thus the model
�Eq. �7�� represents an interacting quantum system and be-
longs to the general class of quantum operations defined by
Eq. �A1�. A rich structure of the model and the possibility to
tune independently several parameters of the quantum sys-
tem allows us to treat this model as a valuable playground to
investigate spectral properties of superoperators, which rep-
resent nonunitary dynamics of interacting quantum systems.

We constructed quantum operations representing the gen-
eralized sloppy baker map �Eq. �7�� for several sets of the
parameters of the model. In each case the superoperator �
was obtained according to expression �A2� and diagonalized
to yield the complex spectrum belonging to the unit disk.

In the case of several measurement operators, M �2, the
quantum baker map represents a nonunitary dynamics. Un-
der the condition of classical chaos the leading eigenvalue
z1=1 is not degenerated and all remaining eigenvalues are
located inside the disk of the radius equal to the modulus of
the subleading eigenvalue R= �z2�.

The spectra of the superoperator of the generalized sloppy
baker map �Eq. �7�� were found to depend weakly on the
shift parameter �. However, other parameters of the model
�namely, N, K, L, and M� influence properties of the spec-
trum considerably �see Fig. 4�.

As the asymmetry parameter K increases the differ-
ence between the sizes of two domains which form the clas-
sical phase space becomes larger. In the extreme limit of
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FIG. 4. Exemplary spectra of the evolution operator for the
sloppy baker map for several values of the parameters of the model.
The dimension of the Hilbert space N=64, parameter M =2, and the
shift width �=1 /4 are kept fixed. A generic spectrum for K=4,
L=16 is shown on panel �b�. The subplots �a� and �c� are obtained
for the cases of a weak classical chaos for K=64, L=1 and K=L
=32, respectively, while the last case �d� shows the spectrum for the
double sloppy map BK,�,� for K=64 and L=64.
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FIG. 5. Spectra of superoperators corresponding to typical ran-
dom maps generated according to �a� the ensemble �E and �b�
ensemble �P �for definitions see Sec. II�. All maps act on quantum
states of size N=64, while the parameter of the model reads M =2.
Note that in all cases the spectrum is contained in the disk of radius
R=1 /	2 apart of the leading eigenvalue marked by “�.”
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FIG. 6. Modulus of the subleading eigenvalue R= �z2� as a func-
tion of the dimension M of the environment for random quantum
operation �E for N=4�� � and for the sloppy baker map for
N=64, K=4, L=16, M =2, �=1 /4 ���. Solid line shows the fit
according to Eq. �12�.
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K→N→
 the classical system becomes only marginally
chaotic, the eigenvalues are attracted to the unit circle and
the spectral gap =1− �z2� disappears.

On the other hand, if we increase the degree of the clas-
sical chaos by increasing the number L of unperturbed uni-
tary evolutions, the size of the spectral gap does not change,
but the spectrum fills the complex disc of radius R= �z2� al-
most uniformly. Eventually, an increase in the number M of
the measurements results in a faster decoherence in the sys-
tem. This is reflected by an increase in the spectral gap . In
fact the radius R=1− of the disk supporting the spectrum
decreases with M as M−1/2. This observation, demonstrated
in Fig. 6, will be explained in Sec. IV.

III. ENSEMBLES OF RANDOM OPERATIONS

Let us pause for a while with the investigation of quantum
deterministic systems and follow another approach. Not
knowing much about a given chaotic system one can try to
assume that the interactions are random and try to mimic
statistical properties of the deterministic systems by appro-
priate ensembles of random matrices �1�.

In this section we make a step in this direction and pro-
pose three different ensembles of random stochastic maps
acting on the space MN of mixed states of size N with dif-
ferent physical interpretation. We assume that all unitary ma-
trices U used below are drawn according to the Haar mea-
sure on the unitary group of corresponding dimension unless
stated otherwise.

�1� Environmental representation of a random stochastic
map �12�. Choose a random unitary matrix U of composite
dimension NM and construct a random map as

�E��� = TrE�U�� � ������U†� . �8�

It is assumed here that the environment, initially in an arbi-
trary pure state ��� is coupled with the system � by a random
global unitary evolution U. The stochastic map is obtained
by performing the partial trace over the M-dimensional en-
vironment.

