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We demonstrate the preservation of the Lyapunov modes in a system of hard disks by the underlying tangent
space dynamics. This result is exact for the Zero modes and correct to order � for the Transverse and
Longitudinal-Momentum modes, where � is linear in the mode number. For sufficiently large mode numbers,
the � terms become significant and the dynamics no longer preserves the mode structure. We propose a
modified Gram-Schmidt procedure based on orthogonality with respect to the center zero space that produces
the exact numerical mode. This Gram-Schmidt procedure can also exploit the orthogonality between conjugate
modes and their symplectic structure in order to find a simple relation that determines the Lyapunov exponent
from the Lyapunov mode. This involves a reclassification of the modes into either direction preserving or form
preserving. These analytic methods assume a knowledge of the ordering of the modes within the Lyapunov
spectrum, but gives both predictive power for the values of the exponents from the modes and describes the
modes in greater detail than was previously achievable. Thus the modes and the exponents contain the same
information.
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I. INTRODUCTION

In a chaotic system, the difference between two nearby
phase space trajectories, called the Lyapunov vector, di-
verges exponentially in time. If one or more of the rates of
divergence are positive, then the dynamics of a single initial
condition is unpredictable and global behavior becomes im-
portant. The statistical mechanics of chaotic many particle
systems is an illustrative example of a probabilistic treatment
of the global behavior of deterministic microscopic dynam-
ics. It is believed that using the probabilistic axioms of sta-
tistical mechanics in what is otherwise a deterministic sys-
tem can be justified by the chaotic nature of the dynamics.
Much effort has been devoted to finding links between mac-
roscopic fluid quantities, such as transport coefficients, and
chaotic properties of microscopic systems such as the
Lyapunov exponents �1–3�. There have been some successes
in bridging this divide, such as the conjugate pairing rule for
the Lyapunov spectrum in some thermostated systems �4–6�
and the fluctuation theorem �7,8�.

The existence of a step structure in the smallest nonzero
values in the Lyapunov spectrum �the full set of Lyapunov
exponents� is another chaotic property which has been stud-
ied extensively �9–20�. Each step in the exponent spectrum is
associated with delocalized wavelike structure in the corre-
sponding Lyapunov vector; distinguished now as a Lyapunov
mode �21�. These modes connect to macroscopic fluid prop-
erties as the delocalized modes relate to the slowest global
dynamics of the fluid. In order to understand how this phe-
nomenon manifests itself many analytical approaches—such
as random matrix theory �22,23�, kinetic theory �12,24� and
periodic orbit theory �25�—have been attempted.

A clue to understanding the nature of the ordered collation
of the step structure in the Lyapunov spectrum and the global
Lyapunov modes is in the behavior of the Lyapunov vectors
associated with the zero Lyapunov exponents of the system
�15�. It is now understood that these Zero modes are Noether
transformations �26� generated either by the conserved quan-

tities in the system, or by time translations along the phase
space trajectory that are invariant. It is thought then that the
Lyapunov modes associated with the steps in the spectrum
are k-vector analogs of the Zero modes and have the same
basis in the fundamental symmetries of the system �13–15�.

The standard numerical scheme for calculating the
Lyapunov exponents and modes is the Benettin algorithm
�27–29�. This uses a combination of tangent space dynamics
and the standard Gram-Schmidt �GS� procedure to obtain
orthogonal Lyapunov vectors. Recently, new methods have
become available to calculate covariant Lyapunov vectors
�30–34�. It has been observed that the numerical time evolu-
tion of the Lyapunov modes in the Benettin algorithm is
especially simple; the modes develop into approximately in-
variant directions or approximately invariant subspaces of
the tangent space �9–11�. Here we exploit the simplicity of
the mode dynamics to develop a more complete understand-
ing of their properties.

The paper is organized as follows. Section II introduces
the quasi-one-dimensional �QOD� model used in the numeri-
cal calculations, and Sec. III introduces Lyapunov exponents,
vectors and modes with a brief description of the numerically
observed Lyapunov spectrum and modes. In Sec. IV the tan-
gent space dynamics for hard particle systems is introduced
and a form appropriate for the QOD system is derived. Sec-
tion V applies the tangent space dynamics to each of the
numerically observed modes in order to understand how the
modes become either direction preserving or form preserv-
ing. In Part D we develop the connection between the modes
obtained from the Benettin scheme which are perfectly or-
thogonal and the assumed functional forms for the modes
�35� that are not perfectly orthogonal. Section VI introduces
a conjugate Gram-Schmidt procedure to obtain the values on
the Lyapunov exponents from knowledge of the functional
form of the modes and compares these with the numerical
values of the exponents.

Although the approach we have taken is applicable to the
QOD system, it can easily be extended to two-dimension
systems of hard disks with only minor modifications. A step
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structure in the Lyapunov spectrum has been observed in
many different systems, such as coupled map lattices �34�,
partial differential equation �36� and appears to be a general
feature of dynamical systems with conserved quantities. The
results obtained here suggest that it may not be too difficult
to understand the origin of these steps and the associated
Lyapunov modes in other dynamical systems.

II. QUASI-ONE-DIMENSIONAL SYSTEM

The model used was a particular hard disk system referred
to as quasi-one-dimensional �10�. The system contains N
hard disks �typically N=150 or 200� in a two-dimensional
rectangular space Lx�Ly. When Ly �2�, where � is the di-
ameter of the disks �set so �=1�, the space becomes QOD
and the hard disks cannot interchange positions, remaining
ordered in the x direction. For our system we use Ly
=1.15� to ensure the QOD condition, as can be seen in Fig.
1. It is possible to use particles with smooth interaction po-
tentials but it has proved much more difficult using these to
get clear numerical evidence for the steps in the Lyapunov
spectrum and to obtain delocalized modes �20,37�.

The boundaries of the QOD system can either be hard-
walls �H� or be periodic �P�; much of the variations in the
Lyapunov exponent step structure of the system stem from
the choice of these boundaries. For our system we use Hard-
wall boundary conditions in the x-direction and Periodic
boundary conditions in the y-direction �labeled succinctly as
�H,P� boundary conditions�.

The significant advantage of using the QOD system for
study is that both the Lyapunov exponents and the Lyapunov
modes of the system can be obtained to high accuracy by the
standard numerical schemes with fast convergence rates
�27–29,31–34�. Although more difficult to obtain, the same
structure must exist in all other particle systems �20,37�, as
their dynamics are subject to the same invariances and con-
servation properties as the QOD system.

