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We use analytical techniques based on an expansion in the inverse system size to study the stochastic
evolutionary dynamics of finite populations of players interacting in a repeated prisoner’s dilemma game. We
show that a mechanism of amplification of demographic noise can give rise to coherent oscillations in param-
eter regimes where deterministic descriptions converge to fixed points with complex eigenvalues. These qua-
sicycles between cooperation and defection have previously been observed in computer simulations; here we
provide a systematic and comprehensive analytical characterization of their properties. We are able to predict
their power spectra as a function of the mutation rate and other model parameters and to compare the relative
magnitude of the cycles induced by different types of underlying microscopic dynamics. We also extend our
analysis to the iterated prisoner’s dilemma game with a win-stay lose-shift strategy, appropriate in situations
where players are subject to errors of the trembling-hand type.
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I. INTRODUCTION

Traditionally, modelers in biology and related disciplines
use deterministic ordinary or partial differential equations to
capture the quantitative behavior of dynamical systems in
those fields. Such an approach is valid and accurate only if
stochastic effects induced by external or intrinsic fluctuations
can be neglected. External noise might result from environ-
mental factors or as an attempt to include the effects of nu-
merous but weak external effects. Intrinsic fluctuations arise
from the dynamics of the system itself. One of the most
common sources of such stochasticity in biology is discreti-
zation noise in systems composed of a finite number of in-
teracting individuals. While deterministic descriptions can be
derived and shown to be exact in the limit of infinite system
size, finite systems retain an intrinsic randomness, sometimes
referred to as demographic noise �1�. Such fluctuations can
invalidate conclusions based on the analysis of the determin-
istic dynamics, turning deterministic fixed points into sto-
chastic quasicycles, inducing helical motion about limit
cycles �2�, or giving rise to Turing patterns induced by in-
trinsic noise �3,4�. The existence of stochastic quasicycles
has been known for a number of decades in the context of
predator-prey-like systems, and methods have been devised
to distinguish them from noisy limit cycles �5�.

Only very recently have systematic methods, based on a
system-size expansion of the master equation describing the
microscopic stochastic processes, been devised to study them
analytically �6�. These methods use an expansion in the in-
verse system size �7� and are now being applied to a number
of fields in which quasicycles have been reported, including
epidemiology �8–10�, biochemical reactions �11�, gene regu-
lation �12�, and more recently learning algorithms of inter-
acting agents �13�. The purpose of the present work is to
apply these ideas to problems in evolutionary game theory

and to provide an analytical characterization of stochastic
quasicycles found in computer simulations of populations of
interacting players �14�.

Evolutionary dynamics in this context is a mathematical
framework describing coevolving populations. It is the main
tool kit used in attempts to reconcile the evolution of coop-
eration with Darwinian natural selection—a problem which
was listed as one of the 25 most pressing scientific chal-
lenges in Science magazine in 2005 �15�. The problem of
how mutual cooperation is sustained in a population subject
to selection pressure favoring selfish behavior is most com-
monly modeled using the prisoner’s dilemma �PD� game
�16,17�. The PD is a classic game-theory problem in which
two players have to simultaneously choose whether to coop-
erate or to defect. Although the payoff for mutual coopera-
tion is higher than that for mutual defection, the payoff for
defecting when the other player cooperates is higher still.
Defection then forms the Nash equilibrium of the game, i.e.,
the outcome one may expect if the interacting players are
fully rational. A number of experiments have been performed
in behavioral game theory �examples are �18,19�� and bio-
logical realizations of the PD include the study of competi-
tive interaction among viruses, see, e.g., �20�. An extension
of the basic PD game considers repeated interaction of a
given pair of players. The space of available strategies then
becomes too large to allow for an exhaustive analysis. Most
studies therefore focus on a selected set of strategies, such as
always defect �AllD�, always cooperate �AllC�, tit-for-tat
�TFT�, or win-stay lose-shift �WSLS�. AllC players always
cooperate in any iteration, and similarly AllD players always
defect. TFT cooperates in the first round and then copies its
opponent’s previous move. This strategy emerged as the win-
ner in a computer tournament run by Axelrod in 1981 �16�.
Since then TFT has been the subject of a large body of work
�14,21–23�. Even though TFT won a subsequent second
competition as well, TFT is not perfect. In more realistic
situations where players can make mistakes TFT can become
locked into patterns of alternative cooperation and defection
with another TFT player �24�. It is also vulnerable to inva-
sion from cooperators via neutral drift. Nowak and Sigmund
�25� then proposed WSLS; this strategy has none of the

