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Computation of the drift velocity of spiral waves using response functions
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Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical,
chemical, and biological nature. In the presence of a small perturbation, the spiral wave’s center of rotation and
fiducial phase may change over time, i.e., the spiral wave drifts. In linear approximation, the velocity of the
drift is proportional to the convolution of the perturbation with the spiral’s response functions, which are the
eigenfunctions of the adjoint linearized operator corresponding to the critical eigenvalues A=0, = iw. Here, we
demonstrate that the response functions give quantitatively accurate prediction of the drift velocities due to a
variety of perturbations: a time dependent, periodic perturbation (inducing resonant drift); a rotational
symmetry-breaking perturbation (inducing electrophoretic drift); and a translational symmetry-breaking per-
turbation (inhomogeneity induced drift) including drift due to a gradient, stepwise, and localized inhomoge-
neity. We predict the drift velocities using the response functions in FitzHugh-Nagumo and Barkley models,
and compare them with the velocities obtained in direct numerical simulations. In all cases good quantitative

agreement is demonstrated.
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I. INTRODUCTION

Spiral waves are types of self-organization observed in
physical [1-3], chemical [4,5], and biological [6—11] sys-
tems, where wave propagation is supported by a source of
energy stored in the medium. The interest in the dynamics of
spiral waves has significantly broadened in the last decade as
the development of experimental techniques has permitted
them to be observed and studied in an ever increasing num-
ber of diverse systems such as magnetic films [12], liquid
crystals [13], nonlinear optics [14,15], novel chemical sys-
tems [16], and in subcellular [17], tissue [18], and population
biology [19].

In the ideal unperturbed medium, the core of a spiral
wave may be anywhere, depending on initial conditions.
However, real systems are always subject to a perturbation.
A typical result of a symmetry-breaking perturbation is drift
of the spiral waves, which has two components, temporal
drift, which is shift of spiral wave rotation frequency, and
spatial drift, that is slow movement of the spiral’s rotation
center. The drift of spiral waves, particularly the spatial drift,
is of great practical interest to applications. In cardiac tissue,
drift of re-entry circuits may be caused by internal tissue
inhomogeneities, or by external perturbations, such as elec-
trical stimulation. The possibility of control of arrhythmias
by weak electrical stimulation has been a subject of intensive
research for decades.

Understandably, the drift of spiral waves was mostly stud-
ied in the Belousov-Zhabotinsky reaction, which is the easi-
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est excitable system for experimental study, and in the heart
tissues and tissue cultures, which represents the most impor-
tant application area. Examples of drift observed in experi-
ments and numerical simulations include “resonant” drift
caused by (approximately) periodic modulation of medium
properties through external forcing [20], constant uniform
electric field that causes electrophoresis of charged ions tak-
ing part in the chemical reactions [21], a spatial gradient of
medium properties [22-25] and pinning (anchoring, trap-
ping) to a localized inhomogeneity [26-28]. Interaction with
a localized inhomogeneity can be considered to be a particu-
lar case of the general phenomenon of vortex pinning to
material defects, ranging from convective microvortex fila-
ments in nanosecond laser-matter interaction to magnetic
flux strings in the Sun’s penumbra [29]. A most intriguing
property of spiral waves is that despite being propagating
waves affecting all accessible space, they, or rather their
cores, behave as pointlike objects.

Correspondingly, three-dimensional extensions of spiral
waves, known as scroll waves, act as stringlike objects.
There have been several ad hoc theories of drift of spiral and
scroll waves exploiting incidental features in selected mod-
els, e.g., [30-33]. Our present study is based on an
asymptotic theory applicable to any reaction-diffusion sys-
tem of equations in which a rigidly rotating spiral wave so-
lutions exist. The theory was first proposed for autonomous
dynamics of scroll waves for the case of small curvatures and
small twists [34,35] and then extended to the drift of spiral
waves in response to small perturbations [36]. In this theory,
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the particlelike behavior of spirals and stringlike behavior of
scrolls corresponds to an effective localization of so called
response functions (RFs, see exact definition later in this
paper). The localization of RFs is the crucial assumption,
which underpins the entire analysis. Originally [37] this
property was only a conjecture based on the phenomenology
of spiral waves in experiments and numerical simulations
[31,38-40]. The analytical calculation of the response func-
tions appears to be infeasible. Numerical calculations in the
Barkley model [41] and the complex Ginzburg-Landau equa-
tion (CGLE) [42] have confirmed that indeed they are essen-
tially localized in the vicinity of the core of the spiral. The
asymptotic theory based on the response functions has been
successfully used to quantitatively predict drift of spirals, for
resonant drift and drift due to parametric inhomogeneity in
the CGLE [43-45] and for drift in response to a uniform
electric field in Barkley model [46]. Despite this success, so
far the asymptotic theory has not become a generally used
tool for the prediction of spiral wave drift. This is partly due
to difficulties in the numerical calculation of the response
functions. In our recent publication [47] we have presented
an efficient numerical method of calculating response func-
tions in an arbitrary model with differentiable right-hand
sides. The complexity of calculating response functions with
this method is similar to the complexity of calculating spiral
wave solutions themselves. In the present paper, we describe
the application of the asymptotic theory using the response
functions for the prediction of several types of drift and show
how it works for two of the most popular generic excitable
models, the FitzHugh-Nagumo (FHN) system [48-50], and
the Barkley system [51]. We demonstrate that predictions of
the asymptotic theory are in good quantitative agreement
with direct numerical simulations. In addition, we demon-
strate that the response functions are capable of predicting
nontrivial qualitative phenomena, such as attachment of spi-
ral waves to stepwise inhomogeneity and orbital movement
around a localized inhomogeneity.

The structure of the paper is as follows. In Sec. II, we
briefly recapitulate the asymptotic theory of the drift of spiral
waves in response to small perturbation and present explicit
expressions for drift parameters in terms of the spiral wave’s
response functions for several sorts of drift. In Sec. III, we
describe the numerical methods used for calculating the re-
sponse functions, for direct numerical simulations, and for
processing of the results. The results are described in Sec. IV.
We conclude the paper by discussion of the results and their
implications in Sec. V.

II. THEORY
A. General

We consider reaction-diffusion partial differential equa-
tions,

Ju=f(u) +DV?u, ufeR’ DeR™, =2,
(1)
where u(7,1)=(u,, ... ,u,)" is a column-vector of the reagent
concentrations, f(u)=(f,,....f,)T is a column-vector of the
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reaction rates, D is the matrix of diffusion coefficients, and
7 e R? is the vector of coordinates on the plane.