�2� Random external fields defined as a convex combina-
tion of M unitary evolutions �5�

�R��� = �
m=1

M

pmUm�Um
† , �9�

where pm are positive components of an arbitrary probabilis-
tic vector of size M, �m=1

M pm=1. All unitaries Um�U�N� are
independent random Haar matrices. Random external fields
form an example of bistochastic maps. They represent the
physically relevant case in which the quantum system is sub-
jected randomly with one of M given unitary operations and
can also be interpreted as quantum iterated function systems
�30�.

These maps, also called random unitary operations, were
recently studied by Novotný et al., who investigated condi-
tions under which the invariant state of the map is unique
�31�. They found that the set of states attracted by a given
invariant state depends on the algebraic properties of the uni-
taries Um but is independent of the �nonzero� probabilities pm

present in Eq. �9�. The probabilities determine the speed of
convergence to the invariant state, and thus the size of the
spectral gap but do not influence the structure of the attract-
ing sets.

�3� Projected unitary matrices acting on states of a
composite dimension, N=KM. All M Kraus operators are
formed by unitarily rotated projection operators, Am= PmU
for m=1, . . . ,M which leads to the map

�P��� = �
m=1

M

PmU�U†Pm, �10�

where U is a fixed random unitary matrix. Here Pm= Pm
†

= Pm
2 denote projective operators on K dimensional mutually

orthogonal subspaces, which satisfy the identity resolution,
�mPm=1N. This ensemble of bistochastic maps corresponds
to a model of deterministic quantum systems, in which uni-
tary dynamics is followed by a projective measurement.

In the ensembles of random maps defined above the inte-
ger number M �1 determines the number of Kraus operators
and serves as the only parameter of each ensemble of random
maps. Observe that in the special case M =1 the dynamics
reduces to the unitary evolution, so both variants of the
model are used to describe quantum systems with or without
a generalized antiunitary symmetry �1�.

As shown in �12� the flat measure in the set of stochastic
matrices is obtained for the coupling of the system with
an environment of dimension M =N2 so that the Choi
matrix, D�ª �� � 1���+��+� of size N2 has full rank.
Here ��+�= 1

N�i=1
N �i , i� represents the maximally entangled

state on the bipartite Hilbert space, HN � HN. Due to the
theorem of Choi the condition of complete positivity of the
map is equivalent to positivity of the Choi matrix,

� is CP ⇔ D� � 0. �11�

In general the discrete parameter M characterizes the
strength of the nonunitary interaction and we shall vary it
from unity �unitary dynamics� to N2, which describes a ge-
neric random stochastic map.

We have generated several realizations of random maps
from the ensembles �E and �P introduced above. Exem-
plary spectra of superoperators for maps pertaining en-
sembles obtained for M =2 are shown in Fig. 5. In the latter
case we superimposed the spectra from two realizations of
the map �P since by construction N2 /M eigenvalues of the
superoperator are equal to zero.

In general, the spectra of random maps could be used to
describe the spectra of deterministic system �Eq. �7�� under
the condition of classical chaos and large decoherence. Nu-
merical results performed for various models of quantum
maps reveal an exponential decay of the mean trace distance
�Eq. �A3�� to the invariant state. The average convergence
rate is related with the size of the spectral gap . As shown in
Fig. 6 obtained for random operations as well as the gener-
alized quantum baker map the radius R=1− of the disk in
the complex plane, which contains all but the leading eigen-
value, decreases with the number of measurements as
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R = �z2� �
1

	M
. �12�

In the next section we present an explanation of this relation
based on the theory of random matrices.

IV. QUANTUM OPERATIONS AND REAL
GINIBRE ENSEMBLE

In this section we make a final link of our reasoning.
Having showed a relation between deterministic chaotic sys-
tems which interact with an environment and random opera-
tions we make another step to describe spectral properties of
superoperators associated with random operations by random
matrices.

Looking at the spectrum of a random stochastic map �E
shown in Fig. 5 one can divide the entire spectrum into three
parts: �i� a single eigenvalue z1=1, �ii� NR real eigenvalues
distributed along the real line with a density PR�x�, and �iii�
remaining NC complex eigenvalues zi, the distribution of
which can be described by a density PC�z� on a complex
plane.