III. LYAPUNOV EXPONENTS, VECTORS AND MODES

The complete description of the state of the QOD system
at any time is contained in the single 4N-dimensional phase
vector �q , p�T which contains all the positions q
�q1 , . . . ,qN and momenta p�p1 , . . . ,pN of each particle in
the system �the superscript T here indicates transpose�. Note
that qi and pi contain both the x and y components of particle
i, thus qi= �qxi ,qyi�T.

The tangent vectors of the system describe displacements
away from the phase vector represented by the
4N-dimensional vector ��= ��q ,�p�T. Here �q and �p are
N-dimensional vectors containing the two-dimensional en-
tries for each particle position separation �qi or momentum
separation �pi. These separations are between the original
phase vector �q , p�T and a similar infinitesimally perturbed
phase vector. For further explanation see Chapter 1 of �1�, for
example.

The important distinction is that although there is a single
phase vector, there are 4N different tangent vectors, as the
infinitesimal perturbations span the 4N-dimensional phase
space. The numerical scheme begins with 4N orthogonal unit
perturbations; the Lyapunov vectors form from the accumu-
lated results of the tangent space dynamics acting on these.

These 4N separations all diverge from the phase vector at
some rate—the different rates being characterized by the
Lyapunov exponents, � j

�� j�t� = e�jt�� j�0� �1�

The form of each divergent vector differs—the Lyapunov
vectors are all unique, or at least, in the case of multiple
vectors with degenerate eigenvalues, orthogonal. These vec-
tors are the corresponding eigenvectors to the Lyapunov ex-
ponent eigenvalues.

The Lyapunov spectrum contains all 4N Lyapunov expo-
nents of the system �the jth exponent labeled � j� arranged
specifically from largest to smallest. The positive half of the
Lyapunov spectrum is shown in Fig. 2. As the system studied
evolves under symplectic hamiltonian dynamics �38� the
spectrum of exponents exhibits the conjugate pairing prop-
erty of the Lyapunov exponents � j =−�4N+1−j �35�. This sym-

FIG. 1. A schematic of the quasi-one-dimensional system with
hard wall boundaries in the x direction and periodic boundaries in
the y direction. That is, �H , P� boundary conditions. The shaded
disks are within the QOD system and the unshaded disks are the
first periodic images above and below each particle.
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FIG. 2. �Color online� The Lyapunov spectrum for a QOD sys-
tem of 150 hard disks at a density of 0.8 and temperature of 1. The
inset is an enlargement of the step region of the spectrum from
exponent number 270 to 300.
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plectic structure also relates the Lyapunov vectors associated
with conjugate exponents �39�. If the Lyapunov vector for
the positive exponent is given by

�� j = ��q

�p
� �2�

then the Lyapunov vector for the corresponding conjugate
negative exponent is given by

��4N+1−j = �− �p

�q
� . �3�

There are three distinct regions to the Lyapunov exponent
spectrum and accordingly the Lyapunov vectors in each of
these regions show distinct characteristics. The first region,
from exponent number 1 to approximately 250, shown in
Fig. 2, is called the “continuous region.” Here the exponents
vary smoothly, with no apparent fine structure. The highest
value exponents describe the fastest processes in the system
and are known to have highly localized vectors �18�.

The second region of the spectrum is the step region,
where the exponents form discrete steps, dependent upon the
boundary conditions �10�, starting approximately after expo-
nent number 250, as seen in Fig. 2 inset. The associated
Lyapunov vectors are important because they contain delo-
calized structure; as opposed to localized components or ran-
dom fluctuations typical of the tangent vectors in the con-
tinuum region. Here we refer to Lyapunov vectors with
delocalized structure as Lyapunov modes. There are three
types of Lyapunov modes, Transverse �T�, Longitudinal �L�
and momentum dependent �P� modes �35�. The Transverse
modes are associated with one point steps in the Lyapunov
spectrum and contain nonzero components only in the y di-
rection, “Transverse” to the dominant direction of the system
�see Fig. 1�. The Longitudinal and Momentum modes occur
together in orthogonal pairings known as LP modes and are
associated with two point degenerate steps in the Lyapunov
spectrum. The L modes contain nonzero components only in
the x direction, while the P modes have components depen-
dent on the instantaneous momenta of each particle.

The third region in Fig. 2 contains the zero exponents of
the system, exponent numbers 299 and 300. These exponents
and their modes are vital to the system and are related to the
conservation properties and symmetries of the system
�15,26�.

It is well known that the numerical modes that form in the
step region can be approximated by simple functional forms.
These assumed forms for the modes are an approximation to
the numerical vectors, rather than an exact representation.
Later, we will investigate this point in more detail for the
Transverse modes.

IV. TANGENT SPACE DYNAMICS

The time evolution of a system of hard disks proceeds via
repeated mappings of collisions and free flights of all par-
ticles between collisions. The phase vector �q , p� moves to a
new phase vector �q� , p�� with a free flight of length � fol-
lowed by a collision between two particles �or perhaps with

a boundary�. The fundamental iteration of free flight fol-
lowed by a collision is given by the matrix equation

�q�

p�
� = � I �I

O N ��q

p
� = �q + �p

Np
� . �4�

The positions are translated by an amount �p and two mo-
menta have been changed due to the collision. Each scripted
matrix is an N�N matrix containing 2�2 submatrices, giv-
ing a 4N�4N evolution matrix. I is the identity and O is the
zero matrix.

The matrix N acts only on the momenta of the two col-
liding disks; changing their momenta via the collision rules
of the system. It is represented as

N =�
I . 0 0 . 0

. . . . . .

0 . I − Nij Nij . 0

0 . Nij I − Nij . 0

. . . . . .

0 . 0 0 . I

	 . �5�

Again, each element in this matrix is itself a 2�2 submatrix
with I the 2�2 identity and 0 the 2�2 zero matrix. The Nij
matrix is a 2�2 matrix composed of the dyadic product
nijnij

T where the nij
T = �xij ,yij� term is a row vector containing

the x and y components of the separation between particles i
and j at collision nij =q j −q j �the length of this term is equal
to the diameter of the disks ��. Note that for a QOD system
j= i+1, but otherwise the result is general.

The time evolution equations for the Lyapunov tangent
vectors consist of many repeats of a free flight, then a colli-
sion and then a Gram-Schmidt procedure. Much like the
phase vector the first two of these steps—the application of a
free flight matrix then a collision matrix—evolve each of the
tangent vectors in time from t to t+� and can be written as

��q���
�p��� � = �N �N

Q �Q + N ���q

�p
� . �6�

Here we are treating the time evolution of an arbitrary tan-
gent vector. It is straightforward to show that the time evo-
lution matrix in Eq. �6� satisfies the symplectic condition
MTJM =J, where J is the usual symplectic matrix �40�. The
matrix Q changes the dynamics of the momenta exchange
due to the change in collision point because of the infinitesi-
mal perturbation. It is represented as

Q =�
0 . 0 0 . 0

. . . . . .