A rigidly clockwise rotating spiral wave solution to Eq.
(1) has the form

U=U(p(7- R),37-R) + wt — D), )

where 13=(X ,Y)T is the center of rotation, ® is the initial
rotation phase, and p(F-R), (7—R) are polar coordinates
centered at R. For a steady, rigidly rotating spiral, R and @
are constants. The system of reference co-rotating with the
spiral’s initial phase and angular velocity @ around the spi-
ral’s center of rotation is called the system of reference of the
spiral. In this system of reference, the polar angle is given by
0=+ wt— P, with R=0 and ®=0. In this frame, the spiral
wave solution U(p, 6) does not depend on time and satisfies
the equation

f(U) - wd,U+DV?U=0, (3)

where the unknowns are the field U(p, 6) and the scalar w.
In a slightly perturbed problem

du=f(u) +DVu+eh, heR’ |d<1, 4)

where eh(u,7,r) is some small perturbation, spiral waves
may drift, i.e., change rotational phase and/or center location.
Then, the center of rotation and the initial phase are no
longer constants but become functions of time, 13=13(t) and
®=®(r). In the co-rotating system of reference, time depen-
dence will take form of a phase depending on time ¢(¢)
=wt—D(1).

Thus, we consider three systems of reference:

(1) laboratory, (7,1);

(2) co-moving, (p,,t), where (p,ﬁ):(p(?—ﬁ),ﬂ(?—ﬁ))
is the polar coordinate system centered at R;

(3) co-rotating, (p, 0, ¢), where 6= IF=R)+ (1) is the
polar angle, and ¢=wi—®(r) is the rotational phase, replac-
ing time.

We shall look for a solution to Eq. (4) in the form of a
slightly perturbed steady spiral wave solution

ﬁ(f’? 6’ ¢) = U(P, 0) + Eg(p, 0’ ¢)7

where g € R¢ 0<e<1.
Then, assuming that

R,d=0(e),

at leading order in e, the solution perturbation g will satisfy
the linearized system

(wﬁ¢—£)g=H(U,p, 0»¢)7 (5)

where
~ 1| JU = .
H(U,p,0,¢)=h(U,p,0,¢p) — — l —R- (99U(I)] ,
€| IR

where H(U,p, 0, ) is the perturbation h(u,7,), considered
in the co-rotating frame of reference.
The linearized operator
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L=DV? - wdy+ d,f(U), (6)
has critical Re(\)=0 eigenvalues

LVP =\, VP \ =inw, n=0,*1, (7)

which correspond to eigenfunctions related to equivariance
of Eq. (1) with respect to translations and rotations, i.e.,
“Goldstone modes”

VO =_5,U(p,0),
(8)

1
- Ee“o(ap Fip 'a)U(p,0).

vED =

In this paper, we do not consider perturbations h(u, 7,7) that
depend on ¢ other than 27/ w-periodically (for a more gen-
eral version of the theory free from this assumption see

[36,45]). Then h(U,p, 6, ¢) is a 2ar-periodic function in ¢,
and we look for solutions g(p, 6, @) to Eq. (5) with the same
periodicity. A solvability condition leads to the following
system of equations for the drift velocities,

. 21 - d¢
b=e f (WO h(U,p, 6,¢))— + O(),
0 2

. 2m p _ d¢
R=¢ f e YWW h(U,p,0,$)— + O(),
0 21

where R=X+iY is the complex coordinate of the instant spi-
ral center, the inner product (-,-) stands for the scalar product
in functional space

(w,v) = f wH(A)v(Pd*F,
]RZ
and the kernels W(”)(p, 0), n=0, = 1, are the response func-

tions, that is the critical eigenfunctions

[,+W(n) = an(n)’ n= 0, =+ 1 5 (9)

My =—1nw,
of the adjoint operator L£*,
LY =DV + wdy+ [,£(0)]", (10)
chosen to be biorthogonal
(WO V) =g, (11)

to the Goldstone modes Eq. (8).
The drift velocities can be written as (henceforth, we shall
drop the O(€?) terms)

>

& = eFy(R,®), R=eF(RD), (12)

where the “forces” F, and F,=(Re(F,),Im(F,))" are defined
by
F(R,®) =(W"(p,6),,(p, 0;R,®)),

(13)
n=0,1,

and
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dé

2m
a,(p.0:R.®) = f e "h(U,p,0,4)—.  (14)
0 21

In the above formulas, the dependence on (R, ®) is explicitly
included to emphasize that the response functions depend on
coordinates (p,6) in the co-rotating frame of reference
whereas the perturbations are typically defined in the labora-
tory frame of reference, and the two systems of references
are related via R and .

Below we show how the forces in Eq. (13), determining
the velocity of the drifting spiral wave subject to a variety of
perturbations, can be calculated using the computed response
functions W™ . We also compare the quantitative analytical
prediction of drift velocities with the results of direct
simulations.

B. Resonant drift

Let us consider a spiral wave drifting due to the perturba-
tion

h(u,7,t) = A cos(wt), (15)

where A € R is a constant vector. In the co-rotating frame
the perturbation Eq. (15) will be

h=A cos(¢+ D) (16)
Substitution of Eq. (16) into Eq. (14) gives
A
aoz(), a1=561¢,
and, by Eq. (13),
1 .
Fy=0, Fi= 5e’“’<w<‘>(p, 0).A). (17)

Hence, the speed of the resonant drift of the spiral is

o1
IR| = 5|6<W(1),A) , (18)
whereas its direction is constant and arbitrary,
arg(R) = arg((W(l),A)) +®, d=0, (19)

as it is determined by the initial phase of the spiral @, or,
rather, by the phase difference between the spiral and the
perturbation, Eq. (19) is only valid in the asymptotic sense,
and a more accurate formulation is

d=0(&). (20)

Hence, at finite € the resonance is expected to be imprecise,
and a typical trajectory of a resonantly drifting spiral is a

circle of radius R,y=|R|/|®|=0O(e™").

C. Electrophoretic drift

Here, we consider an anisotropic perturbation which
breaks rotational symmetry
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h(7) = BE (21)
ax

where B € R is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34,35], where B=D.