Any density operator � of size N can be represented using
the generalized Bloch vector representation

� = �
i=0

N2−1

ai�
i. �13�

Here �i denotes the generators of SU�N� such that Tr��i� j�
=�ij and �0�1. Since �=�†, ai�R for i=0, . . . ,N2−1. The
real vector �a0 , . . . ,aN2−1� is called the generalized Bloch
vector. Thus

���� = �
i
��

j

�ijaj��i. �14�

The Bloch vector can also be used to represent an arbi-
trary operation. Using Kraus operators Am one represents the
element �ij of the superoperator � in a form

�ij = Tr��i��� j�� = Tr �
m

�iAm� j�Am�†, �15�

where i , j=1, . . . ,N2−1. This square matrix of order N2−1
will be called C. In a similar way we introduce the vector �
and find that the remaining elements of the matrix � do
vanish,

�i0 = Tr �
m

�iAm�0�Am�† = Tr �i�0�
m

am�Am�† � ���i,

�16�

�0j = Tr �
m

�0Am� j�Am�† = Tr �0� j = �0j , �17�

Hence the superoperator � can be represented as a real
asymmetric matrix

�ij = �1 0

� C
� , �18�

where the N�ªN2−1 dimensional vector � represents a
translation vector while the N��N� real matrix C is a real

contraction �12�. Thus the spectrum of � consists of the
leading eigenvalue, equal to unity, and the spectrum of C.
Note that the complex eigenvalues of the real matrix C ap-
pear in conjugated pairs, z and z̄, which is a consequence of
the fact, that the map � sends the set of Hermitian operators
into itself, so as seen above the superoperator can be repre-
sented by a real matrix �19�. Since a map acting on states of
size N is represented by a superoperator of dimension N2 the
following normalization relation holds, 1+NR+NC=N2.

In the case that C has only real eigenvalues one can bring
C by an orthogonal transformation O to lower triangular
form

C = O�� + ��O−1, �19�

where �=diag�z1 , . . . ,zN�� while � has elements only below
the diagonal. Thus

dC = O�O−1dO�� + �� − �� + ��O−1dO + d� + d��O−1.

�20�

Hence the measure DC is given by

DC = ��
i�j

�zi − zj��
k

dzk�
i�j

�O−1dO�ij�
j�i

d�ij� , �21�

where the Vandermonde determinant is the Jacobian of the
transformation from �O−1dO�ij� j to �O−1dO�ij. Thus the
measure d���� has the form

D���� = ��
i�j

�zi − zj��
k

dzk���D� � 0� , �22�

where in the last factor the positivity conditions of the cor-
responding Choi matrix is averaged by integration over the
measure D�D��O−1dO. This factor is expected to be a
smooth function of the eigenvalues z1 , . . . ,zN�. In the case
that C has a certain number of complex conjugate eigenval-
ues D���� is of similar form, but the product of differentials
dzk has to be interpreted as exterior product �21�. It turns out
that for large dimension N� the measure d���� is given by
the real Ginibre ensemble with the bulk of eigenvalues inside
a certain disk in the complex plane. To prove this let us go
back to the matrix representation of � in terms of M Kraus
operators Am ,m=1, . . . ,M. Then

����ij = �
m=1

M

Aik
m�kl�Ajl

m�� = �
kl

�ij,kl�kl, �23�

where Aik
m are the matrix elements of Kraus operators and �

denotes the complex conjugation; i , j ,k , l=1, . . . ,N. The
Kraus operators obey

�
m=1

M

�
i=1

N

Aik
m�Ail

m�� = �kl, �24�

thus it is natural to assume that Aik
m represent N columns of a

matrix U drawn from a circular unitary ensemble of dimen-
sion NM, i.e., U�U�NM�. Using formulas by Mello �32� for
the first four moments of U�NM� we are able to find exactly
the first two moments of matrix elements �ij,kl. For example,
for U�U�N� : Ub�Ua�

� �=�ab��� /N. Here ¯ � means the av-
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erage over the unitary group. This implies here

�ij,kl� = �
m=1

M

Aik
m�Ajl

m��� =
1

N
� ji�lk. �25�

In this way we can derive the exact second moments:

�ij,kl�ī j̄,k̄l̄

� � =
1

�NM�2 − 1
�M2�ij�ī j̄�kl�k̄l̄ + M�iī� j j̄�kk̄�ll̄�

−
1

NM

1

�NM�2 − 1
�M2�ij�ī j̄�kk̄�ll̄

+ M�iī� j j̄�kl�k̄l̄� . �26�

We see that in the limit of large N the first two cumulants are
identical to those of the Gaussian distribution �with variance
1 / �N2M��

P��� � exp�NM�
ik

�ii,kk −
N2M

2 �
ijkl

��ij,kl�2� . �27�

The factor 1/2 is due to the symmetry property �ij,kl=� ji,lk
� .