0 . − Qij Qij . 0

0 . Qij − Qij . 0

. . . . . .

0 . 0 0 . 0

	 . �7�

Each component of this matrix is a 2�2 submatrix where
the only nontrivial components are those associated with the
two particles that collide, i and j, through the four Qij ele-
ments. The Qij submatrix is given by
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Qij = �nij · pij�
I +
nijpij

T

nij · pij
� · 
I −

pijnij
T

nij · pij
� . �8�

where pij
T = �pxij , pyij� is a row vector containing the x and y

components of the relative momenta at collision �pij =p j
−pi�. The principle property of this term that we wish to
exploit in what follows is that Qij ·pij

T =0. To understand the
result of the dynamics on each of the tangent vectors we
consider the action of the matrix N on either �q or �p. This
gives

N�q = �q + Nij · ��q j − �qi�X , �9�

N�p = �p + Nij · ��p j − �pi�X , �10�

where X is the N-dimensional column vector which selects
the nonzero elements of N�q. All elements of X are equal to
zero except for Xi=1 and Xj =−1.

Similarly, the action of the matrix Q gives

Q�q = Qij · ��q j − �qi�X , �11�

Q�p = Qij · ��p j − �pi�X . �12�

All of these results follow simply from the definitions of the
matrices in Eqs. �5� and �7�. Any interesting structure in the
mode dynamics is a consequence of the form of the mode
itself and in particular the form of the �q j and the �p j.

V. LYAPUNOV MODE DYNAMICS

To understand the dynamics in a more fundamental way
we begin by looking in depth at the action of the tangent
space dynamics on particular modes. The question that we
seek to answer is what part of the dynamics leads to the
invariant directions or invariant subspaces that are character-
istic of the modes. It has even been suggested that the dy-
namics of the mode space could be separate from the dynam-
ics of the rest of the system �26�. The functional forms for
the Lyapunov modes are now well established �14,15� and
we probe the time evolution of each mode individually. This
could provide some clues as to the nature of the Lyapunov
modes; it is indeed hard to understand why a GS procedure
working down through many hundreds of dimensions should
suddenly give rise to steps in the exponents and delocalized
modes.

A. Gram-Schmidt procedure

The Gram-Schmidt procedure is a key component of both
the Benettin algorithm and also in the analysis following.
The Gram-Schmidt procedure is an algebraic method that
takes a set of linearly independent vectors �v1 ,v2 , . . . ,vn

�Rn and transforms them into a spanning set of orthogonal
vectors �u1 ,u2 , . . . ,un
�Rn. The procedure works sequen-
tially on each vector beginning at k=2 and ending at n using

uk = vk − �
j=1

k−1
�u j · vk�
�u j · u j�

u j . �13�

Where the centered dot �u j ·vk� indicates an inner product.
This removes the components of vk that are in the direction

of v1 , . . . ,vk−1, to form the new vector uk. This set can then
be normalized trivially. In the numerical simulation the larg-
est Lyapunov exponent comes from ��1 �taking the place of
u1�, followed by the second largest exponent from ��2,
which is u2, and so on. Further detail about the application of
the Benettin algorithm to systems of hard particles can be
found in �41,42�.

B. Zero modes

In Fig. 2 there are two zero exponents, giving a total of
four for the full spectrum; these are exponent numbers 299,
300, 301, and 302. These four exponents gives rise to a four-
dimensional subspace spanned by 4 basis vectors. The first
two of these basis vectors are

��y =
1

�N
�c0

0
� ��py

=
1

�N
� 0

c0
� . �14�

Following the notation convention of Eq. �2�, the jth element
of the N-dimensional vector cn is �0,cos knxj�T where kn
=n	 /Lx and xj is the x position of the jth particle. Clearly,
when n=0, cos knxj =1. These arise from the symmetry
present in the y-direction, due to the periodic boundary con-
dition. There are not corresponding vectors for the x direc-
tion because of the hard wall boundary conditions in that
direction. The second two basis vectors are

��t =
1

�2K
�p

0
� ��e =

1
�2K

�0

p
� , �15�

which are related to the time translational invariance and
conservation of energy respectively. Here it is apparent that
each entry is N dimensional and that the jth component of p
is �pxj , pyj�T. The K term is simply the total kinetic energy of
the system, which is conserved.

It is readily apparent that Eqs. �14� and �15� show the
conjugate structure observed in Eqs. �2� and �3�. It is impor-
tant to remember that these basis vectors are not the modes
themselves, only that the Zero modes are made of linear
combinations of this basis. The Zero modes are perfectly
described by linear combinations of these four basis vectors
�11,35�.

The four Zero modes ��y, ��py
, ��t, and ��e are also

unique among the Lyapunov modes because of their simple
structure. As can be seen in Eq. �14� the ��y mode contains
no intricate structure to the �q terms, simply constants �q j
= �0,1�T, while the �p terms are zero. This means that �qi
−�q j =0 and �pi−�p j =0. Applying Eq. �6� we see that ��y is
preserved exactly by the dynamics as

��y��� =
1

�N
�Nc0

Qc0
� =

1
�N

�c0

0
� = ��y . �16�

The conjugate mode ��py
will have �p j = �0,1�T and �q=0,

thus undergoing the same evolution will mean that the mode
will grow linearly in time �26� as
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��py
��� =

1
�N

� N�c0

Q�c0 + Nc0
� = ��py

+ ���y . �17�

What we see is that the conjugate mode will grow toward the
direction of the “positive exponent” mode ��y over time. So
although ��y is preserved by the dynamics alone, the Gram-
Schmidt procedure is needed to keep ��py

orthogonal to ��y.
The application of the dynamics on the momentum depen-

dent Zero modes ��t and ��e results in a change similar to
the constant modes. For ��t we have that Np= p� and Q · p
=0 so essentially we get

��t��� =
1

�2K
�Np

Qp
� =

1
�2K

�p�

0
� . �18�

Which has exactly the same functional form as the original
vector ��t, however, this vector now has two precollision
momenta replaced by their postcollision values, so the direc-
tion of ��t has changed. Similarly, the time evolution of ��e
gives ��e���=��e+���t.

Left to evolve under just the numerical dynamics alone
only two of the Zero modes will remain preserved, the other
two will quickly evolve toward their conjugates. Importantly
the mode that does evolve moves only within the subspace
defined by the mode and its conjugate. At no stage does it
move outside that subspace. This observation is critical to the
conjugate GS scheme that we will introduce later.