*alex.bladon@postgrad.manchester.ac.uk
†tobias.galla@manchester.ac.uk
‡alan.mckane@manchester.ac.uk

PHYSICAL REVIEW E 81, 066122 �2010�

1539-3755/2010/81�6�/066122�12� ©2010 The American Physical Society066122-1

http://dx.doi.org/10.1103/PhysRevE.81.066122


above disadvantages. WSLS cooperates in the first round and
then keeps playing the same action �cooperate or defect� if it
receives a favorable payoff and switches from one action to
the other if it does not. It can resist neutral drift by coopera-
tors and can correct mistakes, avoiding disadvantageous
cycles. There is evidence to suggest that some animals em-
ploy these strategies, for example, in their behavior in the
presence of predators �26,27�.

Historically, the analysis of evolutionary dynamics has
mostly been based on deterministic replicator dynamics �28�,
explicitly excluding stochastic effects. More recently, meth-
ods from statistical physics and the theory of stochastic pro-
cesses have been used to study games in finite populations.
In the absence of mutation, a finite population will always fix
on a given strategy due to stochastic fluctuations. The result-
ing fixation probabilities and average fixation times can be
calculated �29–31�. Further quantities of interest are station-
ary distributions of the underlying stochastic processes
�23,32–34� and the phenomenon of dynamic drift �35�.

In the context of these studies of stochastic processes in
game theory, cyclic behavior has been reported �36–38� in
the rock-papers-scissors game, and in �14�, where stochastic
quasicycles between cooperation and defection have been
observed in finite populations of agents playing the iterated
PD. In the present work we will focus on the latter game and
provide an analytical theory which allows one to compute
properties such as power spectra or equivalently the correla-
tion functions of these quasicycles, to a good approximation
in the limit of large, but finite populations. Based on this
analytical approach we are able to identify regions in param-
eter space where stochastic quasicycles would be expected to
occur, and we compare the amplitude of cycles arising from
different types of microscopic update dynamics.

The paper is organized as follows. In Sec. II we outline
the iterated PD and define the different microscopic pro-
cesses. We first focus on the case of only three pure strate-
gies, AllC, AllD, and TFT. The deterministic analysis for this
model is presented in Sec. III with a classification of the
fixed points and an exploration of the parameter space. We
move from a deterministic description to a stochastic formu-
lation in Sec. IV and consider effects arising in finite popu-
lations. In particular, we carry out a system-size expansion of
the master equation allowing us to classify the periodic sto-
chastic deviations from the deterministic limit. In Sec. V we
extend the analysis to include WSLS as a fourth strategy.
Finally, in Sec. VI, we summarize our findings and outline
avenues of future research.

II. MODEL AND DEFINITIONS

A. Iterated PD

We will mostly follow the setup of Imhof et al. �14�. An
exception will be when we discuss the extension of the
model in Sec. V. As such, we will consider a population of N
players with each player carrying out one of three pure strat-
egies: AllC, AllD, or TFT. The respective payoffs resulting
from an encounter of two players is characterized by the
following payoff matrix:

AllC AllD TFT
AllC

AllD

TFT
� Rm Sm Rm

Tm Pm T + P�m − 1�
Rm − c S + P�m − 1� − c Rm − c

� �1�

where m is the number of rounds played when two players
meet. The parameters T, R, P, and S are the payoffs of the
basic PD game �in which players meet only once�: T is the
temptation to defect, i.e., the payoff a defector receives when
playing a cooperator, R is the reward for mutual cooperation,
P is the punishment for mutual defection, and S is the suck-
er’s payoff for cooperating with a defector. The so-called
complexity cost, c, is imposed on the TFT strategy and rep-
resents the allocation of resources used to remember an op-
ponent’s last move �14,39�. For the dilemma to be present we
require that the parameters satisfy T�R� P�S and also that
R� �T+S� /2 to prevent mutual alternate cooperation and de-
fection being more profitable that of mutual cooperation
�16�. Throughout this paper we use the specific parameter
values T=5, R=3, P=1, S=0.1, and m=10 �14�. In the ter-
minology of game theory, the iterated PD as defined by the
above payoff matrix is a noncooperative symmetric game.

In the following we will label the strategies AllC, AllD,
and TFT by i=1,2 ,3, respectively. The number of players in
the population using strategy i will be denoted by ni, and we
require that n1+n2+n3=N. The expected payoff, or fitness,
of a player of type i is then given by

�i =

�
j

aijnj − aii

N − 1
, �2�

where aij are the elements of the payoff matrix, Eq. �1�, e.g.,
a11=Rm, a12=Sm, etc. In using definition �2� we follow the
choices of �17� and exclude interactions of one individual
with itself. Definitions with self-interaction are possible, the
differences do not affect the results to the order in inverse
system size we will be working at.

The so-called reproductive fitness of an agent carrying
pure strategy i, f i is defined as �17�

f i = 1 − w + w�i, �3�

where w is a selection strength that determines the impact
that the game has on the agent’s overall fitness. If w=0, then
f i=1 for all i, and one recovers the limit of neutral selection.
For w�0 selection becomes increasingly frequency depen-
dent. The average reproductive fitness in the population is
then given by

� = �
i

ni

N
fi, �4�

and the average payoff is �=�i�ni /N��i. In order to com-
plete the model we need to specify the microscopic dynamics
of the system, i.e., we need to define the rules by which the
composition of the population changes over time. There are
several such microscopic processes which have been studied
in the literature, and we will define some of these in Sec.
II C. Before we do so, it will however be helpful to discuss
the standard replicator-mutator dynamics commonly consid-
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ered in the literature. Provided the microscopic dynamics are
chosen appropriately, these equations are a suitable descrip-
tion in the deterministic limit, valid for infinite populations.
It is however important to stress that the replicator-mutator
dynamics are not the limiting deterministic dynamics for all
microscopic processes, as pointed out in �32,40� and as we
will discuss in more detail below.

B. Canonical replicator-mutator equation

Within the standard replicator dynamics of evolutionary
game theory the time evolution of the concentration of a
strategy i is given by �28�

ẋi = xi�f i
� − ��� , �5�

where xi denotes the concentration of strategy i in the popu-
lation in the deterministic limit: xi=limN→� ni /N. Similarly,
we will write

f i
� = lim

N→�
f i = 1 − w + w�

j

aijxj �6�

and

�� = lim
N→�

� = �
j

xj f j
�, �7�

where the superscripts indicate that Eq. �5� are, for suitably
chosen microscopic dynamics, valid only in the deterministic
limit of infinite populations. The basic assumption underly-
ing these dynamics is that individuals reproduce asexually in
proportion to their reproductive fitness, and that offspring
inherit the strategy of their parent.

If one introduces mutation, so that there is a finite chance
that a player will produce an offspring which does not use
the same strategy as their parent, the above dynamics needs
to be modified, and the description is then in terms of so-
called replicator-mutator equations �41�. Focusing on the
case of M pure strategies we will assume that in a reproduc-
tion event a player produces an exact copy of itself with
probability 1− �M −1�u and a mutant which plays one of the
other M −1 strategies, each with probability u. The parameter
u is confined to the physically meaningful range 0�u
�1 /M for the case of M pure strategies. For u=1 /M an
offspring will be of any of the M types with equal probability
1 /M. It is convenient to introduce a mutation matrix

qij = �1 − �M − 1�u if i = j

u if i � j .
	 �8�

The replicator-mutator equation is then given by �41�

ẋi = �
j

xj f j
�qji − xi�

�. �9�

In the limit of zero mutation Eq. �9� reduces to the standard
replicator equation �Eq. �5��.