We will argue below that for large M in addition the higher
cumulants can be neglected. Hence the superoperator � as-
sociated with a random map can be described �up to the one
eigenvalue 1� by the real Ginibre ensemble with eigenvalues
inside a disk of radius 1 /	M, where M is the number of
random Kraus operators defining �. This can also be seen by
going back to the real matrix representation �Eqs. �15�–�18��.

Let us now argue that for large M we can neglect higher
cumulants. First of all for large N the elements Aik

m, forming
a minor of U�U�NM�, are essentially independent Gaussian
variables with zero mean and variance 1 /NM. Thus as a
consequence of the central limit theorem for large M �ij,kl as
sum of M essentially independent identically distributed
variables is again Gaussian with variance M / �NM�2

=1 /N2M. Also in the bulk the different matrix elements of �
are independent. The average of �ij,kl is given by �ij�kl /N.

To investigate the density of complex eigenvalues z=x
+ iy of the superoperator �, we analyzed their radial prob-
ability distribution P�r�, where r= �z�. The real eigenvalues
are taken into account for this statistics. Figure 7 shows a
comparison of numerical data obtained for several realiza-
tions of quantum baker map, projective random operations,
and real random matrices pertaining to the Ginibre ensemble.
The data are represented in the rescaled variable rM =r	M so
that the radius of the disk of eigenvalues is set to unity. In all
three cases displayed in the figure the radial density grows
linearly, which corresponds to the flat distribution of eigen-
values inside the complex disk, in agreement with the pre-
dictions of the Ginibre ensemble. These results obtained for
N=32 show a smooth transition of the density in the vicinity
of the boundary of the disk at rM =1, which becomes more
abrupt for larger N. In the asymptotic case N→
, the density
of rescaled eigenvalues is described by the circular law of
Girko,

PC�z� � ��1 − �z�� , �28�

derived for complex Ginibre matrices. The spectra of real
random Ginibre matrices display a more subtle structure. A

finite fraction of all eigenvalues are real, in analogy to the
mean number of real roots of a real polynomial �33,34�. Real
eigenvalues of a real Ginibre matrix cover the real axis with
a constant density. Furthermore, for large dimension the den-
sity of complex eigenvalues is known to be asymptotically
constant in the complex disk except for a small region near
the real axis �20�.

To check for what random operations these effects can
be observed in the spectrum of the superoperator, we ana-
lyzed the average number NR�� of real eigenvalues of the
superoperator �. For any realization of � we have NR

=NReal / �N2−1�, where NReal is the number of real eigenval-
ues of the real matrix of size N�=N2−1. These data are com-
pared with predictions for the real Ginibre ensemble, hereaf-
ter denoted by NR�RG. The following expression for the
mean number of real eigenvalues of a real Ginibre matrix of
size N2−1 was derived in �35–37�

NR�RG = 1 +
	2

	
�

0

1 t1/2�1 − tN2−2�dt

�1 − t�3/2�1 + t�

�	 2

	
	N2 − 1 as N → 
 . �29�

These analytical results suggest to introduce a rescaled ratio

� ª

NR��

	N2 − 1
�30�

to make easier a comparison of data obtained for various
systems of size N. Numerical results presented in Fig. 8
show that the superoperators associated with random maps
are characterized by a nonzero fraction of real eigenvalues.
In the case of strong interaction with the ancilla of the size
M =N2 the dynamical matrix D� has full rank and the res-
caled fraction of real eigenvalues of � coincides with the
prediction for the real Ginibre ensemble. To demonstrate fur-

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

r
M

P(r
M

)