The Zero modes reveal a very important aspect of the
Lyapunov modes. We see that some of the modes preserve
their direction; the dynamics is irrelevant to the structure of
these modes, they are fixed within the 4N-dimensional space,
such as ��y and ��py

. We also see that some of the modes
preserve their functional form; the dynamics may change
their direction, but leaves their functional form intact, like
��t and ��e. This compels the idea of separating the
Lyapunov modes into two sub groups, one group “direction
preserving” and one group “form preserving.” This allows us
to separate the basis vectors that describe the mode into two
types, which will be beneficial in the coming analysis.

C. Transverse modes

The first step of the Lyapunov Spectrum is a one point
step and is therefore associated with the first Transverse �T�
mode �35�. The nth Transverse mode can be written as

�Tn = �
ncn


n�cn
� . �19�

Following from the definition of cn previously, it is apparent
that the Transverse mode only contains nonzero y compo-
nents. It is important to note that the coordinate and momen-
tum parts are not the same, only their functional forms are
the same; the difference between them comes from the mag-
nitude of the constants 
n and 
n�. This is an application of
the known relation that, for long time averaging, the
Lyapunov modes obey �p=C�q �9�.

The dynamics of the Transverse modes are more problem-
atic than the Zero modes; from Eq. �19� we can see that the
term ��q j −�qi� is not removed from the dynamics like the

Zero modes. After the evolution from Eqs. �9� and �11� the
separation components would become

�cnj − cni� → ��yj − �yi� = − �
n sin�knxi� , �20�

where �=knxij =n	xij /Lx. xij is the x component of the dis-
tance between particles i and j at collision ��xj −xi���1 and
Lx is the length of the system in the x direction, which is
O�N�. Therefore ��n	 /Lx is a small parameter for the first
few modes �as n=1,2 ,3 , . . . is the mode number�. Due to the
structure of the T modes, this separation is also true for the
momentum components ��p j −�pi�.

Therefore evolution of the T modes under the tangent
space dynamics is analogous to the Zero modes, but will
involve order � terms. Following Eq. �6� the full time evolu-
tion of a T modes is given by

��q���
�p���

� = ��q + ��p

�p
� + O��� . �21�

We will initially neglect the � dependent terms. Clearly the
small parameter � is linear in the mode number n so for
sufficiently large � the dynamics without the order � term
will become incorrect and a new approach will have to be
taken.

We assume that below a threshold value, we can ignore
the order � terms in the dynamics in Eq. �21�. Much like the
Zero modes, the dynamics of both positive and negative
Transverse modes consists of a leading term that is invariant
and a time dependent term that rotates the vector. The dy-
namics of the conjugate pair of modes is coupled and this is
the dominant term in the dynamics. Although there is some
other motion of the pair, it is much smaller �26�.

D. First transverse mode reorthogonalization

We have seen that the Zero modes can be obtained exactly
from the system dynamics and are also preserved exactly by
the dynamics. With the addition of the GS procedure for the
conjugate Zero modes they define a stable center space
where all Lyapunov exponents are zero �completing the Ben-
ettin algorithm�. This stable orthonormal center space can be
used as a reference point for all other Lyapunov modes. All
the numerical Lyapunov modes generated by the combina-
tion of tangent space dynamics and Gram-Schmidt are or-
thogonal, although the assumed functional forms for the
Lyapunov modes �for example, in Eq. �19�� are not exactly
orthogonal.

We know the first Lyapunov mode after the Zero modes is
a Transverse mode. Figure 3 shows the first Transverse mode
across all 4N components �the circles�. It is apparent that the
assumed functional form for the T modes, Eq. �19�, when
n=1 is a very good approximation to the numerically ob-
served mode but it is not an exact representation. The noise
apparent in the mode means that the numerical mode for �y
is not a smooth cosine function as we may have expected.

We hypothesized that this noise was not due to errors in
the system description or imprecision in the calculations, but
due to the assumed functional form for the T mode not being
exactly orthogonal to the center space. If the numerically
observed mode is thought to be made up of the known as-
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sumed functional form plus small contributions in the direc-
tion of the zero space then making the smooth cosine explic-
itly orthogonal to the center space via a GS procedure may
give a more accurate representation of the mode. To do this
we write the corrected mode as

�Tn = � 
cn


�cn
� −

c0 · cn

N
� 
c0


�c0
� −

p · cn

2K
� 
p


�p
� . �22�

The four Zero mode basis vectors are combined into the two
last terms. The first orthogonalization is with respect to the
two vectors ��y and ��py

, while the second orthogonaliza-
tion is with respect to ��t and ��e. The result of this Zero
mode reorthogonalization on the first mode is shown in Fig.
3 �the crosses�. Not only does this process improve the rep-
resentation obtained from the assumed functional form, but
the corrected mode is essentially the exact numerically ob-
served mode, as it gives point-wise agreement across all 4N
components.

This accuracy can be seen by noting that as the Zero
modes are perfectly described by the theoretical functional
forms, it is an instance where the numerical mode and the
theoretical mode that is thought to describe it are the same.
Importantly, when we form the inner product of the Zero
modes functional form to the first T modes new functional
form, we get exactly zero, not approximately zero, which is
what was found for the simple description of the first T
mode. What we had previously described as noise in the �x
and �y components can now be seen to be thermal velocity

contributions from the Gram-Schmidt procedure with respect
to the Zero modes ��t and ��e.

The two correction terms have coefficients with an exten-
sive term in the denominator, while the numerator is at best
O�N1/2�, so both of the correction terms approach zero as
N→�. As the number of particles in the system gets larger,
the assumed form for the Lyapunov modes becomes more
accurate and more orthogonal to the center space. This result
suggests that applying this new kind of GS procedure with
respect to the center space gives more accurate Lyapunov
modes for a finite system. A crucial observation is that the
form �or direction� of the first positive and negative T modes
are preserved and they remain orthogonal once the dynamics
has evolved them and the full GS procedure has been per-
formed.

E. LP modes

The LP modes are associated with the two-point steps in
the Lyapunov Spectrum �35� and are an amalgamation of two
separately orthogonal modes; one mode containing momen-
tum proportional components �the P mode�, the other mode
containing only nonzero x components �the L mode�. The LP
modes, due to the degeneracy of their exponents, come in
pairs. The pair of LP modes are given by

�LP1
n = snt�
npcn


n�pcn
� + cnt��nsn

�n�sn
� , �23�

and

�LP2
n = cnt�
npcn


n�pcn
� + snt��nsn

�n�sn
� , �24�

where we have followed the same conventions as for the
Transverse mode. Each component of the mode is an N di-
mensional vector made up of two-dimensional vector ele-
ments, totaling 4N components. The first vector is the mo-
mentum dependent mode, where each element of pcn
contains

pcnj = �pxj cos knxj

pyj cos knxj
� . �25�

The second vector is the Longitudinal mode which contains
only nonzero x components. Analogous to the T modes, we
define an N-dimensional vector sn with two-dimensional el-
ements snj as

snj = �sin knxj

0
� . �26�

Clearly all the y components are zero. Both �LP1
n and �LP2

n

are time dependent as well, represented through

snt = sin �nt cnt = cos �nt , �27�

which ensure the modes remain orthogonal �or almost or-
thogonal�. The constants �n, �n�, 
n, and 
n� again reflect the
observed relation �p=C�q.