C. Microscopic dynamics

We will now define the different microscopic processes
we will consider. We will restrict ourselves to dynamics con-

serving the total number of players in the population. To
specify a process it is then sufficient to define the “conver-
sion” rates Ti→j, corresponding to events in which a player of
type i is replaced by one of type j. For the general case with
M pure strategies i , j=1, . . . ,M. We will limit the discussion
to processes of the general form

Ti→j = �
k

nk

N

ni

N
gki�f�qkj , �10�

where f= �f1 , . . . , fM�. Form �10� is found by, at each time
step, selecting two players, one for potential reproduction
and one for potential removal, from the population. The
player selected for potential removal is assumed to be of type
i, and each term in the sum corresponds to selecting a player
of type k for potential reproduction. A given combination
�i ,k� thus occurs with probability �nink� /N2. Here we use
sampling with replacement. Dynamics without replacement
of an already chosen player are equally possible, leading to,
for example, factors of N�N−1� in the denominator instead
of N2. The differences amount to effects of order N−1, and do
not affect results to the order in the inverse system size we
will be working at. For a given pair of selected players re-
production and death actually only occur at a rate propor-
tional to gki�f�, which here we assume to be a function of the
reproductive fitnesses �implying a possible dependence on
the average fitness ��. The factor qkj accounts for potential
mutation events. The four kinds of microscopic dynamics we
will consider in the following differ in the details of the
function g, which we will describe below. Choices in which
gki does not depend on f correspond to neutral selection.

Before we define the details of the different microscopic
dynamics some general statements are appropriate. For sim-
plicity, we will focus on the case of a game with M =3 pure
strategies and in particular the iterated PD game with strate-
gies AllC, AllD, and TFT as introduced above; generalization
to an arbitrary number of strategies M is however straight-
forward. For any choice of gki, the state of the N-player
population is defined by the number of individuals using the
AllC and AllD strategies: n= �n1 ,n2�, the number of TFT
players is then given by n3=N−n1−n2. Furthermore the re-
productive fitnesses f and the average reproductive fitness, �,
are fully determined by the state n of the system �see Eqs.
�2�–�4��. It follows that the transition rates Ti→j can be writ-
ten as functions of n, and the microscopic stochastic process
is described by the following master equation for the prob-
ability, P�n , t�, of the system being in state n:

dP�n,t�
dt

= �Ê1 − 1�T1→3�n�P�n,t� + �Ê2 − 1�T2→3�n�P�n,t�

+ �Ê1Ê2
−1 − 1�T1→2�n�P�n,t� + �Ê2Ê1

−1

− 1�T2→1�n�P�n,t� + �Ê1
−1 − 1�T3→1�n�P�n,t�

+ �Ê2
−1 − 1�T3→2�n�P�n,t� . �11�

Here we have introduced shift operators Êi, where i=1,2,
acting on functions of the state of the system, ��n1 ,n2�, as
follows:
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Ê1��n1,n2� = ��n1 + 1,n2� ,

Ê1
−1��n1,n2� = ��n1 − 1,n2� . �12�

Similar definitions apply for Ê2 and Ê2
−1. Multiplying both

sides of Eq. �11� by n and summing over all possible states
and using a decoupling approximation, valid for N→�, we
can then write the rate of change in the concentration of
strategy i as

ẋi = �
k�i

�Tk→i�x� − Ti→k�x�� , �13�

after a rescaling of time by a factor N. Clearly this equation
is not restricted to the case M =3, and holds when an arbi-
trary number of strategies are present. Transition rates in Eq.
�13� are found from Eq. �10� using the substitution ni /N
→xi and f i→ f i

�, see Appendix A for further details. Substi-
tuting these limits into Eq. �13� one finds that the determin-
istic evolution of the concentrations of strategies is given by

ẋi = �
k�i

�
j

xj�xkgjkqji − xigjiqjk� . �14�

For different update rules this equation differs only in the
specific form of g used.