FIG. 7. Radial density of complex eigenvalues of spectra of
superoperators corresponding to a deterministic model of sloppy
baker map �� �, projective random operations ���, and the spectra
of real random matrices of the Ginibre ensemble ���. The size of
each matrix is N2=322, the number of Kraus operators is M =16 so
the density is shown as a function of the rescaled radius rM

ªr	M =4r. The tail of the distribution beyond the point rM =1
�equivalent to r=1 /4� does not violate therefore the quantum ana-
logue of the Frobenius-Perron theorem.
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ther spectral features characteristic of the real Ginibre en-
semble, we analyzed spectra of superoperators and investi-
gated the cross section of the probability distribution P�z�
along the imaginary axis. Numerical data of this distribution
denoted as P1

C�y� obtained for an ensemble of random maps
�E acting on the states of size N=3 are shown in Fig. 9.

In order to compare these data with predictions of the real
Ginibre ensemble we need to assure a suitable normalization.
Let us rescale the imaginary axis as y�yM =	My so that
rescaled formula �25� of �37� takes the form

P1
C�yM� ª R1

C�	My� �	2M

	
exp�2My2��y�erfc��y�	2M� .

�31�

Making use of the standard estimations

1

x + 	x2 + 2
� exp�x2��

x




exp�− t2�dt �
1

x +	x2 +
4

	

�32�

�see formula �7.1.13� at page 298 of Abramowitz and Stegun
�38��, and the definition of the complementary error function
erfc�z�, one obtains from Eq. �32� an explicit form for lower
and upper bounds for the rescaled distribution in the vicinity
of the real axis

1

	

2

1 +	1 +
1

My2

� P1
C�yM� �

1

	

2

1 +	1 +
2

	

1

My2

.

�33�

As shown in Fig. 9 these bounds are rather precise and de-
scribe well the numerically observed density P1

C�y� of com-
plex eigenvalues of the superoperators along the imaginary
axis.

V. CONCLUDING REMARKS

In this work we analyzed spectra of nonunitary evolution
operators describing exemplary quantum chaotic systems
and the time evolution of initially pure states. We have cho-
sen to work with a generalized model of quantum baker map
subjected to measurements �13,26�, which allows one to con-
trol the degree of classical chaos and the strength of the
interaction with the environment. The size of the quantum
effects, proportional to the ratio of the Planck constant to the
typical action in the system, is controlled by the size N of the
Hilbert space used to describe the quantum system. The clas-
sical limit of the quantum model corresponds to the limit
N→
.

Due to a quantum analogue of the Frobenius-Perron theo-
rem the evolution operator has at least one eigenvalue equal
to unity, while all other eigenvalues are contained in the unit
disk in the complex plane. In a generic case the leading
eigenvalue is not degenerated and the corresponding eigen-
state represents the unique quantum state invariant with re-
spect to the evolution operator.

Investigating the time evolution of initially random pure
states we found out that in a generic case they converge
exponentially fast to the invariant state. The rate of this re-
laxation to the equilibrium depends on the size of the spec-
tral gap, equal to the difference between the moduli of the
first and the second eigenvalues of the evolution operator. In
particular, the relaxation rate � was found to depend on the
number of measurement operators M as 1

2 ln M.
Spectral properties of evolution operators of deterministic

quantum systems interacting with the environment were
compared with spectra of suitably defined ensembles of ran-
dom matrices. Note that an idea to apply random matrices to
model evolution operators of open deterministic quantum
systems was put forward by Pepłowski and Haake �39�, but
random maps used therein are not necessarily completely
positive. This property is by construction fulfilled by the en-

2 4 6 8 10 12 14
0.75

0.8

0.85

0.9

0.95

1

N

η

FIG. 8. Rescaled ratio of the real eigenvalues � of the superop-
erator for random operations with M =N2 ���, M =N ���, and real
Ginibre matrices ��� as a function of the matrix size N. Solid hori-
zontal line at 	2 /	 represents the asymptotic value of the normal-
ized ratio implied by Eq. �29�.

−1 −0.5 0 0.5 1
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0.05

0.15
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0.35

y
M

P
1
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M
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FIG. 9. Numerical data for the density P1
C�yM� of complex ei-

genvalues along the rescaled imaginary axis obtained for an en-
semble of random operations �E of dimension N=8 and with pa-
rameter M =N2=64 ��� are compared with lower and upper bounds
�Eq. �33�� obtained for small �y� from the real Ginibre ensemble and
represented by thick lines.