As a result of the L and P components of the LP mode
being almost orthogonal, their evolution under the tangent
space dynamics can be treated separately.
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FIG. 3. �Color online� The circles are the numerical values of
the first Transverse mode calculated from the Benettin algorithm for
a QOD system of 150 disks. The crosses are the tangent space
vector obtained from the assumed functional form for the Trans-
verse mode �with coefficients 
 and 
� determined numerically�
explicitly orthogonalized to the zero space using the Gram-Schmidt
procedure in Eq. �22�. This essentially gives the exact numerical
Transverse mode.
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The dynamics of the L modes is comparable to the T
modes, due to the similarities in their structures. Because of
this the L mode evolution is described by Eq. �21�, just like
the T mode.

The P mode is slightly more complicated, due to the
mode being linear in the momentum; �qi=
npi cos knxi. This
complication means that

�qi − �q j = 
n�pij cos knxi − �p j sin knxi� �28�

where � is the same small parameter defined previously after
Eq. �20�. This seemingly complex result is simplified through
Qij ·pij

T =0. Using this, the first term in Eq. �28� is zero and
the final result is again order �, like the other modes.

There are two different approaches that could be taken
with the LP modes �as well as the T modes�, we can follow
the time evolution of the two modes �LP1

n and �LP2
n, with

their individual time dependences, or we can follow the time
evolution of two stationary basis vectors that span the space
in which �LP1

n and �LP2
n rotate. Here we choose the second

approach and consider basis vectors �L1
n and �P1

n, where �P1
n

is the first vector component in Eq. �23� without the time
dependent pre-factor snt and �L1

n is the second term without
the prefactor cnt. The tangent space evolution of the basis
vector �P1

n is given by

�P1
n��� = ��
n + �
n��p�cn


n�p�cn
� + O��� . �29�

After removal of the � term, the action of the tangent space
dynamics alone modifies �P1

n. However, the basis vector
must preserve its functional form so this modification, the
combined tangent space dynamics and GS procedure, must
lead to

�P1
n��� = �
np�cn


n�p�cn
� . �30�

VI. CONJUGATE GRAM-SCHMIDT PROCEDURE

The step structure component of the Lyapunov Spectrum,
which encompasses the Lyapunov modes, defines a subspace
of the phase space that is spanned by the basis vectors de-
scribed in the previous section. These basis vectors have now
been classed into two distinct types, from their similarities to
the Zero modes. Analogous to the Zero modes ��y and ��py

,
the numerical dynamics gives Transverse modes �Tn and
Longitudinal modes �Ln which have fixed directions in the
phase space. The numerically observed T and L modes are
invariants of the dynamics �omitting the O��� term� once the
GS procedure has been performed. Similarly, the P modes
are analogous to the Zero modes ��t and ��e; under the
dynamics their directions in phase space are not preserved,
but the form of the mode is preserved; it is described by the
same functional form after the dynamics and the GS proce-
dure. The combined action of the dynamics and GS proce-
dure therefore simply results in each Lyapunov mode being
preserved either in direction or form.

We now introduce a conjugate Gram-Schmidt procedure

that has the same effect as the combination of dynamics and
standard Gram-Schmidt for the Lyapunov modes. To do this
we make two assumptions: �1� that the functional forms for
the T, L and P modes are known; �2� that the numerical
values for the amplitude coefficients are known. The simpli-
fied conjugate GS procedure also makes the assumption that
the complete Lyapunov mode subspace of the dynamics can
be treated as separate pairs of conjugate modes and that these
pairs of modes are already orthogonal to the center space �by
construction�. We have already seen that the assumed func-
tional forms for the Lyapunov modes are not exactly or-
thogonal to the center space, only approximately orthogonal.

After one iteration step in the program the tangent vectors
have been modified by the dynamics; using the conjugate GS
procedure, the phase space direction of the Lyapunov mode
is kept constant �or its form constant� and the mode is al-
lowed to grow slightly, by a factor of � �this is true because
all the nonzero exponent modes are characterized by differ-
ent growth rates�. Next one, and only one, element from the
summation in Eq. �13� is taken, where the j in Eq. �13� is the
Lyapunov exponent number of the Lyapunov mode in ques-
tion and 4N+1− j is the corresponding conjugate Lyapunov
mode. This is the main step in the conjugate GS procedure
and is given by

�� j� = �� j −
��� j · ��4N+1−j�

���4N+1−j · ��4N+1−j�
��4N+1−j . �31�

This equation does not take into account the evolution of the
mode due to the dynamics; this aspect will be incorporated
below. The simplified process then ensures orthogonality
with respect to the conjugate mode only. Interestingly, given
these two assumptions the simplified GS procedure can cal-
culate the values of the Lyapunov exponents in the step re-
gion.

Following the dynamics and the new conjugate GS pro-
cedure, the original Lyapunov mode will evolve to a new
mode as

���q

�p
� = � N��q + ��p�

Q��q + ��p� + N�p
�

− � N��q + ��p�

Q��q + ��p� + N�p
� · �− �p

�q
��− �p

�q
� .

The first term is the time evolution under the tangent space
dynamics, while the second term is the Gram-Schmidt pro-
cedure which ensures that the new vector is orthogonal to the
direction of the original conjugate vector.

We can separate this vector equation into one for �q and
one for �p. These two vector equations can be transformed
into two scalar equations; the first by multiplying the trans-
pose of �p into the �q equation and the second by the trans-
pose of �q into the �p equation. This results in two scalar
equations for �, which both give the same result
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� =
�qN�p + ��pN�p��q · �q� + �qQ��q + ��p���p · �p�

�q · �p
.

�32�

This equation is completely general, as it does not pertain to
any specific Lyapunov mode. Using the matrix forms for N
and Q given in Eqs. �5� and �7� we can simplify this as

�pN�p = �p · �p − �pij
TNij�pij �33�

and

�qQ��q + ��p� = − �qij
TQij��qij + ��pij� �34�

where �qij =�qi−�q j and the dot products have been sup-
pressed.