In the co-rotating system of reference, the perturbation
Eq. (21) can be written using the Goldstone modes Eq. (8),
as

h(U,p,6,¢) =—B(VDe i® 4+ VDeid) (22)

which, by substituting into Eq. (14), gives

o 4 d
a,(p,0)=—B e MV Demid L yeid)
T

— (23
. gy (2

Thus, ay=0, a;(p,0)=-BV", which following Egs. (12)
and (13) gives the velocity of the electrophoretic drift
R=— «W(p,0),BV"(p,0) (24)

which remains constant in time.

D. Inhomogeneity-induced drift
1. General

We now consider the case when the reaction kinetics f in
Eq. (1) depend on a parameter p, and the value of this pa-
rameter varies slightly in space,

f="~f(u,p),

Substitution of Eq. (25) into Eq. (1) gives, to the first order in
€,

p=p(P)=po+ ep,(7). (25)

du=DV?u+£(u,p) + ep, (M, f(u,p,),

with the perturbation in the laboratory frame of reference

h(u,7,7) = 9,f(a,po)p: (7). (26)
Substitution of Eq. (26) into Eq. (14) gives
a,(p.0) = 3,£(U(p,0).pp)e " "’K, (p), (27)
where
2
o dv
K,(p) = f "B (p, 13)2—, (28)
0 ar

and p;(p, ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the
drift velocities can then be written in the form

27 [
b=e f f w%(p, 0)Ko(p)pdpd, (29)
0 0
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27 (oo
R=¢ f f w(p, 0)e™ K, (p)pdpd, (30)
0 0

where for brevity we introduce

w(p,6) =[W"(p,6)]*d,£(p. 6:py). (31)

2. Linear gradient

Let p, vary linearly in a sufficiently large region contain-
ing the spiral tip and its subsequent drift trajectory. Specifi-
cally we consider p;=x—x,, where the x coordinate of the
trajectory remains near x,. In the co-moving reference frame,
the linear gradient perturbation will be

D1=X—xo+ p cos(V). (32)
Substituting Eq. (32) into Eq. (28) gives

1
Kn(p) = (X—Xo) 5n,0 + Ep(énl + 5}1,—1)'

Then, by Egs. (27), (12), and (13), the velocity of the drift
due to gradient of a model parameter will be

27 [o*
® = (X - xo) J f w(p, 0)pdpd®,
0 0
(33)

27 [
= Ef J w(p, e ’p*dpd .
2Jo Jo

An important feature of Egs. (33) is that the first of them
depends on X while the second does not. The dependence on
X means that the drift velocity changes during the drift, un-
less the drift proceeds precisely along the y axis. As it hap-
pens, at first order in €, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of Egs. (33) shows that the instant rotation frequency
corresponds to the parameter value at the current center of
rotation, p=py+e€p,;=po+e(X—xy). The spatial drift, de-
scribed by the second of Egs. (33), does not depend on X.
That means that while the drift proceeds, its speed and direc-
tion remain the same, at least at the asymptotic order consid-
ered. This is an important observation, first, because it allows
us to treat linear gradient induced drift in the same way as
the electrophoretic drift, i.e., expecting drift along a straight
line, and second, that unlike electrophoretic drift, the as-
sumption is inherently limited to such X that e(X-x,) re-
mains sufficiently small.

3. Step inhomogeneity
Here, we consider a step perturbation located at x=x,,
pi(x) =H(x - x,),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

Pi(p,9) = H(X + p cos(d) - x,). (34)
Substitution of (34) into (28) gives
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X) dd

27

We consider three intervals for (x,—X)/p.

,x,>X. Then H(cos(ﬁ)—hfx):o, therefore

2
K,1=f cos(nﬁ)H(cos(ﬁ) -

0

K():K]:O.

,x,<X. Then H(cos(ﬁ)—%): 1, therefore
K(): 1 N K] :O.
(3) p=|x,~X|. Then, for 00=arccos()%(),

-X I, e (=99
H(cos(ff})—xs ): € ( . o %)
0, otherwise.
Thus,

1 x,—X

Ky= —arccos( : ), (35)
™ p
1 -X\?

K =— 1—<L> . (36)
77 P

Substituting the above K, for the three intervals into Eqgs.
(13) and (12), we get the velocities of the drift due to a
step-wise inhomogeneity of a model parameter in the form

27 [ 2
. -X
= EJ f w(p, e /1 - (x‘Y ) pdpd®,
m™Jo [x—X] P

(37)
2@ [
. -X
d= Ef f w@(p, 0)arccos(x5
™Jo |xS—X\ P

2m ‘Xs_Xl
+eH(X - xS)J f wO(p, 6)pdpd. (38)
0o Jo

)pdpd@

Note that both R and @ are functions of the current x coor-
dinate of the spiral with respect to the step, d=X—-x,, and R

is an even function of this coordinate.
4. Disk-shaped inhomogeneity

We now consider an inhomogeneity, which is unity within
a disk of radius R, centered at (x,,y,), and which is zero
outside the disk. Thus we have

7D = HRS, — (x=x)° = (v = y2)?).

Then calculations, similar to those for a stepwise inhomoge-
neity, lead to

1 +P—R}
Ky= —arccos(Q) (39)
T 2lp

2 2\2
Kl__\/1—<p . R) (40)

where [ and ¥, designate the distance and the direction from
the current center of the spiral to the center of the inhomo-
geneity, i.e., x;=X+1 cos ¥y, y;,=Y+I sin 3.
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This leads to the equations for the drift velocities in the

form
2w (IR,
f f w(p, 0)
ll'll

. +P-R>\?
><e'”’\/1 - (Q) pdpd6, (41)

2lp
p2 + l2 - Rlzn
2lp

I+R;,
b= —J f p, 0)arccos<
|t m\
(42)

It is straightforward to verify that if 9,=0, x,=x,+R;, and
R;,—, that is when the disk is so large it turns into a
half-plane at x> x,, then expressions (39) and (40) tend to
expressions (35) and (36) respectively, as should be ex-
pected. Another interesting limit is R;,— 0, in which we get

21
. do R;
b= ewanf (A 0)—{1 + o(ﬂﬂ :
0 27 [
21

. . . do R,
R= ewRizne“%f wi(, 0)e"9—{1 + O(iﬂ ,
0 27 [

in accordance with the case of a pointwise, é-function inho-
mogeneity considered in [52].

