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Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere
interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the
observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible
explanation has been provided neither for this one nor for other properties of the observed distributions.
Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show
that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x"1"% exp[(1-a)/x],
which is an emergent property of a certain group of multiplicative stochastic systems, described by the
generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a
simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives
consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.
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I. INTRODUCTION

Vast areas of the polar oceans are permanently or season-
ally covered with ice pack—a mixture of ice floes with vari-
ous sizes and shapes. Because of limited availability of data
concerning floe-size distribution (FSD), this kind of informa-
tion is typically not taken into account in studies of physical
and biochemical processes in ice-covered seas—even though
the size of ice floes affects many aspects of those processes.
FSD influences mechanical strength of the ice and thus its
response to wind and wave forcing. Due to drag-form ef-
fects, the velocity of smaller floes is usually smaller than that
of larger floes, which modifies the atmosphere-ocean mo-
mentum transfer. The lateral-melting rate depends on the to-
tal perimeter of ice floes occupying a given area. For power-
law FSDs, the value of the total perimeter is very sensitive to
the exponent of the distribution [1]. Meanwhile, in most nu-
merical sea-ice models even that kind of information is not
available and very crude lateral-melting approximations are
used [2]. FSD influences also the ocean-atmosphere heat flux
and the response of the ice cover to the thermal forcing. For
example, radiant and turbulent heat transfer in thin Antarctic
ice depends on the ice concentration and on the width of
leads between ice floes [3]. Heat-flux estimates based on ice
concentration alone tend to be underestimated. On a larger
scale, the structure of the ice pack may influence processes
of convection and deep-water formation in polar regions. Fi-
nally, FSD affects biological processes in the ice, e.g., by
modifying the amount of light and oxygen available to or-
ganisms inhabiting the surface ocean layers and the ice itself.
In particular, most algae occupy the ice surface within a
given distance (a few meters) from the ice edge [4].

One of the first well-documented studies concerning the
ice-floe size distribution was performed by Rothrock and
Thorndike [5], who analyzed satellite (Landsat) images and
aerial photographs of the Arctic-ocean ice pack. The reso-
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lution and spatial coverage of their data permitted to identify
floes with diameters ranging from 100 m to about 30 km.
Within that range, the calculated floe sizes could be well
described with a power-law distribution P(d) ~d!, with
an exponent « ranging from 1.7 to 2.5 (Table I). Similarly, a
good power-law fit (with @=2.16) was obtained for an ice-
floe distribution in the Sea of Okhotsk [6]. A similar study
based on a photograph of the Antarctic ocean suggested two
values of « (obtained with two different methods), 1.36 and
1.56, for floes smaller than 100 m [7]. A number of studies
suggested that the exponent of the observed FSDs depends
on the distance from the ice edge, i.e., « is largest in the
marginal ice zone due to the action of waves and winds and
it decreases toward the inner regions of the ice pack, where
ice concentration exceeds 90% and no waves can penetrate.
For example, an analysis of satellite pour 1’observation de la
terre (SPOT) images of an ice pack surrounding the Svalbard
archipelago produced « increasing from 1.0 in the internal
ice zone to 1.8 close to the ice edge [8]. A similar FSD
feature (with slightly higher values of a) was observed in the
Sea of Okhotsk [9].

At a laboratory scale, power-law distributions of ice
pieces resulting from fragmentation of larger ice blocks were
observed as well (e.g., [10-12]). In many of those studies,
fragmentation of ice is analyzed with tools of fractal theory,
suggesting that physical processes responsible for ice frag-
mentation are scale invariant. In that framework, the expo-
nent « of the observed distributions is interpreted as a fractal
dimension of these distributions. Observed values of « at a
laboratory scale are generally higher than those observed at a
geophysical scale [11].

Although a relatively large number of studies concerning
FSD are available, no satisfactory explanation exists neither
for the differences between the exponents of the observed
FSDs nor for deviations from the power-law distribution ex-
hibited by various data sets. The deviations are often attrib-
uted to limited spatial resolution and size of analyzed im-
ages. Finite-size effects typically manifest themselves in
truncated power-law distributions. In short, the “curvature”
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TABLE L Observed  power-law  sea-ice  floe-size
distributions.
Study o Comments
[5] 1.7-2.5 Ice floes larger than 100 m
[6] 2.16 Ice floes larger than 100 m
[8] 1.0-1.8 1.0: internal ice zone
1.8: marginal ice zone
[7] 1.36, 1.56 Values obtained with two methods
[13] 1.8-2.9
[14] 2.1-25
[15] 25
[9] 1.5-2.1 1.5: internal ice zone
2.1: marginal ice zone
[1] 1.15-1.87 a larger for larger floes
[16] 1.83-2.36 Floe width 20-50 m
0.91-0.94 Floe width 2-20 m