If �q and �p vary smoothly with the particle index—as
they do for a Lyapunov mode—then both �qij and �pij are
small—of order �—and � is given by

� = 1 + �
��p · �p���q · �q�

�q · �p
+ O��2� . �35�

The full evolution of the system involves many repeats of
this three step process: free flight, collision, Gram-Schmidt.
Therefore the Lyapunov exponent will result from the accu-
mulation of all the �’s from each cycle. In the infinite time
limit the scaling factor � yields the Lyapunov exponent.

The idea that a Lyapunov mode will preferentially evolve
toward a specific mode, forgoing other directions, has been
shown to occur in the Zero modes. We saw previously that
the Lyapunov modes will evolve toward their conjugate
modes at the fastest rate �26�, so this is a good approxima-
tion.

A. Application to the T modes

As a solid example of the information garnered from the
conjugate GS procedure, consider a T or L mode under a free
flight and collision iteration. Using Eq. �21� the mode modi-
fies, but then the GS procedure returns it to its initial direc-
tion with some scaling factor �, as

��q

�p
� →

�,coll��q + ��p

�p
�→

GS

���q

�p
� . �36�

The first right arrow represents the action of the tangent
space dynamics �free flight and collision� while the second
represents the result of the GS procedure �note that O���
terms are neglected�.

The same dynamics applies to the conjugate mode so its
evolution will be

�− �p

�q
� →

�,coll�− �p + ��q

�q
�→

GS

���− �p

�q
� , �37�

where �� is the expansion �or contraction� factor for the con-
jugate mode.

As the mode is normalized it is straight forward to see
that �q ·�q+�p ·�p=1, so using the results of Eq. �35� the
scalar solution for the mode is again

� = 1 + �
��p · �p���q · �q�

�q · �p
. �38�

Applying the same procedure to the conjugate mode gives

�� = 1 − �
��p · �p���q · �q�

�q · �p
. �39�

As the dynamics is the serial accumulation of these pro-
cesses, the Lyapunov exponent is given by the product of the
� factors

� = lim
m→�

1

T
ln�

i=1

m

�i �40�

and ��=−� which is consistent with the conjugate pairing
Lyapunov exponents. For the mode �Tn, �yj =
ncnj and
�pyj =
n�cnj so using � j

Ncnj
2 =N /2

�n =
N

2

n�
n. �41�

Similarly, we find that the accumulation of the �� terms for
the conjugate mode �T−n results in �−n= N

2 
−n� 
−n=−�n,
which is expected.

B. LP modes

The functional form of the LP modes is given in Eqs. �23�
and �24� and it is evident that the two numerical modes �LP1
and �LP2 rotate in a two-dimensional subspace with basis
vectors

�Pn = �
npcn


n�pcn
� �Ln = ��nsn

�n�sn
� . �42�

Where we have moved the time rotation into the constants
over one iteration of the dynamics. As the vector �Ln be-
haves in the same way as the Transverse mode, maintaining
a constant direction in phase space, the simplified GS result
is already known. The momentum dependent basis vector
�Pn behaves differently. Instead of having a fixed phase
space direction, we have claimed that the functional form of
the mode is preserved, thus in each step of the dynamics the
vector �Pn is of the same form but with the instantaneous
values of position and momentum changed. Both of these
basis vectors have conjugate vectors defined through Eq. �3�.

For the Longitudinal mode component �Ln, the result is
similar to the Transverse mode,

�n =
N

2
�n��n. �43�

To a good approximation we can express the momentum
dependent part of the basis �Pn mode immediately after a
collision as

��q�

�p�
� = �
np�cn


n�p�cn
� = �N 0

0 N ��
npcn


n�pcn
� . �44�

The conjugate Gram-Schmidt procedure in the case of form
preservation is different to the one used for direction preser-
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vation. Here rather than doing a Gram-Schmidt with respect
to the initial conjugate mode, we Gram-Schmidt with respect
to the form preserved mode at the new time. Thus we have

���q�

�p�
� = � N��q + ��p�

Q��q + ��p� + N�p
�

− � N��q + ��p�

Q��q + ��p� + N�p
� · �− �p�

�q�
��− �p�

�q�
� .

Similar to before, the first term is the time evolution under
the tangent space dynamics and the second term ensures that
this vector is orthogonal to the form evolved conjugate vec-
tor. This leads to two equations for the variable �. Using Eq.
�44� and the result that N is its own inverse, it can be shown
that operating on �q� on the left with �pN gives the same
result �to order �� as operating on �p� on the left with �qN.
Again the normalization condition �q ·�q+�p ·�p=1 is used
and the order � terms in the Q��q+��p� are neglected, so
that Eq. �35� is obtained for �.

The same argument as the T and L modes then leads to
the result for the Lyapunov exponent for the P modes

�n = K
n�
n, �45�

where the total kinetic energy is given by 2K=� jp j
2. Again

the negative exponent is simply �−n=−�n for the P basis
vector of the mode.

C. Comparisons with experiment

In Table I we compare the predicted values and numerical
results for the Lyapunov exponents of the first six modes of
each type, for a system where N=200. The first few T and P
modes are quite accurate but the first L mode differs by 20%
from the numerical result. Generally the results become less
accurate with increasing mode number.

There are a number of possible sources of error. The ac-
curacy of the dynamics is limited by the size of the neglected
term � and this increases with mode number n. Probably the
most important limitation in the simplified conjugate GS pro-
cedure is that it assumes the functional forms for the modes
are already orthogonal to the center space of Zero modes. At

any finite N this is not correct and any more exact conjugate
GS procedure would need to work systematically to ensure
orthogonality with all previous modes. Thus, for example, to
Gram-Schmidt the third T mode it should be explicitly made
orthogonal to the center space, the first and second T modes
and any LP modes with lower exponent values. This is be-
cause we are purposefully choosing to disregard the standard
GS procedure—which works from the highest exponent
down—and after the fact working outwards from the stable
center zero space. This would be accomplished using only
the knowledge of the placement of the Lyapunov modes
within the spectrum and the known theoretical functional
forms for the modes. Although we have performed this after
the dynamics, there is no reason why this procedure could
not easily be accomplished while the dynamics are per-
formed. This suggests that a more sophisticated GS proce-
dure may produce better results but this would be at the
expense of the simplicity of the current scheme.

It has been shown previously �35� that the assumed func-
tional form of the modes become less accurate as the mode
number increases. The magnitude of the assumed functional
form is initially very close to unity, but as the mode number
increases, the magnitude decreases. This effect was more
prevalent for LP modes, as the accuracy of the functional
form for the n=6 LP mode was only 45% �35�. As this
happens the fitted coefficients of the mode are smaller than
they should be and thus the exponents calculated from them
are also smaller. To correct the exponent values we divide
them by the calculated magnitude of the functional form.
Table II shows how the accuracy of the conjugate GS proce-
dure changes if this known inaccuracy of the modes is taken
into account. As expected, the increase in the accuracy is
more noticeable for the LP modes than for the T modes.
Table II shows that the corrected conjugate GS procedure
produces exponents that are greater than 90% accurate, drop-
ping to only 80% accurate for the least accurate.