We will now proceed to give the specific form of the
function gki�f� for a set of different update rules which have
previously been proposed: the Moran process, a linear Moran
process, a local process and the Fermi process �32,35�.

1. Moran process

In the Moran process �42�, once a player of type k has
been chosen for potential reproduction and a player of type i
for potential removal, the reproduction event occurs at a rate
proportional to fk /�, specifically we will choose

gki
M�f� =

fk

2�
. �15�

The arbitrary prefactor of 1/2, equivalent to choosing a time
scale, has been introduced to allow better comparison with
other update rules �35�. By substituting Eq. �15� into Eq. �14�
and using Eq. �7�, �kxk=1, and �kqjk=1, one finds specifi-
cally for the Moran process that

ẋi =

�
j

xj f j
�qji − xi�

�

2�� . �16�

It is important to stress that the average reproductive fitness
�� is a function of the concentration vector x, and so �� is a
time-dependent quantity. While Eq. �16� is similar to the
standard replicator-mutator dynamics, the prefactor �2���−1

corresponds to a dynamic rescaling of time, and so may af-
fect the transient dynamics. The location of fixed points and
their local stability are however not affected, as a straightfor-
ward calculation shows.

2. Linear Moran process

The linear Moran process is defined by the following
choice �35�:

gki
LM�f� =

1

2
�1 + 	�fk − ��� , �17�

where 	�0 is a constant parameter, such that it is always the
case that Ti→j 
0. Notice also that one has gki

LM�f�= �1
+	w��k−��� /2. A common choice, which we will adopt in
the following, is 	=1 /�fmax, where �fmax is the maximum
possible difference between f i and � �35�, i.e., �fmax
=maxk,n
fk�n�−��n�
. In the absence of mutation �u=0� the
deterministic limit results in the following dynamics:

ẋi =
xi�f i

� − ���
2�fmax

. �18�

Therefore, up to a rescaling of time by the constant factor
�2�fmax�−1, the linear Moran process without mutation is de-
scribed by the standard replicator dynamics in the limit of
infinite population size. However for u�0 one does not re-
cover the standard replicator-mutator equations �Eq. �9��
from the linear Moran process.

In both Eq. �18� and �for u�0� from the result of substi-
tuting Eq. �17� into Eq. �14�, the reproductive fitness only
enters in differences of the form fk−� or fk− f i and is nor-
malized by �fmax. Since both, fitness differences and �fmax,
scale linearly in w, the deterministic dynamics is independent
of the selection strength w for the linear Moran process. Fi-
nally, the linear Moran process can be obtained from Moran
process Eq. �15� in the weak selection limit, w�1. Using Eq.
�3� one has

gki
M�f� =

1 − w + w�k

2�1 − w + w��
=

1

2
�1 + w��k − ��� + O�w2�

�19�

so that to linear order one recovers Eqs. �17� with the choice
	=1.

3. Local process

The so-called local process is discussed for example in
Traulsen et al. �40� and is based on a pairwise comparison of
one agent’s fitness with another in order to determine
whether or not reproduction occurs. This process has the
advantage that no knowledge or computation of the average
fitness of the population is required to carry out a micro-
scopic step. The local process is defined by

gki
L �f� =

1

2
�1 +

fk − f i

�fmax
� , �20�

where �fmax is again required for normalization and fixed at
the beginning and then remains unchanged as the dynamics
proceeds. As opposed to the case of the linear Moran pro-
cess, �fmax is now the maximum possible absolute difference
between any two fitnesses f i and fk: �fmax=maxi,k,n
f i�n�
− fk�n�
. As with the linear Moran process the local process
does, up to a constant factor which can be absorbed in the
definition of time, reproduce the standard replicator Eq. �5�
in the deterministic limit if mutation is absent �32,40�. At
finite mutation rates one does not however recover the
replicator-mutator equation, Eq. �9� �32�.
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4. Fermi process

