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Dynamical properties of the repressilator model
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Oscillatory regulatory networks have been discovered in many regulatory pathways. Due to their enormous
complexity, it is necessary to study their dynamics by means of highly simplified models. These models have
received particular value because artificial regulatory networks can be engineered experimentally. In this paper,
we study dynamical properties of an artificial regulatory oscillator called repressilator. We have shown that
oscillations arise from the existence of an absorbing toruslike region in the phase space of the model. This
geometric structure requires monotonic repression at all promoters and the absence of any regulatory connec-
tions apart from a cyclic repression loop. We show that oscillations collapse as only weak extra connections are
introduced if there is imbalance between the attended concentrations and those sufficient for saturation of the
promoters. We found that a pair of diffusively coupled repressilators displays synchronization properties
similar to those of relaxation oscillators if the regulatory connections in the cyclic repression loop are strong.
Thus, the role of strengthening these connections can be viewed as introducing time scale separation among
variables. This may explain controversial synchronization properties reported for repressilators in earlier

studies.
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I. INTRODUCTION

Regulatory molecular networks are collections of interact-
ing molecules in a cell. One particular kind, oscillatory net-
works, has been discovered in many pathways. Well-known
examples are the circadian clock [1] and the cell cycle [2],
where the oscillatory nature of the process plays a central
role. Regulatory oscillators are also found in many other net-
works including apoptotic [3], metabolic [4], and morpho-
genic [5,6] pathways. Abnormalities of these processes lead
to various diseases, from sleep disorders to cancer. For this
reason, the regulatory oscillators attract significant attention
among biologists and biophysicists.

Since these natural regulatory networks are very complex,
it is necessary to study their dynamics by means of highly
simplified models. These models are particularly valuable
because artificial regulatory networks can be engineered ex-
perimentally. Switches [7,8], oscillators [7,9], and noise-
dampening networks [10] have been synthesized to prove
that a regulatory network can be decomposed into simple
functional elements to control complex biochemical systems
(see, e.g., [11-13]). The qualitative agreement between mod-
els and experiments is remarkable and validates the math-
ematical approach to the analysis of regulatory networks.

Modeling studies suggest several designs for artificial os-
cillatory networks. There are many implementations of
hysteresis-based oscillators [7,15-17]. Another artificial os-
cillatory network called the repressilator [9] borrows from
engineering the idea of a ring oscillator. The mechanism is
based on connecting an odd number of inverters (negative
control elements) in a ring. Its genetic implementation uses
three proteins that cyclically repress the synthesis of one an-
other. Our computational study [18] suggests that the oscil-
latory mechanism of the repressilator is qualitatively differ-
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ent from that in other genetic oscillators. In particular, the
distinctions between the oscillatory mechanisms are that one
requires bistability in a subnetwork and separation of time
scales, whereas the other does not use bistability and requires
all time scales to be similar. Recently, we have proven exis-
tence of a limit cycle in the repressilator model [19]. The
proof reveals structural properties of the model that are re-
sponsible for the appearance of periodic behavior. In this
paper, we analyze the requirements for realization of the re-
pressilator oscillatory mechanism and discuss how the dis-
tinct dynamical properties of the repressilator are related to
its structure.

II. MODEL

The idea for the oscillatory mechanism of the repressilator
is the cyclic repression of protein synthesis as shown in Fig.
1. The following system of equations describes the behavior
of the repressilator:

dm, @
= m1+
dt 1+v

n + ayp,

FIG. 1. The original Repressilator mechanism.
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dm2 + o +
e @,
dt " 1 +w" 0
dm3 + o +
—=—-m ),
dt ST+ 0
du
Z=—B(u—m1),
dv
dt——ﬂ(v—mz),
dw
— = - . 1
I Bw —m3) (1)

Here, u, v, and w are proportional to protein concentra-
tions, while m; are proportional to the concentrations of
mRNA corresponding to those proteins. All negative terms in
the right-hand side represent degradation of the molecules.
The nonlinear function f(x)= If" reflects synthesis of the
mRNAs from the DNA controlled by regulatory elements
called promoters. n is called cooperativity and reflects mul-
timerization of the protein required to affect the promoter.
The three proteins are assumed to be identical, making the
model symmetric. The mRNA concentrations are normalized
by their translation efficiencies to remove extra parameters at
m; in the equations for the proteins. Additionally, the time is
scaled in units of the mRNA lifetime, removing extra coef-
ficients at m; in the equations for the mRNA concentrations.