We have now outlined the various forms of GS proce-
dures: one for the first Transverse against all the modes “be-
low” it �the zero space� and one where we use the conjugate
mode only, showing that this gives us interesting insights.
We propose that in order to gain a complete description of
the system, including accurate modes and exponent values, a

TABLE I. A comparison of predicted �Eqs. �41�, �43�, and �45�� and numerically observed Lyapunov
exponents for a 200 particle QOD system with �H,P� boundary conditions at density �=0.8 and total kinetic
energy K=N. We use units where the mass and disk radius R are 1, the total energy is N and the system size
is Ly =1.15R and Lx=N /�Ly where � is the density. There are small differences between the x and y projec-
tions of 
 so we include both results.

T mode Px mode Py mode L mode

n N
2 

� �T K
x
x� K
y
y�

N
2 ��� �LP

1 0.0388 0.0393 0.0599 0.0559 0.0502 0.0605

2 0.0749 0.0784 0.1169 0.1044 0.0965 0.1229

3 0.1099 0.1177 0.1507 0.1348 0.1344 0.1848

4 0.1431 0.1571 0.1753 0.1472 0.1591 0.2484

5 0.1748 0.1961 0.1693 0.1391 0.1595 0.3140

6 0.2007 0.2352 0.1855 0.1409 0.1823 0.3791
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conjugate GS procedure should be introduced that systemati-
cally describes each mode as the original fitting function as
well as a reorthogonalization with every mode “below” it
from the center zero space out to the mode in question, end-
ing in the conjugate orthogonalization we have shown.

VII. CONCLUSION

In conclusion, we have shown that the Lyapunov expo-
nents for all Lyapunov modes can be calculated using a con-
jugate Gram-Schmidt procedure and a complete knowledge
of the functional form of the modes. The same information
that is obtained from the exponents is also encoded in the
modes.

The simplified Gram-Schmidt procedure has only high ac-
curacy for the first T and P mode components but the sys-
tematic approach suggested above may improve the accu-
racy, at the cost of the simplicity of the result. This result
derives from the fact that some Lyapunov modes are “direc-
tion preserving” like the Zero modes ��y and ��py

, while
others are “form preserving” like the Zero modes ��t and
��e.

We have seen that the Lyapunov exponents—invariant ei-
genvalues of the system, quantities not dependent on the
structure, basis or description of the phase space—can be
found via the Lyapunov modes—eigenvectors of the system
which depend greatly on the description of the phase space.
There is always a relationship between an eigenvalue and its
eigenvector, but usually not such a direct and explicit rela-
tion.

It has been shown that an exact theoretical description of
the numerical mode can be found if the assumed form of the
mode is made orthogonal to the center zero space; implying

that any mode would be found with the same procedure ex-
tended to include any modes that are “between” the mode
and the zero space.

In all numerical calculations of Lyapunov modes there are
a set of modes which are stable below some maximum mode
number nmax. Here we require that � in the dynamics of Eq.
�21� is less than some threshold �max which we can estimate
from the numerics used to generate Table I. For a system of
N=200 disks we find that nmax�24, and for the QOD system
xij is positive and bounded by �1−Ly

2 /4�xij �1. Therefore
�max�0.35xij which corresponds to about eight particles per
half wavelength. If the initial Lyapunov vector is modelike
for a particular n then the dynamics will preserve its mode-
like character for n�nmax and it will be unstable for n
�nmax. The question of the stability or otherwise of a par-
ticular mode near nmax is a different level of stability for this
system which we do not consider here.

A referee has commented that for a Lyapunov mode the
long time average of the time derivative of �q is equal to
��q=�p. This comes from the fact that �q changes continu-
ously but �p only changes at collisions. This implies, for
example, that the Lyapunov exponent for the first Transverse
mode can be written as

�1 =

1�


1
=

N

2


1�
1

1 −
N

2

1�

2

. �46�

This is equal to our Eq. �41� when N
2 
1�

2 is small and can be
neglected. This implies that the conjugate Gram-Schmidt
procedure is sufficient, by not necessary, to obtain the result
we have presented. We thank the referee for this observation.

�1� P. Gaspard, Chaos, Scattering and Statistical Mechanics �Cam-
bridge University Press, Cambridge, England, 1998�.

�2� J. R. Dorfman, An Introduction to Chaos in Nonequilibrium
Statistical Mechanics �Cambridge University Press, Cam-
bridge, England, 1999�.

�3� D. J. Evans and G. P. Morriss, Statistical mechanics of non-

equilibrium liquids, 2nd ed. �Cambridge University press,
Cambridge, England, 2008�.

�4� D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A
42, 5990 �1990�.

�5� C. P. Dettmann and G. P. Morriss, Phys. Rev. E 53, R5545
�1996�.

TABLE II. A comparison of the corrected exponent predictions �pred
corr and the numerically observed

Lyapunov exponents for a 200 particle QOD system with �H,P� boundary conditions at density �=0.8 and
total kinetic energy K=N.

T mode P mode L mode

n �pred
corr �T �pred

corr �LP �pred
corr �LP

1 0.0388 0.0393 0.0603 0.0605 0.0515 0.0605

2 0.0757 0.0784 0.1215 0.1229 0.1033 0.1229

3 0.1121 0.1177 0.1718 0.1848 0.1552 0.1848

4 0.1471 0.1571 0.2170 0.2484 0.2046 0.2484

5 0.1838 0.1961 0.2460 0.3140 0.2384 0.3140

6 0.2156 0.2352 0.3709 0.3791 0.3944 0.3791

CHUNG, TRUANT, AND MORRISS PHYSICAL REVIEW E 81, 066208 �2010�

066208-10

http://dx.doi.org/10.1103/PhysRevA.42.5990
http://dx.doi.org/10.1103/PhysRevA.42.5990
http://dx.doi.org/10.1103/PhysRevE.53.R5545
http://dx.doi.org/10.1103/PhysRevE.53.R5545


�6� T. Taniguchi and G. P. Morriss, Phys. Rev. E 66, 066203
�2002�.

�7� D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.
Lett. 71, 2401 �1993�; 71, 3616 �1993�.

�8� G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694
�1995�.

�9� H. A. Posch and R. Hirschl, in Hard Ball Systems and the
Lorentz gas, edited by D. Szász �Springer, Berlin, 2000�, p.
279.

�10� T. Taniguchi and G. P. Morriss, Phys. Rev. E 68, 026218
�2003�.