of FSDs in log-log plots [1,5,8] is often interpreted as a
feature attributable to the data collection and analysis meth-
ods and not to a really existing property of the ice pack itself.
Only recently, the existence of (a) physical process(es) re-
sponsible for the change in « between small and large floes
has been suggested by Toyota and colleagues [1]. In their
study, they combined ship-borne, helicopter-borne, and
Landsat images to cover a broad range of scales from below
I m to over 1 km. Hence, the change in slope of the FSD in
their data can be hardly attributed to insufficient resolution of
the images used to obtain this FSD. Similarly, Steer and col-
leagues [16] photographed the ice pack in the western Wed-
dell Sea as part of the Ice Station Polarstern (ISPOL) experi-
ment [17]. They also observed the change in slope of the
FSD. However, contrary to how the above authors interpret
their results [1,16], in both cases the change in slope of the
FSD seems rather gradual than abrupt. Instead of a combi-
nation of two power laws “glued together” at a highly arbi-
trarily chosen floe diameter, another type of distribution
would be desirable. It should reflect the observed gradually
increasing deviation from a power-law distribution for
decreasing floe diameter.

Here, I postulate that the distribution of scaled ice-floe
diameters is well characterized with a function:

P(x)=x"""%exp[(1 — a)/x]. (1)

Suitability of Eq. (1) for describing the observed FSDs is
demonstrated for the ISPOL data of [16] in Sec. II. In Sec.
II B, the resulting floe-area distribution (FAD) is analyzed.
Properties of this FSD are discussed in Sec. II C. Finally, in
view of the fact that distribution (1) is an emergent property
of a GLV equation, in Sec. III basics of agent-based models,
properties of GLV models and possibilities of formulating a
GLV model for floe—floe interactions are discussed.
Distribution (1) will be further called a GLV distribution.
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FIG. 1. Distribution of the scaled floe diameters x; s during
ISPOL flights 5 and 10.

II. GLV FIT TO THE ISPOL DATA

A. Floe-size distribution

The ISPOL experiment was an interdisciplinary study of
physical and biogeochemical ocean-ice-atmosphere interac-
tions in the western Weddell Sea ([17] and references
therein). As part of the experiment, Steer and colleagues [16]
used aerial photographs of the ice cover (with resolution of
~0.4 m), collected during seven flights, for an analysis of
the temporal changes of FSD and FAD during the melting
season in the western Weddell Sea. Two of the flights, flights
5 and 10, were reported in the paper and are analyzed here.

Let us consider a given sea area covered with ice floes.
The floes have different effective diameters, defined as
square roots of their surface areas. The average diameter of

these floes equals d. Due to the limited resolution of the
images and/or finite-area effects and/or limitations of the
technique used to identify floe boundaries in the images,
only a subset of N floes can be analyzed. We denote effective
diameters of these floes with d; (i=1,...,N) and their aver-

age with d,,. For the scaled floe diameters x; we have

d, d; d d,
= _l : obs i ‘L_bszxi,obsc_l' (2)

If x; are distributed according to Eq. (1), then for the “ob-
served” scaled floe diameters x; yp,:

Pxgps) = Exgp; ™ exple(1 = a)lxgp]. (3)

The ratio of the real to the observed average diameters c is

not known a priori and must be estimated together with «
and the scaling constant ¢ during the fitting process.

The results of the least-squares fit for flights 5 and 10 are

shown in Fig. 1 and in Table II. For both flights ¢>1

(d>d,), which is not surprising as only floes that entirely
lied within the images were taken into account, i.e., the larg-
est floes were omitted in the analysis. The values of « for
both flights fall in between the two values obtained with a
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TABLE II. Results of the least-squares fit of the GLV distribution P(x; o) to the ISPOL flights 5 and 10

data.

N s o c Qo RMSE 2
Flight 5 79357 434 1477+0.009  1.562+0.016 1745  0.84X10™*  1.0000
Flight 10 324044 394  1.509+0.013  1.702+0.023  1.866  1.31X10™*  0.9999

power-law fit [16]. The fitted distributions pass directly
through the data points for x <5, but considering the increas-
ing scatter of the data with increasing x, the fit can be re-
garded as satisfactory in the whole data range, especially if
one considers that the larger the floe diameter, the lower the
probability of observing it within an image, so that the tails
of the observed FSDs tend to be underestimated.