Finally, the so-called Fermi process is an alternative pair-
wise comparison process which uses the Fermi-Dirac distri-
bution instead of the linear functional dependence on fitness
differences as in the local process. It is defined by �32,43�

gki
F �f� =

1

2
�1 + tanh
1

2
�fk − f i��	 . �21�

Unlike the other update rules, the Fermi process does not
reproduce either the standard replicator or replicator-mutator
equations in the deterministic limit. From Eq. �21� one has

gki
F �f� =

1

2

1 +

w

2
��k − �i�� + O�w2� �22�

in the limit of weak selection. This is of the same functional
form as Eq. �20�.

III. RESULTS OF THE DETERMINISTIC ANALYSIS

As an initial step toward characterizing the outcome of
the iterated PD, we compute the fixed-point structure in the
deterministic limit of the four different dynamics defined
above, as function of the complexity cost c and the mutation
rate u. We fix the selection strength to w=1 throughout.

A. General fixed-point structure

The qualitative picture one finds is similar for any of the
four dynamics; two different threshold values of the mutation
rate can be identified, we will refer to these as uc

�1� and uc
�2�.

For 0�u�uc
�1�, one typically finds three fixed points: a lo-

cally stable attractor near AllD, a saddle point also near
AllD, and an unstable fixed point, located close to the AllD/
TFT edge of the strategy simplex, see Fig. 1�a�. Following
�14� we will refer to this latter fixed point as the “mixed
fixed point.” At u=uc

�1� the mixed fixed point becomes stable,
as shown in panel �b� of Fig. 1. At u=uc

�2�, the two fixed
points near AllD annihilate, leaving the mixed fixed point as
the only attractor for u�uc

�2�, see Fig. 1�c�. At u=1 /3 the
mixed fixed point is at or near the center of the simplex, see
Fig. 1�d�. At this maximal physical meaningful value of u an
individual of any type produces an offspring of any of the
three different strategies with equal probability. While this
qualitative picture is the same for all four dynamics consid-
ered here, the numerical values of uc

�1� and uc
�2� will in general

be different for the different dynamics, and they may also
depend on the choice of the complexity cost, c. The overall
picture is consistent with the results of �14�, where the stan-
dard replicator dynamics were studied and where similar
qualitative behavior was found. Our analysis thus demon-
strates that the findings of �14� generalize to a broader class
of dynamics. The only difference between our findings com-
pared to those of earlier analyses, lies in the saddle point
described above, which was not reported in �14�, presumably
because it is not an attractor of the dynamics. Although for
completeness we have given a general account of the fixed-
point structure, the mixed fixed point will be the focus of our
analysis in the following sections, as it is this fixed point

which gives rise to coherent oscillations induced by demo-
graphic noise.

B. Limit of small mutation rates

Further analytical progress is possible in the limit of small
mutation rates, u�1. For all four cases considered here the
deterministic dynamics, derived from Eqs. �13�, are of the
form

ẋ = h�0��x� + uh�1��x� , �23�

with the mutation rate entering linearly in the resulting dif-
ferential equations. We will now make the following ansatz
for a fixed point x�:

x� = x�0�
� + ux�1�

� , �24�

in the limit of small mutation rates u. Here x�0�
� is a fixed

point of Eq. �13� at u=0 and x�1�
� captures the effect of non-

zero mutation rates at next-to-leading order. Inserting Eq.
�24� into the fixed-point condition

h�0��x�� + uh�1��x�� = 0 �25�

and collecting terms in linear in u, one then finds

x�1�
� = − J−1h�1��x�0�

� � , �26�

where J is the Jacobian of h�0� evaluated at x�=x�0�
� . Since

x�0�
� can be found in closed form from Eqs. �13� with u=0,

substituting Eq. �26� into Eq. �24� gives an analytical predic-
tion of the location of the fixed point at small u.