The system and the diagram present a highly simplified
model of the oscillatory network. In particular, intermediate
reaction steps such as binding of an effector to a promoter
are assumed to be very fast and, therefore, are not explicitly
shown in the model. The parameter «, represents uncon-
trolled (leaky) gene expression from the promoters. The ratio
B between the decay rates of proteins and mRNAs is a small
parameter which makes the dynamics of protein concentra-
tion much slower than that of mRNA. The system has been
shown to oscillate both in experiments and in simulations for
n>?2 and big enough a.

To investigate the oscillatory mechanism in the system,
we first reduce its dimension: Given that 8<<1, the explicit
inclusion of the mRNA concentration variables into the
model is not essential. In fact, there is no significant differ-
ence in dynamics if the mRNA concentrations are assumed
to be at their quasiequilibria, expressed by the algebraic re-
lations

o o o
m1—1+vn+a0, my = n+a0, ms=

1+w 1+u"

By this algebraic substitution, we arrive at a three-
dimensional system that captures the oscillatory dynamics.
Next, the uncontrolled part of the mRNA synthesis is usually
small and, therefore, can be omitted (a,=0). As a result, we
obtain the following dynamical system for further consider-
ation
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d
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Note that several assumption made for the initial model
are not necessary for the reduced system. In particular, there
is no need to assume that the dynamics of all mRNAs is the
same, and, consequently, 8 may be assumed different, but
small. We return to the discussion of symmetry in the con-
cluding sections.

III. RESULTS
A. Geometric structure of the phase space

In this section, we describe the structure of the phase
space that gives rise to oscillations in the repressilator model.
The description is based on rigorous analysis of the system
published in [19].

All trajectories are absorbed into a trapping cube. First,
we show that there is a finite region in the phase space that
attracts all trajectories. System [Eq. (2)] has an obvious sym-
metry by cyclic permutation of the three variables. This al-
lows us to consider only one of the three, and the absorption
is established analogously for the other two variables. When
u=0, the u variable is increasing because %: 14:10" >(0. When
u=a, u is decreasing because Z—?:a(ljvn— 1) <0. Moreover,
it is easy to see that for u > « the derivative does not become
smaller in absolute value than certain quantity & (%S—s
<0 for all u> a). As a result, the u variable is eventually
trapped in the interval (0, a). The same statement holds for
the v and w variables. Therefore, all trajectories of the sys-
tem are absorbed into a frapping cube consisting of all
(u,v,w) with 0<u,v,w<a.

The symmetry greatly simplifies the picture, but obvi-
ously is not necessary for the existence of the trapping re-
gion. In particular, if we introduce different parameters
ap,a,, a5 in system [Eq. (2)], then the trapping region is a
parallelogram with sides «;, a,, and a3, respectively. The
major reason for the existence of the trapping region is the
dominance of degradation over synthesis for high concentra-
tions of the components. The nonlinear functions in system
[Eq. (2)], which represent synthesis of components, stay be-
low a. By contrast, the negative terms, which represent deg-
radation, can grow without saturation. Therefore, the exis-
tence of a trapping region is a consequence of limited
synthesis and of the nonsaturable degradation of compo-
nents.

The only equilibrium state is unstable for big enough a.
Next, we investigate dynamics of the system within the trap-
ping region. In the simplest case a stable equilibrium state
exists, and a stationary concentration of all components sets
in. The equilibrium is located at the intersection of the null
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FIG. 2. (Color online) (A) The null surfaces N, and N, intersect
along a monotonic curve. (B) The intersection of the three null
surfaces is a single point R (a=4, n=3).

surfaces N,,N,,N,, for all three equations. Separately, each

null surface is the locus of points where one of the deriva-

du dv dw
tives ~- 210 i dr is zero; see Fig. 2.