III. METHODS
A. Models

We have considered two different kinetic models, both
two-component, £ =2, with one nonzero diffusion coefficient,
D=[, 8]. We designate u=(u,v)T, f=(f,g)T for convenience.
The FitzHugh-Nagumo kinetics was chosen in [50] notation,

fu,v)=au-u’3 -v),

gu,v)=alu+pB-w),

with parameter values @=0.3, 8=0.68, y=0.5 as in [47].
The Barkley [51] kinetics is given by

Flu,v) =c'u(l —w)u— (v +b)lal,

guv)=u-v,

with parameter values a=0.7, b=0.01, and ¢=0.025, as in
[46]. Note that both « and ¢ are called € in [50,51], respec-
tively; however we use € for the small parameter in the per-
turbation theory.

B. Response functions computations

For both the FitzHugh-Nagumo and the Barkley models,
the response functions and the Goldstone modes have been
computed using the methods described in [47]. The discreti-
zation is on disks of radii from p,c=12 up to py.=50,
using Ny=64 of discretization intervals in the angular direc-
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FIG. 1. (Color online) (a) Solutions of the nonlinear problem (3) and the adjoint linearized problem (9,10), i.e., the response functions,
as density plots. Barkley model, pp,=12.8, N,=1280. Numbers under the density plots are their amplitudes A: white in the plot corresponds
to the value A and black corresponds to the value —A of the designated field. Upper row: first components (i), lower row: second components
(v). The central areas of W), n=0, 1, are also shown magnified in the small corner panels. (b) Snapshot of spiral wave in the Barkley model
(u: red color component, v: blue color component), drifting in a stepwise inhomogeneity of parameter ¢ (green color component). The thin
white line is the trace of the tip of the spiral in the course of a few preceding rotations. Yellow circles are positions of the centers calculated

as period-averaged positions of the tip.

tion and a varying number N, of discretization intervals in
the radial direction, up to N,=1280. The components of the
spiral wave solution and its response functions for Barkley
model are shown in Fig. 1(a). Similar pictures for the
FitzHugh-Nagumo model can be found in [47].

C. Perturbations

We considered similar types of perturbations eh(u,7,?) in
both FitzHugh-Nagumo and Barkley models, both for theo-
retical predictions based on response functions and in nu-
merical simulations. Specifically, the perturbations were
taken to have the following forms.

1. Resonant drift

h(u,71) = Ll) ]cos(wt), (43)

where w is the angular velocity of the unperturbed spiral
obtained as part of the spiral wave solution for the Eq. (3).

2. Electrophoretic drift

1 o]a_u

. 44
0 0 [ox (44)

h(u,7 1) = {

3. Spatial parametric inhomogeneities

As set out in Section II, a spatial dependence of a param-
eter p of the kinetic terms in the form p(7)=py+p,(7), |pi|
<|py| corresponds to the perturbation

h(u,7,t) = ,f(u,po)p, (7). (45)

For each of the two models, we consider inhomogeneities in
all three parameters, namely p € {a, B, y} for the FitzHugh-
Nagumo model, and p € {a,b,c} for the Barkley model. The
“linear gradient” inhomogeneity is of the form

P1=Xx—Xp, (46)

where x, is chosen to be in the middle of the computation
box and close to the initial center rotation of the spiral wave.
The “stepwise” inhomogeneity is of the form

1
pr=Hix=x)- . 47)

where x, is varied and chosen with respect to the initial cen-
ter of rotation of the spiral wave. The —% term is added to
make the perturbation symmetric (odd) about x=x,, to mini-
mize the inhomogeneity impact on the spiral properties while
near the step. As it can be easily seen, within the asymptotic
theory, this term only affects the frequency of the spiral but
not its spatial drift.
The “disk-shape” inhomogeneity is of the form

p1=H(Ri, = |[F= 7)), (48)

where the position of the center of the disk 7,=(x,,y,)T is
varied and chosen with respect to the initial center of rotation
of the spiral wave.

D. Drift simulations

Simulations have been performed using forward Euler
timestepping on uniform Cartesian grids on square domains
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FIG. 2. (Color online) Drift speeds as functions of corresponding perturbation amplitudes. Top row: FitzHugh-Nagumo model. Bottom
row: Barkley model. First column: resonant drift. Second column: electrophoretic drift. Third column: drift in linear gradient inhomogeneity,
namely, (c) with respect to parameter B in the FHN model, and (f) with respect to parameter a in the Barkley model. In the second and the
third columns, the symbols represent simulations and the lines represent theoretical predictions. Numerical parameters: (a) Ax=Ap=0.1,
Pmax=30, (b) Ax=Ap=0.1, ppax=25, (c) Ax=0.08, Ap=0.02, pr.x=25, (d) Ax=Ap=0.05, ppax=25, (€) Ax=Ap=0.02, px=12.5, (f) Ax

=Ap=0.06, p.=24.

with nonflux boundary conditions and five-point approxima-
tion of the Laplacian. The space discretization step Ax has
been varied between Ax=0.03 and Ax=0.1, and time dis-
cretization step Ar maintained as At:ész. The tip of the
spiral is defined as the intersections of isolines u(x,y)=u.,
and v(x,y)=v,, and the angle of Vu at the tip with respect to
X axis is taken as its orientation. We use (u.,v.)=(0,0) for
the FitzHugh-Nagumo model and (u.,v.)=(1/2,a/2-b) for
the Barkley model.

E. Processing the results

For coarse comparison, we use the trajectories of the in-
stantaneous rotation center of the spiral wave. They are di-
rectly predicted by the theory. In simulations, they are calcu-
lated by averaging the position of the tip during full rotation
periods, defined as the intervals when the orientation makes
the full circle (-, 7], see Fig. 1(b).

For finer comparison, we fit the raw tip trajectories, i.e.,
we use theoretical predictions including the rotation of the
spiral. That is, if the theory predicts a trajectory of the center
as R=R(t;A,B,...) eC (a circle for resonant drift and a
straight line for electrophoretic or linear gradient inhomoge-
neity drifts) depending on parameters A,B,... to be identi-
fied, then the trajectory of the tip is assumed in the form
Rp(1)=R(t;A,B,.. )+ R e’ @90) where R, € R is the tip
rotation radius, w € R is the spiral rotation frequency and
®; e R is the initial phase. The parameters R, @ and O
are added to the list A,B,... of the fitting parameters.

IV. RESULTS
A. Simple drifts

Figure 2 shows a comparison between the theoretical pre-
dictions for the simple drifts and the results of direct numeri-
cal simulations for various perturbation amplitudes €. The
simple drifts include the resonant drift, the electrophoretic
drift and the drift in the linear parametric gradient with re-
spect to one arbitrarily selected parameter.