�11� C. Forster, R. Hirschl, H. A. Posch, and W. G. Hoover, Physica
D 187, 294 �2004�.

�12� S. McNamara and M. Mareschal, Phys. Rev. E 64, 051103
�2001�.

�13� T. Taniguchi and G. P. Morriss, Phys. Rev. E 71, 016218
�2005�.

�14� J.-P. Eckmann, C. Forster, H. A. Posch, and E. Zabey, J. Stat.
Phys. 118, 813 �2005�.

�15� T. Taniguchi and G. P. Morriss, Phys. Rev. Lett. 94, 154101
�2005�.

�16� T. Taniguchi and G. P. Morriss, Eur. Phys. J. B 50, 305 �2006�.
�17� T. Taniguchi and G. P. Morriss, Physica A 375, 563 �2007�.
�18� Lj. Milanović and H. A. Posch, J. Mol. Liq. 96-97, 221 �2002�.
�19� T. Taniguchi and G. P. Morriss, Phys. Rev. E 68, 046203

�2003�.
�20� H. L. Yang and G. Radons, Phys. Rev. E 71, 036211 �2005�.
�21� T. Taniguchi and G. P. Morriss, Phys. Rev. E 73, 036208

�2006�.
�22� J.-P. Eckmann and O. Gat, J. Stat. Phys. 98, 775 �2000�.
�23� T. Taniguchi and G. P. Morriss, Phys. Rev. E 65, 056202

�2002�.
�24� A. S. de Wijn and H. van Beijeren, Phys. Rev. E 70, 016207

�2004�.
�25� T. Taniguchi, C. P. Dettmann, and G. P. Morriss, J. Stat. Phys.

109, 747 �2002�.
�26� D. J. Robinson and G. P. Morriss, J. Stat. Phys. 131, 1 �2008�.
�27� G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A 14,

2338 �1976�.
�28� G. Benettin, L. Galgani, A. Giorgilli, and J. -M. Strelcyn, Mec-

canica 15, 9 �1980�; 15, 21 �1980�.
�29� I. Shimada and T. Nagashima, Prog. Theor. Phys. 61, 1605

�1979�.
�30� C. L. Wolfe and R. M. Samelson, Tellus 59A, 355 �2007�.
�31� F. Ginelli, P. Poggi, A. Turchi, H. Chate, R. Livi, and A. Politi,

Phys. Rev. Lett. 99, 130601 �2007�.
�32� I. G. Szendro, D. Pazo, M. A. Rodriguez, and J. M. Lopez,

Phys. Rev. E 76, 025202�R� �2007�.
�33� D. Pazo, I. G. Szendro, J. M. Lopez, and M. A. Rodriguez,

Phys. Rev. E 78, 016209 �2008�.
�34� H. L. Yang and G. Radons, Phys. Rev. Lett. 100, 024101

�2008�.
�35� G. P. Morriss and D. Truant, J. Stat. Mech. �2009�, P02029.
�36� K. A. Takeuchi, F. Ginelli, and H. Chate, Phys. Rev. Lett. 103,

154103 �2009�.
�37� C. Forster and H. A. Posch, New J. Phys. 7, 32 �2005�.
�38� R. Abraham and J. Marsden, The Foundations of Mechanics

�Addison-Wesley, Reading, MA, 1978�.
�39� V. I. Arnold, Mathematical Methods of Classical Mechanics,

2nd ed. �Springer, New York, 1989�, p. 221.
�40� H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd

ed. �Addison-Wesley, Reading, MA, 2002�.
�41� P. Gaspard and J. R. Dorfman, Phys. Rev. E 52, 3525 �1995�.
�42� Ch. Dellago, H. A. Posch, and W. G. Hoover, Phys. Rev. E 53,

1485 �1996�.

FROM LYAPUNOV MODES TO THEIR EXPONENTS FOR … PHYSICAL REVIEW E 81, 066208 �2010�

066208-11

http://dx.doi.org/10.1103/PhysRevE.66.066203
http://dx.doi.org/10.1103/PhysRevE.66.066203
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevE.68.026218
http://dx.doi.org/10.1103/PhysRevE.68.026218
http://dx.doi.org/10.1016/j.physd.2003.09.013
http://dx.doi.org/10.1016/j.physd.2003.09.013
http://dx.doi.org/10.1103/PhysRevE.64.051103
http://dx.doi.org/10.1103/PhysRevE.64.051103
http://dx.doi.org/10.1103/PhysRevE.71.016218
http://dx.doi.org/10.1103/PhysRevE.71.016218
http://dx.doi.org/10.1007/s10955-004-2687-4
http://dx.doi.org/10.1007/s10955-004-2687-4
http://dx.doi.org/10.1103/PhysRevLett.94.154101
http://dx.doi.org/10.1103/PhysRevLett.94.154101
http://dx.doi.org/10.1140/epjb/e2006-00098-8
http://dx.doi.org/10.1016/j.physa.2006.09.017
http://dx.doi.org/10.1016/S0167-7322(01)00350-6
http://dx.doi.org/10.1103/PhysRevE.68.046203
http://dx.doi.org/10.1103/PhysRevE.68.046203
http://dx.doi.org/10.1103/PhysRevE.71.036211
http://dx.doi.org/10.1103/PhysRevE.73.036208
http://dx.doi.org/10.1103/PhysRevE.73.036208
http://dx.doi.org/10.1023/A:1018679609870
http://dx.doi.org/10.1103/PhysRevE.65.056202
http://dx.doi.org/10.1103/PhysRevE.65.056202
http://dx.doi.org/10.1103/PhysRevE.70.016207
http://dx.doi.org/10.1103/PhysRevE.70.016207
http://dx.doi.org/10.1023/A:1020422917270
http://dx.doi.org/10.1023/A:1020422917270
http://dx.doi.org/10.1007/s10955-007-9473-z
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1143/PTP.61.1605
http://dx.doi.org/10.1143/PTP.61.1605
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1103/PhysRevE.76.025202
http://dx.doi.org/10.1103/PhysRevE.78.016209
http://dx.doi.org/10.1103/PhysRevLett.100.024101
http://dx.doi.org/10.1103/PhysRevLett.100.024101
http://dx.doi.org/10.1088/1742-5468/2009/02/P02029
http://dx.doi.org/10.1103/PhysRevLett.103.154103
http://dx.doi.org/10.1103/PhysRevLett.103.154103
http://dx.doi.org/10.1088/1367-2630/7/1/032
http://dx.doi.org/10.1103/PhysRevE.52.3525
http://dx.doi.org/10.1103/PhysRevE.53.1485
http://dx.doi.org/10.1103/PhysRevE.53.1485