The intersection of two null surfaces is a monotonic curve.
To find equilibrium states, we look for intersections of this
curve with the remaining null surface. This results in the
following equation:

JAf@]-x=0, 3)

where, f(x)— . A solution of Eq. (3) exists because the
left-hand s1de 1s posmve when x=0 and negative when x
— o0, Since f’ (x)—_(a:fx,x - <0, the derivative of the left-hand
side of Eq. (3) is everywhere negative, and the left-hand side
is monotonically decreasing. As a result, the solution to Eq.
(3) is unique. Therefore, there is a single equilibrium state in
the system for any parameters a>0 and n>1.

To conduct bifurcation analysis of the equilibrium state,
we notice first that the symmetry of the system forces the
equilibrium to belong to the diagonal {u=v=w}. Then, the
location of the equilibrium state is (r,r,r), where r satisfies

¢

=7, )

1+7"

ie., ”*'4+r—a=0. The linearized system at the equilibrium
state has eigenvalues (see [19])

nr'
1+
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The first eigenvalue is negative for any value of the param-
eters and corresponds to a stable eigendirection along the
diagonal. In fact, the diagonal is the stable manifold of the
equilibrium state not only locally as shown by the lineariza-
tion, but also globally in the original system [Eq. (2)].

The plane of the complex eigenvectors is orthogonal to
the diagonal due to symmetry. The real part of \, ; changes
monotonically between —1 and 5—1 as the position of the
equilibrium state r shifts from O to % due to variations in a.
In particular, Re N, 5 is always negative for n=2. This
agrees well with computer estimates performed in the origi-
nal repressilator system [9]. A threshold value for n required
for oscillations was also found in models of circadian clock
[20].

For n>2, there is a value r0=\% such that Re \, 3 is
negative for r<<r, and positive for r>r,. The position of the
equilibrium state depends on «. Below abif=rg+'+ro, the
equilibrium state is stable. Above this value, it becomes un-
stable via an Andronov-Hopf bifurcation. Our computation
of the first Lyapunov coefficient at the equilibrium state
shows that this coefficient is negative for any n>2. There-
fore the bifurcation is always supercritical, and it results in a
stable (attracting) limit cycle for a> ay;.

Trajectories are channeled into a toruslike region inside
the trapping cube. Periodic behavior that corresponds to the
limit cycle could in principle lose stability with further in-
crease in a, giving rise to more complex oscillatory solu-
tions. On the other hand, the repressilator model displays
only periodic dynamics in simulations. Therefore, we further
analyze the structure of the phase space that underlies oscil-
lations.

The three null surfaces N,,N,,N,, divide the trapping
cube into eight regions [Fig. 2(B)]. The structure is qualita-
tively equivalent to the splitting of three-dimensional space
into octants by coordinate planes. Using this analogy, we call
the eight parts of the cube octant regions. Since they are
separated by the null clines, any point inside each octant
region has the same pattern of signs for the derivatives %,
‘;’;, ”2; Therefore, any octant region can be described by a
triple of signs “+” or “-.” To represent a point exactly on a
null surface, we 1nclude “o” in the list of the symbols. For
instance, (+++) represents the octant region near the origin
where ‘2’; , ‘Z , ‘Z’; >0. It is bounded by portions of the N, N,,
and N, null surfaces represented by (c++), (+°+), and
(++0), respectively. The equilibrium state can be represented
as (ooo).

We mentioned already that the stable manifold of the
equilibrium state coincides with the main diagonal [which
crosses the cube from (——-) to (+++)]. Nearby trajectories
come close to the equilibrium state, and then are repelled
along the plane orthogonal to the diagonal because the equi-
librium is a saddle point (Fig. 3). More generally, we prove
that

>
[3°)
w
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FIG. 3. (Color online) The construction of the spindle. The
spindle consists of trajectory segments through all points of the
sphere surrounding the equilibrium state.