In Fig. 2 we compare the outcome of the above linear
expansion with results from a direct numerical evaluation of

(b)(a)

(c) (d)

FIG. 1. �Color online� Fixed-point structure and flow fields of
the standard replicator-mutator equations for the iterated PD at
c=0.8 and w=1. Black symbols are stable fixed points, white sym-
bols are unstable and gray symbols denote saddle points. The AllD
fixed point and saddle point can be seen in the bottom left-hand
corner of the simplices. The mixed fixed point �triangle� changes
stability at uc

�1��0.0016. The AllD fixed point �circle� and the
saddle point �square� annihilate at uc

�2��0.005. Arrows indicate the
direction of the deterministic flow in the strategy simplex. The color
map shows the Euclidean speed of the trajectories, �ẋ�. These im-
ages were produced using a modified version of the DYNAMO pack-
age �44�.
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the fixed points of Eq. �13� obtained using a Newton-
Raphson procedure. The expansion is seen to be a good ap-
proximation for the location of the fixed point for values of u
up to u�0.01. From the figure we see that the AllD and
saddle fixed points annihilate at uc

�2��0.005 for this value of
c. This annihilation is consistent with the disappearance of
the AllD fixed point at large u reported by Imhof et al. �14�.

C. Mixed fixed point and phase diagram

For suitable choices of the model parameters c and u, the
mixed fixed point can be a stable attractor with complex
eigenvalues of the corresponding Jacobian. One can thus ex-
pect coherent stochastic oscillations to arise in finite popula-
tions at those model parameters. We therefore focus our at-
tention on the mixed fixed point and identify the regions in
the �c ,u� plane where such complex eigenvalues are found.
More generally we will determine the nature of the mixed
fixed point as a function of u and c. The result of numerically
solving for fixed points of the deterministic dynamics corre-
sponding to the Moran process is shown in Fig. 3. We will
denote fixed points with purely real eigenvalues as nodes and
those with complex eigenvalues as spirals. At low values of c
we observe a re-entry phenomenon, where the mixed fixed
point goes from a stable spiral to a stable node and back to a
stable spiral as u is decreased.

Numerically we also observe a region where the dynamics
converges onto a limit cycle. We are at this point unable to
provide a proof for the existence of limit cycles or to ana-
lytically determine the position of the border between the
limit cycle and unstable spiral regions. We therefore deter-
mine the presence of limit cycles by numerically integrating
the deterministic dynamics using an Euler forward method,
starting from the center of the simplex, allowing for a period
of equilibration, and then applying a suitable threshold crite-
rion to detect closed trajectories. The unstable spiral region is
identified as the region where we do not find limit cycles
numerically. In situations where there is more than one at-

tractor �e.g., a limit cycle and a stable fixed point near AllD�
initial conditions will determine the stationary state of the
dynamics. At u=1 /3 the mixed fixed point is located in the
center of the strategy simplex, and becomes a stable node.

All other update rules studied in this paper have the same
qualitative features as the Moran process, and hence their
phase diagrams are structurally similar to that shown in Fig.
3, except that the mixed fixed point does not become a stable
node at x= �1 /3,1 /3� at u=1 /3 for rules that use pairwise
comparison. Instead, the fixed point forms a stable spiral
close to the center of the simplex. Although qualitative fea-
tures of the phase diagrams are the same for all four update
rules, the quantitative positions of the borders in the �c ,u�
plane may differ for each update rule. For example, Fig. 4
shows the stability map for the Fermi process. Here the re-
entry region persists for larger values of c and the region in
which the mixed fixed point is unstable is also much larger.