For the resonant drift, the motion equations given by Eqs.
(18)—(20) can be summarized, in terms of complex coordi-
nate R=X+1iY, as

do

ar -t

dR )
- _ el(IJ ,
dt P

(49)
where p=1|e(W") A)| is predicted by the theory at leading
order, and q:O(ez) is not, and we only know its expected
asymptotic order. The theoretical trajectory is a circle of ra-
dius p/q, and the spiral drifts along it with the speed p. In the
simulations, we determined both the radius and the speed by
fitting. The speed is used for comparison and the radius is
ignored.

For the other two types, electrophoretic drift and linear
gradient inhomogeneity drift, the theory predicts drift at a
straight line, according to Egs. (24) and (33), respectively. In
these cases, we measure and compare the x and y compo-
nents of the drift velocities separately.

For numerical comparison in the case of linear gradient
inhomogeneity, we chose pieces of trajectories not too far
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FIG. 3. (Color online) Numerical convergence of drift forces. Top row: FHN system. Bottom row: Barkley system. First column: resonant
drift. Second and third columns: x and y components of the electrophoretic drift. The forces were measured for (a) e=1073, (b,c) e=1072, (d)

€=5-1073, (e,f) e=1072.

from x=x,, selected empirically to achieve a satisfactory
quality of fitting.

A common feature of all graphs is that at small enough e,
there is a good agreement between theory and simulations.
As expected, differences appears for larger € with the dis-
agreement occurring sooner (for smaller values of drift
speed) for the linear gradient inhomogeneity drift. This is
related to an extra factor specific to the inhomogeneity-
induced drift: the properties of the medium where they mat-
ter, i.e., around the core of the spiral, change as the spiral
drifts. Since we require a certain number of full rotations of
the spiral for fitting, faster drift meant longer displacement
along the x axis and more significant change of the spiral
properties along that way, which in turn affects the accuracy
of the fitting.

B. Numerical convergence

Figure 3 illustrates numerical convergence of results with
discretization parameters. We consider the simple drift cases
and focus on forces, defined as the drift speed/velocity per
unit perturbation amplitude €. The discretization parameter
that primarily dictates the accuracy of solutions is a spatial
discretization step: Ax in the simulations and the radial dis-
cretization step Ap in the response functions calculations.

In simulations, the forces are determined for values of €
well within the linear range as determined in Fig. 2. These
are calculated for different values of the space discretization
step Ax, where the time discretization changed simulta-
neously so that the ratio At/ (Ax)? remains constant.

In theoretical predictions, the forces are given by the val-
ues of the corresponding integrals of response functions as
described by Sec. II, and we have calculated the response

functions and the corresponding integrals with various values
of the radius discretization steps Ap.

Our discretization in both the theoretical and stimulations
cases is second order in Ax and in Ap, so one would expect
to see linear dependence of the drift forces on the squares of
these discretization steps, (Ax)? and (Ap)?, at least for the
values of these steps small enough. This is indeed what is
observed.

We have gone further and extrapolated the calculated the-
oretical and simulation values of forces to zero Ap and Ax
respectively, based on the expected numerical convergence
properties. Such extrapolation gives the values of the forces,
which differ from the exact value only due to other, smaller
discretization errors, which are: angular discretization and
restriction to the finite domain in the theoretical predictions,
and second-order corrections in € and the boundary effects in
the simulations. Comparison of such extrapolated data shows
a very good agreement between theory and direct numerical
simulations (DNS) which is illustrated in Table 1. Note that
the values for Figs. 3(e) and 3(f) are also in good agreement
with the results of [46].

For the extrapolation, we fitted the numerical data with
the expected numerical convergence dependencies, which
were different for theoretical calculations and for the simu-
lations. In simulations, the central difference approximation
of the Laplacian means that the next term after (Ax)? is
(Ax)*. The expected error due to time derivative discretiza-
tion is a power series in Az~ (Ax)?, hence, the next term
there after (Ax)? is again (Ax)*. The situation is different in
the response functions calculations as there is no symmetry
in the approximation of p derivatives, therefore we expect
that in the theoretical convergence, the next term after (Ap)>
is (Ap)®. We note, however, that approximation of both the-
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FIG. 4. (Color online) Drift in stepwise inhomogeneity Eqs. (45) and (47). First row: theoretical predictions for the drift forces
components as functions of the distance to the steps, d=X—x,, in parameters (a) a, (b) 3, and (c) 7, in the FitzHugh-Nagumo model. Second
row: same for Barkley model, steps in parameters (d) a, (e) b and (f) ¢. Third row: comparison of theoretical predictions with DNS. (g) A
phase portrait of the drift in the FitzHugh-Nagumo model, in theory, Eq. (37), and DNS, Egs. (4), (45), and (47), with a step inhomogeneity
of parameter « [corresponds to panel (a)], at e=1072. Shown are the theoretical vector field (black arrows; the lengths are nonlinearly scaled
for visualization), a selection of theoretical trajectories (red filled circles) and a selection of numerical trajectories (blue open circles) of the
centers of the spiral waves. Trajectories are arbitrarily shifted in the vertical direction for visual convenience. Dashed-dotted vertical lines
correspond to the root of the theoretical horizontal component of the speed, and the location of the step X—x;=0. (h) Speed of the established
vertical movement along the stepwise inhomogeneity as in panel (g), as a function of inhomogeneity strength. (i) A phase portrait of the drift
in the Barkley model with a step inhomogeneity of parameter ¢ [corresponds to panel (f)], at e=3-107*. Notation is the same as in panel (g).
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TABLE 1. Fitting of numerical convergence of theoretical and simulation data.

Discrepancy
Graph Theory DNS (%)
Figure 3(a) 3.2795+1.8183Ap%+1.8928Ap> 3.2844+0.7166Ax*+3.0663Ax* 0.15
Figure 3(b) —-1.0673-0.6418Ap*—1.0733Ap> —1.0670-0.1513Ax%+0.2053Ax* 0.03
Figure 3(c) 0.2474+0.0141Ap%+1.0697Ap° 0.2486+0.4224Ax%+0.0789Ax* 0.49
Figure 3(d) 8.5277+39.5595Ap*+4.9401Ap> 8.5574-36.7653Ax%+278.0169Ax* 0.35
Figure 3(e)  —1.6129-8.2600Ap%+12.3530Ap%  —1.6132+0.8648Ax%+178.7182Ax* 0.02
Figure 3(f) 0.8389+14.1446Ap*+32.6213Ap? 0.8384—-3.9945Ax%+769.7281 Ax* 0.06

oretical and simulation data with similar dependencies, be it
with a cubic or a quartic third term, gives very similar values
for the constant term: the value at infinite resolution.