(a) Every orbit in (———) or (+++) other than the diagonal
escapes into the octant regions (+——), (++-=), (—+=), (—++),
(——+), (+—+), and remains trapped in these laferal regions.
For example, along the portion (o++) of the N,-null surface,
the vector field is directed from (+++) to (—++).

To rule out the possibility of orbits that return close to the
equilibrium state, we construct a neighborhood S of the equi-
librium state such that:

(b) A trajectory can only enter S from deep inside the
octants (+++) and (——-).

(c) Any trajectory (except for the diagonal) exits S only
into the lateral regions.

The naive choice of a ball around the equilibrium state
does not work because the trajectories can exit and enter the
ball before deciding to stay in the lateral regions. This failed
attempt indicates the correct construction for S. We take the
ball and add those segments of trajectories that exit and re-
enter the ball (see Fig. 3). We call the resulting object S a
spindle (see [18] for more details). Removing S from the
union of the lateral pieces leaves a toruslike region T (see
Fig. 4). Together, (a)—(c) show that every trajectory (except
the diagonal) is eventually trapped in T, and the equilibrium
state is far from 7.

FIG. 4. (Color online) The six lateral octants meet at the equi-
librium point R. Removing the spindle (which surrounds R) leaves
the displayed region, which absorbs trajectories and has the topol-
ogy of a torus.
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FIG. 5. (Color online) Trajectories and null clines in the cases of
low and high a. (A) a=5; (B) a=35. Note that the torus stretches
along the walls of the trapping cube.

Trajectories constantly move in a cyclic manner inside the
absorbing torus. Next we determine how a trajectory moves
inside the torus. The torus is composed of six pieces corre-
sponding to the octant regions truncated at the equilibrium
state. We adopt the same notation for torus pieces as for the
octant regions. A trajectory cannot stay within any one torus
piece. This follows from the monotonic changes in variables
and the fact that the speed of change does not become arbi-
trarily small inside any torus piece. Each piece is bounded by
five surfaces; two of them are boundaries of the trapping
cube and the spindle, respectively. The torus piece can only
absorb trajectories through these two boundaries. The other
three surfaces are parts of the null clines N,, N, and N,,. In
particular, for the torus piece (+—+), these are (o—+), (+o+),
and (+-°). The boundary (+°+) separates the torus piece
with (+++) octant region, and, consequently, the trajectory
may cross only into the torus. The remaining two boundaries
separate pieces within the torus. Calculating the direction of
the vector field on the boundaries, we have shown that the
trajectory enters the piece through (c—+) and escapes through
(+—°). As a result, the (+—+) piece absorbs trajectories from
(——+) and repels them into (+——) within the torus. Repeat-
ing this analysis for other torus pieces, we determine that the
only sequence in which a trajectory may flow is

F-t)=(F--)=> )= (-+-)
= (4 4) = () (- ). (6)

Therefore, once trapped in the torus, the trajectory moves
among torus pieces in a cyclic sequence.

The cyclic motion of the trajectory result in the existence
of a Poincaré return map from any boundary between torus
pieces to itself. By Brower’s Fixed Point Theorem, the sys-
tem has a limit cycle. However, the stability or uniqueness of
the limit cycle remains to be proven.

B. Synchronization properties of the repressilator
depend on «

We noted that the shape of the limit cycle changes quali-
tatively as a increases (see Fig. 5). At high «, dynamics
resembles relaxation oscillations, in which the shape of the
limit cycle becomes not rounded, and there are fast and slow
phases in the trajectory. Relaxation oscillations have been
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FIG. 6. Transient to synchronization in a pair of diffusively
coupled repressilators. (a) At a=35, the oscillators synchronize
within multiple cycles. (b) At @=500, the oscillators synchronize
within only a couple of cycles. d=0.1. The time interval is chosen
to match the number of oscillatory cycles in these two cases.

shown to synchronize faster than smooth oscillations [24]. To
test this property, we couple two identical repressilators.