B. Floe-area distribution

The FAD is directly related to the distribution of effective
floe diameters, which by definition are proportional to the
square root of floe areas. Steer and colleagues [16] propose a
negative-exponential fit to the observed FAD. But how this
kind of FAD could result from a power-law distribution of
floe diameters? The two function types proposed for FSD
and FAD are not consistent with each other. Here, given the
observed floe-size distribution [Eq. (3)], the corresponding
FAD is

Pa(-xobs) = 5)6(1)1350( eXp[C(l - a)/-xobs]- (4)

Figure 2 shows the results of the least-squares fit of P,(x) to
the observed FADs for flights 5 and 10. The scatter of data is
higher than in the case of the FSD. Nevertheless, most data
points, including those representing the largest floes, lie
within the 95% confidence interval from the fitted lines. Im-
portantly, r>>0.9 for floes with diameters smaller than
~40 m (x,,,<<10) and for larger floes the calculated distri-

1

10 [

bution passes through the middle of the data “cloud.” The
negative-exponential fit is definitely inadequate for the large-
floe part of the observed distributions [16]. Interestingly,
maximum of P, occurs for x=1 independently on «, i.e., the
average-size floes are not the most frequently occurring ones,
but occupy the largest fraction of the total ice-covered area.

C. Properties of the GLV distribution

Contrary to most distribution functions proposed for
FSDs, Eq. (1) has a maximum at

Xmax = (a - 1)/(a + 1) oI Xpmax,obs = CXmax- (5)

Thus, Xax.0bs=0.30 (dinax=1.30 m) and xpax ops=0.34 (dax
=1.34 m) for flights 5 and 10, respectively (Fig. 1). Unfor-
tunately, in the case of the ISPOL data, maxima of the fitted
distributions lie outside of the observed range of floe sizes.
But, remarkably, the observed FADs do have maxima (Fig.
2), which they would not have if the corresponding FSDs
were of the power-law type with a>1. The maxima given
by the GLV distributions correspond well with the observed
ones (Fig. 2).

Does a physical mechanism exist that favors a dominating
floe size? It is known that when smaller floes break, the
characteristic size of pieces depends on the length of elastic
waves in the ice [18]. In typical conditions, this size varies
between 15-30 m for ice thickness 1-3 m. These values are
much larger than d,,,, resulting from the GLV fit to the

Area density

FIG. 2. Floe-area distribution of the scaled
floe diameters x; o, during ISPOL flights 5 and
10. For legend, see Fig. 1.
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ISPOL data. Also, no maxima occur in this floe-size range in
the observed data. Hence, in the analyzed case breaking due
to elastic waves cannot be responsible for the properties of
the FSD. Actually, the obtained d,,,, is comparable to the
thickness of first-year ice floes in the study area [19] and, as
it is hard to imagine floes with vertical dimension larger than
horizontal dimension, maybe this simple explanation is suf-
ficient to explain that the FSD decreases rapidly for x corre-
sponding to floes with size comparable to and smaller than
the ice thickness.

Another striking feature of the GLV distribution is that the
same parameter a occurs in its exponential and power-law
parts. Thus, it links the distribution of the lowest values of x
(described by the exponential part) with the distribution of
the largest values of x (where the power-law part plays a
dominating role). This feature is particularly interesting in
the context of the GLV model discussed further.

III. DISCUSSION AND CONCLUSIONS
A. Generalized Lotka-Volterra model

With the above-described FSD properties in mind, I turn
to an agent-based approach in order to investigate the possi-
bility of developing a simple model of interactions among a
population of ice floes. The term “population” is borrowed
from ecology and population-dynamics research, in which—
similarly as in economy and social sciences—agent-based
modeling (ABM) (equivalently: individual-based modeling)
has recently become a widely used and recognized tool. Gen-
erally, ABMs are used to simulate the dynamics of popula-
tions of a large number of similar elements (agents), inter-
acting at the microscopic individual level. Collective
behavior of agents results in emergent properties of the ana-
lyzed population, i.e., macroscopic properties that cannot be
directly deduced from individual-level laws. The ABM con-
sidered here is based on a GLV model, applicable for popu-
lations of autocatalytic, competing elements. GLV is an ex-
tension of the Lotka-Volterra model (e.g., [20]) and has been
used in a number of studies in the context of economy and
population dynamics [21-24].