C. Drift near stepwise inhomogeneity

The theoretical predictions for stepwise inhomogeneity,
Egs. (45) and (47) and disk-shaped inhomogeneity consid-
ered next, are more complicated than the simple forms of
drift considered up to this point. Because now the medium is
inhomogeneous in the presence of the perturbation, the ve-
locity depends on the instant position of the spiral center and
as a result the spiral trajectories can be quite complex. Quali-
tative comparisons between theory and simulations can be
made in the general case, but for detailed quantitative com-
parison we focus on the cases where the theory predicts
simple attractors, e.g., a straightforward drift along the step
for the stepwise inhomogeneity.

Equation (37) gives a system of two first-order autono-
mous differential equations for X=Re(R) and Y=Im(R),

X=eF (X-x,),
(50)
Y= eF (X -x,),

where

2 o0
Fx(d)=l f f Re(wV(p, O)e \r? — d? (dp) (db),
mTJo Jld|

(51)

2 oo
Fy(ar)=l J f Im(w"(p, O)e*)\p? - d* (dp) (d6).
TJo Jld|

(52)

The right-hand sides of system, Egs. (50), depend only on X
but not on Y, that is, the system is symmetric with respect to
translations along the Y axis. For this reason, the roots
d.:F[(d,)=0 provide invariant straight lines along the Y
axis. An invariant line {(x,+d,,Y)|Y € R} will be stable if
€F(d.) <0 and unstable if €F(d.)>0. Note that the stabil-
ity of invariant lines reverses with a change of sign of € and
also that F,(d) is an even function. Hence, if €#0 and d,
# 0 then either {x,+d.,Y} or {x,—d.,Y} will be an attracting
invariant set.

Figures 4(a)-4(f) show the theoretical predictions for the
drift forces, i.e., velocity components per unit perturbation
magnitude €, F (d) and F(d), on the distance d=X-x, from
the instant spiral center to the step. This is done for both
FitzHugh-Nagumo and Barkley models, for steps in each of
the three parameters in these models. The roots of F,(d) are
specially indicated. One can see from the given six ex-
amples, that existence of roots of F,() is quite a typical,
albeit not a universal, event.

The qualitative predictions of the theory about a stable
invariant line are illustrated by Fig. 4(g) where we present
results of numerical integration of the ordinary differential
equation (ODE) system, Egs. (50), and the results of direct
numerical simulation of the full system. In the example
shown, the positive root d,.=~2.644 of F, is stable and the
negative root —d, is unstable. Hence, the theoretical predic-
tion for different initial conditions are: for X(0) > x,—d, and
not too big, the spiral wave will approach the line X=x;
+d, and drift vertically along it with the speed eF,(d.)
~(.8468¢; for X(0) <x,—d., the spiral wave will drift to the
left with ever decreasing speed, until its drift is no longer
detectable; for big |X(0)|, the drift will not be detectable from
the outset.

As seen in Fig. 4(g) this is indeed what is observed, both
for the theoretical and for the DNS trajectories, and the vi-
sual similarity between theoretical and DNS trajectories is an
illustration of the validity of the qualitative predictions of the
theory.

Since the generic drift is nonstationary, a quantitative
comparison for typical trajectories is difficult. However, the
drift along the stable manifold X=x,+d, is stationary with
vertical velocity given by €F\(d.) so a comparison is easily
made using the same methods as in the case of “simple”
drifts considered in the previous subsections. The results are
illustrated in Fig. 4(h). As expected, we see good agreement
between the theory and the DNS for small e.

The phenomenological predictions are different for the
case when F,(d) has no roots, or when its roots are so large
that |F,(d,)| is so small that the drift cannot be detected in
simulations. In such cases, the theoretical predictions for dif-
ferent initial conditions are: for |X(0)| not too large, the spiral
wave will move with varying vertical velocity component
but always in the same horizontal direction [to the right if
€F(0) > 0], eventually with ever decreasing speed, until its
drift is no longer detectable; for [X(0)| too large, the drift will
not be detectable from the outset.

This prediction is confirmed by simulations, as illustrated
in Fig. 4(i), where we have chosen the case of inhomogene-

066202-10



COMPUTATION OF THE DRIFT VELOCITY OF SPIRAL...

ity in parameter ¢ in Barkley model, for which the smallest
positive root is d, = 2.867, which gives Fy(d*) ~(.1632. This
value should be compared to F,(0)~48.42 and F,(0)
~119.4. Note also that to get the drift velocities, F, and F,
should be multiplied by e which should be much smaller
than ¢(y=0.025. So when the spiral is further than |X—x
~2 from the step, the drift is very slow and hardly notice-
able. Even though according to the theory there should be
stable vertical drift around X=x,+d,, it is too slow to be
observed in normal simulations.

D. Drift near disk-shape localized inhomogeneity

The theoretical predictions for the disk-shaped inhomoge-
neity [Egs. (45) and (48)], are more complicated but also
more interesting. The theoretical spiral motion Eq. (41) has a
rotational, rather than the translational symmetry of the step-
wise inhomogeneity. In polar coordinates (I, ;) centered at
the center of the inhomogeneity, so that R=x,+iy,+le'", Eq.
(41) can be rewritten in the form

l=-€F.(]),
(53)
1190 = €Fa(l),

where F, and F, are the radial and azimuthal components of
the drift force, given by

27 (4R, )
F,= J f Re(w!V(p, 6)e™)
0/

I_Rin‘
2 P_RE\?
><\/ 1—(Q pdpd®, (54)
2lp
2w (R, .
Fa=f J Im(w'V(p, §)e"%)
0 ‘I_Rin|
2 2 2\2
+[I°-R;
X \/1 - (p—) pdpd. (55)
2lp

The minus sign in the first equation of Egs. (53) comes from
the fact that in Eq. (41), the origin was placed at the instant
rotation center of the spiral, and the position of inhomoge-
neity is determined with respect to it, where as now we do
the other way round: the origin is at the center of inhomoge-
neity and the current position of the spiral rotation center is
determined with respect to it.