Each repressilator represents concentration changes in an
isolated cell. In the literature, there are different ways to
couple the cells in a population. All of them use an intercell
signaling via quorum sensing mechanism [21]: that is, they
use the diffusion of a small molecule, the autoinducer. How-
ever, some works [14,22] suggest addition of a subnetwork
that provides coupling to each of the cells, whereas other
works include the quorum sensing system into the regulatory
network for the oscillator [15,18]. We adopt the latter ap-
proach because it introduces much less complexity into the
system, e.g., there are fewer parameters to be examined. In
the assumption of a dense population, the transmission of the
coupling signals (diffusion) occurs in a fast time scale. No
additional coupling variable is needed, and we arrive at the
equations

du; a d )
— = —u;+du;—u;),
e 1+v] ' o
dv; __ @
dt_1+w? v
dWi o
= n_wis (7)
dt  1+u;

where i is the index of the cell. For the basic population of
two cells, i=1,2, j=2,1. This is a six-dimensional system, in
which the equations for each oscillator are the same [Eq.
(2)], except for the additional coupling terms in the u; equa-
tions. The parameter d is the strength of the coupling and
represents diffusion between the cells. Figure 6 compares
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transients to synchrony for the pair with moderate and high «
at the same coupling strength d. In the case of high «, the
repressilators synchronize within a couple of cycles, whereas
it takes many cycles in the case of moderate «. At high «, the
synchronization properties of the repressilator match those
observed for relaxation oscillators. Thus, the synchronization
properties of the repressilator change according to the value
of the parameter a.

IV. DISCUSSION

From computer simulations we know that the behavior
remains periodic for arbitrarily high a. Our analysis excludes
the possibility of chaotic dynamics emerging form a ho-
moclinic connection of the saddle equilibrium state. This is
because the stable manifold of the saddle is the diagonal, and
that no nearby trajectory returns to a vicinity of the diagonal.
Quasiperiodic behavior (invariant torus [23]) can also be ex-
cluded since the divergence of the vector field is negative
everywhere. However, a cascade of period doubling bifurca-
tions of limit cycles is still not excluded by the analysis. A
proof of uniqueness and stability of the limit cycle will
clarify what structural properties of the system determine the
regularity of the dynamics.

Our proof of existence of the limit cycle gives a qualita-
tive explanation of the oscillatory mechanism of the repressi-
lator: the oscillations arise from circulation of the trajectories
inside the absorbing torus. The symmetry of the system is
not essential for the existence of the torus because it is only
based on the monotonicity of the null surfaces, which reflects
monotonic repression at the promoters. The fact that each
equation depends only on two out of three variables was
used to prove that the torus is a trapping region. So, if an

activating term like i‘rz is introduced in the u equation of
system [Eq. (2)], then trajectories from (+——) may escape
into (———). If a repression term is introduced, the torus re-
mains an absorbing region, but the cyclic motion along a
sequence of torus pieces may not hold. For instance, if the
term ]fi is introduced into the u equation, a trajectory may
return from (+—+) to (——+). The change also introduces new
equilibria, the absence of which was used to prove continu-
ous cycling inside the torus. This shows that the oscillatory
mechanism is based on monotonic repression at the promot-
ers and on the absence of regulatory connections other than
the cyclic repression loop. Finally, the proof does not hold
when the equilibrium state is stable because then the spindle
shrinks toward the diagonal, so that trajectories can approach
the equilibrium. Therefore, it is enough to confirm the insta-
bility of the single equilibrium in order to ensure oscillatory
behavior in the class of systems that displays only the cyclic
repression regulatory connections represented in Fig. 1.