Let d; (i=1,...,N) denote the value of a certain property
of the ith of N analyzed agents. According to GLV, the
change in d;s between time ¢ and ¢+ 7 is given by

di(t+ 7 =[1+N\,(1) — c(d,1)]d,(1) + da(d,1), (6)

d(t+D=d(0), j=1,...N, j#i. (7)

The update mechanism is asynchronous and i is chosen
randomly at each time step 7 (which must be much smaller
than the rate of change in the forcing). In Eq. (6), d
=(d,,...,dy), \{(t) denotes a random variable drawn from a
prescribed distribution TI(\,#); \,(¢) is a sum of a constant
(or slowly varying) and a random part: \,(£)=(\)+ 7,(¢), with
(m=0 and (7’)=D (where (-) denotes time averaging).
Functions ¢ and ¢ are slowly varying, positive, and d is
symmetrical with respect to the first N arguments.

In most GLV models, d(d,7)=a(r)d. In that case, if we
define d=3% d;/N and scaled variables x;=d;/d, then [24]
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xi(t+ 1) =[1+ 90 () + a®)d[1 - x,(1)], (8)

which is equivalent to a discrete-time Langevin equation
known from statistical physics. The distribution of x; is given
by Eq. (1) with

a=1+2a/D, 9

i.e., @ does not depend neither on ¢ nor on \ and therefore
remains relatively stable even in rapidly changing environ-

ment conditions. The average d can also vary without affect-
ing a. GLV simulations result in populations exhibiting
Lévy-stable fluctuations around a (slowly varying) equilib-
rium value [25,26]. It is an example of a so-called spontane-
ous scaling emergence in stochastic systems [27,28].

B. Floe-floe interactions from a GLV perspective

Is the GLV model suitable for describing interactions be-
tween ice floes? In other words, is it possible to assign pro-
cesses influencing FSD to the three basic terms in Eq. (6)?
Formulating precise expressions for A, @, and ¢ is beyond the
scope of this paper, but it is tempting to make some prelimi-
nary considerations on that matter.

Typically, the ice pack consists of thick multiyear ice floes
and thinner first-year ice occupying the cracks and leads be-
tween them (e.g., during ISPOL, the ice thickness distribu-
tion had two distinct peaks representing those two ice types
[19]). In the model discussed here, it seems reasonable to
define the agents as thick floes surrounded by open water and
other ice types that may influence the behavior and interac-
tions between the proper floes but are not modeled
themselves.

Let us consider a population of N ice floes with surface
areas sp,...,Sy and effective diameters di:sim. The (vari-
able) sea-surface area available to the floes equals S and the
ice concentration in § is A=S‘12§\;1di2. Obviously, A=1,
which poses a limitation on the growth of the ice floes and
(in the ABM terminology) introduces competition for limited
resources (the available surface area). Preliminary simula-
tions with a GLV model showed that if c(d,...,dy,?)
=A(r), the modeled d;s can be effectively kept within the
desired limit. Depending on the external conditions (wind,
tides, waves, and ocean-ice-atmosphere heat flux) and on the
concentration and properties of the ice floes themselves, they
may break apart, freeze together, collide with neighbors,
melt, and so on. At least for some of these processes, math-
ematical formulations exist that could be assigned to the
terms in Eq. (6). For example, nonuniform motion of neigh-
boring floes leads to compressive, tensile, and shear stresses
in the ice, which are proportional to the velocity differences
at both ends of a floe, and thus proportional to its size
[29-31]. Thus, breaking probability is larger for larger floes
and it could be represented by the \,(¢)d,(¢) term.

C. Conclusions

Generally, data allowing us to estimate temporal changes
of FSD in relation to external forcing would be necessary to
verify the above ideas. Although the possibility of formulat-
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ing a GLV-based floe-floe interaction model remains open,
distribution (1) fits remarkably well to FSDs observed during
ISPOL and can be used as a function representing these
FSDs.

Even without a working GLV model, a number of useful
parameters characterizing the ice pack can be estimated
based on the proposed distribution. For example, given ice
concentration A, sea-surface area S (e.g., a grid cell of a
numerical model), and realistic estimates of the mean effec-

tive floe diameter d and the distribution parameter «, the
total perimeter P of the (circular) floes in S equals P
=Py(a)AS/d with

x “expl(1 - a)/x]dx
0

fxxl_“ expl(1 — a)/x]dx

0

Py(a) =2\m (10)

Function P, increases with increasing « and it is finite for
a>1. Whereas power-law distributions lead to problems
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with infinite surface areas and total floe perimeters [5], GLV
gives physically feasible results in this respect, which pro-
vides another argument for its usage.

The estimate [Eq. (10)] could be further improved if «
were calculated from the external forcing, as in Eq. (8). Nev-
ertheless, P and other FSD-dependent parameters could be
used in numerical sea-ice models, e.g., in improved lateral
melting algorithms.
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