In Egs. (53), the axial symmetry is manifested by the fact
that the right-hand sides of Egs. (53) depend on [ but not on
Uy, and the equation for / is a closed one. Hence roots [, of
F,(I,)=0 represent invariant sets, which in this case are cir-
cular orbits. The movement along those orbits will have a
linear speed €F,(l,) and angular speed Q) =€F,(l,)/l.. The
stability of these orbits is determined by the sign of eF/(/.):
stable for positive and unstable for negative. Unlike the case
of the stepwise inhomogeneity, now we do not have any
mirror symmetries, as only positive / make sense, therefore
for a given root [, a stable circular orbit is guaranteed only
for one sign of € but not the other.

PHYSICAL REVIEW E 81, 066202 (2010)

Figures 5(a)-5(f) show the theoretical predictions for the
drift forces F,(I) and F,(I). This is done for both FitzZHugh-
Nagumo and Barkley models, for inhomogeneities in each of
the three parameters in these models. The roots of F,(I) are
specially indicated. One can see from the six given examples
that existence of roots of F,() is rather common and often
there is more than one root, /;, such that 0=1,</, <[, <....

The qualitative predictions of the theory are illustrated in
Figs. 5(h) and 5(i) where we present results of numerical
integration of the ODE system, Egs. (53), and the results of
direct numerical simulations of the full system. In the ex-
ample shown in Fig. 5(h), the predictions are given by Fig.
5(e), which say that the smallest orbit has radius [, = 3.724,
with the orbital speed F,(I;)=0.003938, which is rather
small compared to max(|F,(l)])=3.458 and max(|F,()|)
~8.534 and hardly observable in numerical simulations.
Hence, in this case, the radial component of the drift speed
F.(]) is effectively constant sign, and for negative €, one
should observe repulsion of the spiral wave from the inho-
mogeneity until it is sufficiently far from it, /~3, to stop
feeling it, and for positive €, the spiral wave will be attracted
toward the center of inhomogeneity from any initial position
[=3. This is indeed what is observed in simulations shown
in Fig. 5(h) where the case of €>0 is shown, and the center
of the inhomogeneity, /=1, is attracting for the spiral wave.

In the example shown in Fig. 5(i), the inhomogeneity cen-
ter [o=0 is repelling. Instead, the first orbit of radius [,
~1.7722 is attracting. The perturbation amplitude €=0.3 in
this case is quite large and comparable with the value 7,
=0.5 of the perturbed parameter itself. We see that although
the numerical correspondence between theory and DNS in
this case is not very good (note the distances between the
open circles and between the filled circles), the qualitative
prediction of orbital movement remains impeccable. As ex-
pected, the numerical correspondence becomes good for
smaller values of e, see Fig. 5(g).

V. DISCUSSION

We have considered symmetry-breaking perturbations of
three different kinds: time-translation symmetry breaking
that is homogeneous in space and periodic in time (“resonant
drift”); rotational symmetry breaking through differential ad-
vective terms (“electrophoretic drift”); and spatial translation
symmetry breaking through space-dependent inhomogene-
ities (“inhomogeneity induced drift”). The latter type in-
cludes three subcases: a linear parametric gradient, a step-
wise parameter between two half- planes, and a parameter
inhomogeneity localized within a disk.

A. Quantitative: drift velocity

We have demonstrated that asymptotic theory gives accu-
rate predictions for spiral drift: in some cases the discrepancy
between the theory and the direct simulations was as low as
0.02%. The discrepancy is affected by the numerical discreti-
zation parameters, both for the direct simulations and for
response function computations, and by the magnitude of the
perturbation.
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FIG. 5. (Color online) Drift around disk-shape inhomogeneity Eqs. (45) and (48) of radius R;,=0.56. First row: theoretical predictions for
the drift speed components as functions of the distance to the disk center, /=((X—x,)>+(Y—y,)?)"?, for inhomogeneity in parameters (a) «,
(b) B, and (c) v, in the FitzHugh-Nagumo model. Second row: same for Barkley model, steps in parameters (d) a, (e) b and (f) c¢. Third row:
comparison of theoretical predictions with DNS. (g) Angular speed of the established orbital movement around the inhomogeneity site as on
panel (i), as a function of inhomogeneity strength. (h) A phase portrait of the drift in the Barkley model in theory, Eq. (41), and DNS, Egs.
(4), (45), and (48), with disk-shape inhomogeneity (green) of parameter b [corresponds to panel ()], at e=1072. Shown are the theoretical
vector field (black arrows; the lengths are nonlinearly scaled for visualization), a selection of theoretical trajectories (red filled circles) and
a selection of numerical trajectories (blue open circles) of the centers of the spiral wave. Dash-dotted circles correspond to the roots of the
theoretical radial component of the drift force. (i) A phase portrait of the drift in the FitzHugh-Nagumo model with inhomogeneity of
parameter 7y [corresponds to panel (c)], e=0.3. Notation is the same as in panel (h).
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B. Qualitative: attachment and orbiting

In the more complicated cases of spatial inhomogeneity,
the response functions allow us to predict qualitatively dif-
ferent regimes of spiral motion, which we have been able to
confirm by direct simulations. In the presence of a stepwise
inhomogeneity, the center of spiral wave rotation may either
be attracted to one side of the step where it gradually
“freezes,” or it may get attached to the step and drift along it
with the constant velocity. In the latter case, the speed of the
drift is proportional to the inhomogeneity strength, whereas
the distance at which the attachment happens, does not de-
pend on the inhomogeneity strength at leading order. If the
sign of inhomogeneity is inverted, the attachment occurs on
the opposite side of the step and proceeds in the opposite
direction.

In disk-shape inhomogeneity, the situation is somewhat
similar but more interesting. The spiral wave may be at-
tracted toward the center of the disk, or repelled from it. It
may also be attracted to or repelled from one or more circu-
lar orbits. The drift velocity along the orbits is proportional
to the strength of the inhomogeneity, whereas the radii of
orbits do not depend on it at leading order. The repulsion
changes to attraction and vice versa, with the change of the
sign of the inhomogeneity.