Our simulation results published earlier [18], show that a

an

single extra term ;- in the first equation destroys oscilla-
tions. This agrees with our analysis above, which shows that
the extra term invalidates the scheme of proof for existence
of a cycle. However, we also noticed that for high «, a quite
low strength «, is sufficient for oscillatory death. As an ex-
ample, oscillations collapse in the repressilator with a=500
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FIG. 7. Thickness of the torus is defined by the decline of the
function f(x) and independent of «. The solid and dashed curves
show f(x) at @=2 and a=3, respectively. The vertical line shows
the position at which the function declines to a half of the maximal
value.

when «, is elevated only to 12. We also confirm this sensi-
tivity of the oscillatory mechanism to autoregulatory connec-
tions or the uncontrolled expression of genes (a;). This
means that weak regulatory connections can be crucial in
defining the dynamics. We can explain this property based on
the geometric structure of the phase space.

As «a increases, the amplitude of oscillations grows, but
the thickness of the torus remains independent of « (Fig. 7).
The thickness is defined by the factor ot which reflects
regulation at the promoters and saturates at low concentra-
tions. As a result, a term that is sufficient to alter the geo-
metric structure depends on « only weakly. This weak de-

aw"

pendence is also displayed if an activating connection |~ is
introduced into the u equation: the value for «; sufficient for
oscillatory death remains low when « increases. For high a,
the amplitude of oscillations is much greater than concentra-
tions that saturate the promoters. Therefore, the oscillatory
mechanism is sensitive to extra regulatory connections be-
cause of the imbalance between the attended concentrations
(proportional to «) and those sufficient for saturation of the
promoters (defined by 1+1x")'

In a two-dimensional relaxation system, the onset of os-
cillations as a parameter changes has a clear geometric inter-
pretation: the null clines intersect at an extreme point of one
of the null clines. Typically, in systems of nonrelaxation
type, this correspondence is lost, but a qualitative one still
holds. By contrast, in the repressilator, no qualitative changes
in the topology of the phase space seem to correspond to the
onset of oscillations. In a repressilator with high parameter
a, the torus stretches along the walls of the trapping cube,
where one of the variables is near zero (Fig. 5). In particular,
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FIG. 8. (Color online) Time series for high a (@=200). Note
that decreases in each variable occur in both fast and slow phases.
The dotted vertical lines correspond to the extrema, at which the
trajectory crosses one of the null clines. The shaded intervals cor-
respond to (++-), (—++), and (+—+) octants.

in the octant (+——) v decreases along with w while u grows.
However, the shape of the octant dictates that u remains
small, so that u and w decrease at very different rates. There-
fore, the difference in the dynamics of all three variables
separates the trajectory from the diagonal and makes the
equilibrium state unstable.

The dynamics of v and w above are different only due to
their distinct rates of decline in the (+—-) octant. At low «,
where the equilibrium state is stable, the rates of decline are
similar, and the trajectory converges to the diagonal. There-
fore, an increase in « can be viewed as introducing a time
scale separation: the trajectory is close to one of the null
clines in each octant, and the corresponding variable remains
in quasiequilibrium. However, a fast-decreasing variable will
decline slowly in a following octant (Fig. 8); i.e., the time
scale separation is temporal or transient. We did not find a
coordinate transformation that separates slow and fast vari-
ables. Making any one variable permanently slow or fast by
introducing a factor in the corresponding equation kills os-
cillations in the repressilator model [18]. The temporal time
scale separation explains the sensitivity of oscillations to
scaling of the right-hand side of any one repressilator equa-
tion.

Relaxation oscillations are advantageous in synchroniza-
tion [24]. Tt may take dozens of oscillatory cycles for smooth
oscillators, and just a few cycles for relaxation oscillators to
synchronize with a given precision. The property is shown
for different types of coupling, including diffusive [25]. We
have confirmed it for a pair of diffusively coupled repressi-
lators (Fig. 6). In the case of high «, the repressilators syn-
chronize within a couple of cycles, whereas it takes many
cycles in the case of moderate «. The dependence of syn-
chronization on « may display for other types of coupling
(e.g., [14,26]). This is a very interesting topic for future stud-
ies.
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