BRUZDA et al. PHYSICAL REVIEW E 81, 066209 �2010�

066209-8



semble of random stochastic maps introduced in �12� and by
two other ensembles of random bistochastic maps used in
this work.

In general, the spectra of nonunitary operators corre-
sponding to quantum deterministic systems display a wide
variety of structures, which depend on classical parameters
as the degree of chaos of the corresponding classical system
characterized quantitatively, e.g., by its dynamical entropy.
The spectra depend also on quantum parameters as the di-
mension of the Hilbert space and the character of the inter-
action with the environment, which governs the strength of
the decoherence effects. However, under an assumption of
strong classical chaos and a uniform coupling of the system
analyzed with all the states of the M-dimensional environ-
ment the spectral properties the corresponding evolution be-
come universal: the spectrum consists of a leading eigen-
value equal to unity, while all other eigenvalues cover the
complex disk of radius R=1 /	M.

In the asymptotic limit N→
 the density of complex ei-
genvalues becomes uniform in the disk, besides the region
close to the real axis. As the size of the environment M is
equal to N2, which implies strong decoherence, the dynami-
cal matrix D� describing the quantum map � has full rank,
so it can be considered as generic. In this very case the
spectral statistics of this region of the complex spectrum of
the superoperator and the fraction of its real eigenvalues co-
incides with predictions of the real Ginibre ensemble, a proof
of which is given in this work.
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APPENDIX: QUANTUM OPERATIONS
AND SPECTRAL GAP

In this appendix we collect necessary definitions used in
the main text. Define the set of quantum states MN which
contains all Hermitian positive operators � of size N�N
with trace set to unity. A quantum linear map � acting on
MN is called completely positive �CP� if positivity of the
extended map, �� � 1M�����0: ∀�, holds for an arbitrary
dimension M of the extension and trace preserving �TP� if
Tr������=Tr���. Any CP TP map is called quantum opera-
tion or stochastic map. If a quantum operation � preserves

the identity, ��1 /N�=1 /N, the map is called bistochastic.
According to the dilation theorem of Stinespring �40� any

CP map may be represented by a finite sum of M Kraus
operators,

���� = �
m=1

M

Am��Am�†. �A1�

If the Kraus operators Am satisfy the identity resolution,
�m�Am�†Am=1N, the map � is trace preserving. The corre-
sponding superoperator can be expressed as a sum of the
tensor products �10�,

� = �
m=1

M

Am
� �Am��, �A2�

where the � denotes the complex conjugation. Let zi with i
=1, . . . ,N2 denote the spectrum of � ordered with respect to
the moduli, �z1�� �z2�� ¯ � �zN2��0.

A quantum stochastic map � sends the compact, convex
set MN of mixed density matrices into itself. Hence such a
map has a fixed point, the invariant quantum state �=����.
Thus the spectrum of any superoperator � representing a
quantum operation contains an eigenvalue z1 equal to unity,
while all other eigenvalues belong to the unit disk. In the
case of unitary dynamics the leading eigenvalue is degener-
ated, but for a random stochastic map the invariant state is
generically unique, and the subleading eigenvalue satisfies
�z2��1. In this case any pure state, �����, converges to the
equilibrium state � if transformed several times by the map
�. Note that this statement holds for a generic random op-
eration, constructed according to the flat measure in the en-
tire convex body of all quantum operations of a given size
�12�.

If the invariant state of a map � is unique one can char-
acterize the convergence rate by the average trace distance of
a random initial state to the invariant state �,

d�t� = Tr��t��0� − ����. �A3�

Here t denotes the discrete time �i.e., the number of consecu-
tive actions of a given map ��, while the average is taken
over the ensemble of initially random pure states, �0
= �����.

In the case of a generic quantum operation an exponential
convergence to equilibrium, d�t�=d�0�exp�−�t� was reported
�12�. The convergence rate depends on spectral properties of
the superoperator �. The spectrum can be characterized by
the spectral gap, =1− �z2�, which generically determines the
convergence rate, �=−ln�1−�.
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