C. Prevalence of attachment and orbiting

The possibilities of attachment to the step inhomogeneity
and orbital movement for the disk-shape inhomogeneity are
both related to the change of sign of the integrals of the
translational response functions, which in turn are possible
due to changes of sign of the components of those response
functions. Not surprisingly, there is a certain correlation be-
tween these phenomena. The graphs Figs. 5(a)-5(f) may be
viewed as deformed versions of the corresponding graphs
Figs. 4(a)-4(f). Respectively, positive roots of F,(d) in Figs.
4(a) and 4(d)—4(f) have corresponding roots of F,(/) in Figs.
5(a) and 5(d)-5(f). However, the integrals in Egs. (51) and
(54) are only similar but not identical, and the above corre-
spondence between the roots is not absolute: the roots of
F.(l) in Figs. 5(b) and 5(c) and the smaller roots of this
function in Figs. 5(a) and 5(f) have no correspondences in
Fig. 4. Overall, based on results considered, orbital motion
around a localized inhomogeneity seems to be more preva-
lent than attachment to a stepwise inhomogeneity. Moreover,
the typical situation seems to be that there are multiple sta-
tionary orbits around a disk inhomogeneity. We have already
discussed this situation in our recent short communication
[52] where we have also illustrated how for the initial con-
ditions between two stationary orbits, the spiral wave
launched into one orbit or the other depending on the sign of
the inhomogeneity.

The possibility of orbital drift, related to a change of sign
of an equivalent to the function F,(l), has been discussed at a
speculative level in [53]. The sign change of translational
response functions was observed in oscillatory media de-
scribed by CGLE [54,55]. The examples we consider here
suggest that this theoretical possibility is in fact quite often
realized in excitable media, and even multiple orbits are
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quite typical. Theoretical reasons for this prevalence are not
clear at present. As stated in [52], the prevalence of multiple
orbits may be understood in terms of asymptotic theories
involving further small parameters. So, the version of kine-
matic theory of spiral waves suggested in [56] produces an
equivalent of response functions, which is not only quickly
decaying, but also periodically changing sign at large radii,
with an asymptotic period equal to the quarter of the
asymptotic wavelength of the spiral wave. Other variants of
the kinematic theory, e.g., [57,58] did not reveal any such
features on a theoretical level. However, numerical simula-
tions of kinematic equations presented in [57] showed at-
tachment of spiral waves to nonflux boundaries, which in a
sense is similar to attachment to stepwise inhomogeneity. On
a phenomenogical level, such attachment is, of course well
known since the earliest simulations of excitable media, e.g.,
[38].

D. Orbiting drift vs other spiral wave dynamics

Properties of the orbital drift resemble properties of reso-
nant drift when the stimulation frequency is not fixed as in
the examples above, but is controlled by feed-back [59]. In
that case, the dynamics of the spiral wave is controlled by a
closed autonomous system of two differential equations for
the instant center of rotation of the spiral, like Egs. (50) or
Eqgs. (53). In particular, depending on the detail of the feed-
back, this planar system may have limit cycle attractors,
dubbed “resonant attractors” in [60], which may have circu-
lar shape if the system with the feedback has an axial sym-
metry. Apart from this being a completely different type of
drift, we also comment that the second order ODE system is
an approximation subject to the assumption that the feedback
is instant, and in the situations when the delay in the feed-
back is significant due to the system size and large distance
between spiral core and feedback electrode, the behavior be-
comes more complicated.

For some combination of parameters, the trajectory of an
orbiting spiral may also resemble meandering and may be
taken for this in simulations or experiments. So, it is possible
that orbital movement was actually observed by Zou et al.
([61], p.802) where they reported spiral “meandering”
around a “partially excitable defect;” although it is difficult
to be certain as no details are given. The difference is that
spiral meandering, in the proper sense, is due to internal
instabilities of a spiral wave, whereas orbital motion is due to
inhomogeneity. E.g. in orbiting, the “meandering pattern”
determined by )/ w will change depending on the inhomo-
geneity strength.

The phenomenon of “pinning” of spiral waves to local-
ized inhomogeneities has important practical implications for
the problem of low voltage defibrillation [62—65]. In terms of
spiral wave dynamics this is usually understood as attraction
of the spiral center toward the inhomogeneity locus. Practi-
cally interesting cases of pinning are usually associated with
inexcitable obstacles, which are not small perturbations and
therefore not amenable to the asymptotic theory considered
in this study. However, the possibility of orbital motion
around a weak inhomogeneity suggests that a similar phe-
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nomenon may be observed in strong inhomogeneities as
well. This offers an unexpected aspect on the problem of
pinning. Instead of a simplistic “binary” viewpoint, that a
local inhomogeneity can either be attractive, which is the
case of pinning, or repelling, which is the case of unpinning,
there is actually a third possibility, which can in fact be more
prevalent than the first two, namely, that at some initial con-
ditions the spiral may orbit around one of a number of cir-
cular orbits, regardless of whether or not it is attracted to the
center, which can be considered just as one of the orbits that
happens to have radius zero. That is, there is more than one
way that a spiral may be bound to inhomogeneities.

VI. CONCLUSION

We have demonstrated that the asymptotic theory of spiral
wave drift in response to small perturbations, presented in
[36,45], works well for excitable media, described by
FitzZHugh-Nagumo and Barkley kinetics models and gives
accurate quantitative prediction of the drift for a wide selec-
tion of perturbations. The key objects of the asymptotic
theory are the response functions, i.e., the critical eigenfunc-
tions of the adjoint linearized operator. The RFs have been
found to be localized in most models where they have been
calculated; however there are counterexamples demonstrat-
ing that surprises are possible [66]. Physical intuition tells
that for the response function to be localized, the spiral wave

PHYSICAL REVIEW E 81, 066202 (2010)

should be indifferent to distant perturbations, which will be
the case if the core of the spiral is a “source” rather than a
“sink” in the sense of the flow of causality, for example as
defined by the group velocity. Indeed, this localization prop-
erty has been proven for one-dimensional analogs of spiral
waves [67] and there is hope that this result can be extended
to spiral and scroll waves.

The effective spatial localization of the RFs on the math-
ematical level guarantees convergence of the integrals in-
volved in asymptotic theory, and on the physical level ex-
plains why wave-like objects such as spiral and scroll waves,
while stretching to infinity and synchronizing the whole me-
dium, behave respectively as particlelike and stringlike local-
ized objects. This macroscopic dissipative wave-particle du-
ality of the spiral waves has been previously demonstrated
for the complex Ginzburg-Landau equation [45] which is the
archetypical oscillatory media model. Here, we confirmed it
for the most popular excitable media models important for
many applications.
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