IV. STOCHASTIC EFFECTS AND SYSTEM-SIZE
EXPANSION

Until now we have focused on the dynamics of infinite
populations. In this section we investigate effects arising in
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finite populations, especially stochastic oscillations arising
via a coherent amplification of intrinsic fluctuations. Such
oscillations have been found in a variety of systems as
described in the introduction. These quasicycles typically
arise in regions of the phase diagram where the deterministic
dynamics approach a fixed point, and so the range of param-
eters in which systems of finite populations display oscilla-
tions is generally wider than the region in which the deter-
ministic system allows for periodic solutions. Figure 5
indeed confirms that this is also the case for the evolutionary
dynamics of the iterated PD. In the figure we choose model
parameters such that none of the four deterministic dynamics
approach periodic attractors, but instead have stable fixed
points with complex eigenvalues �stable spirals�. As seen in
the figure the dynamics in finite populations still generate
oscillatory behavior induced by intrinsic fluctuations. This
oscillatory behavior is similar to that reported in �14�. The
four panels demonstrate that the quality and frequency of
these stochastic oscillations can vary over a wide range de-
pending on the details of the microscopic dynamics, and so
we will now go on to characterize their properties in more
detail in order to obtain a more comprehensive picture of this
phenomenon.

The analytical approach we will use to characterize these
fluctuations is based on an expansion of the master equation
in the inverse system size �7�. This method is now standard
in the analysis of interacting-agent systems, and we will
therefore not present the full details of the calculation but
instead restrict ourselves to giving a few of the intermediate
steps and the final results. The starting point of the system-
size expansion is an ansatz of the type

ni

N
= xi�t� +

1
�N


i�t� , �27�

amounting to a separation of deterministic and stochastic
contributions to the number, ni, of individuals of type i in the
population. The first term on the right, xi�t�, is the determin-
istic trajectory, and 
i�t� captures fluctuations about this tra-

jectory; the magnitude of these fluctuations is expected to be
of order N−1/2, as reflected by the above ansatz. One proceeds
by inserting this ansatz into the master Eq. �11� and focuses
on the probability distribution of � rather than that of n so
that one sets P�n , t�=��� , t�. Expanding the resulting master
equation for ��� , t� in powers of N−1/2 one recovers, at lead-
ing order, the generalized replicator-mutator equation �Eq.
�13��. At next-to-leading order in N−1/2 a Fokker-Planck
equation of the form

��

�t
= − �

i

�

�
i
�Ci�� +

1

2�
i,j

Bij
�2�

�
i � 
 j
�28�

is found �7�, where Ci=�kJik
k. Here J is the Jacobian of Eq.
�13� and B is a symmetric, 2�2 matrix, whose precise form
will depend on the exact nature of the microscopic dynamics,
but whose general form is given in Appendix A. The Fokker-
Planck Eq. �28� is equivalent to the linear Langevin equation
�47�

�̇ = J� + � , �29�

where � is Gaussian white noise with correlations

��i�t�� j�t��� = Bij��t − t�� . �30�

In contrast to the Langevin equations derived using the
Kramers-Moyal expansion �32�, Eq. �29� contains additive
rather than multiplicative noise. In the application we are
considering here, we are interested in fluctuations about the
stationary state and so the matrices J and B are evaluated at
the fixed point of the deterministic dynamics.

Given the linearity of Eq. �29�, it is straightforward to
compute the power spectra of the fluctuations � about the
deterministic fixed point. Following the steps of �11�, one
obtains

Pi��� = �

̃i���
2� = �
j

�
k

�ij
−1Bjk��†�ki

−1, �31�

where �= i�I−J and I is the 2�2 identity matrix.
In Fig. 6 we give an example of the power spectra

of fluctuations about the deterministic fixed point obtained
for the Moran update rule at c=0.8 �w=1�, u=0.01, and
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FIG. 5. �Color online� The results for the concentration of the
AllC strategy from one run of a Gillespie simulation �45,46� for
each of the four update rules at N=10 000, c=0.8, and u=0.05. The
time averaged concentration of each run has been subtracted from
the data to give the deviation from the deterministic fixed point.
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N=12 000. Theoretical predictions from the van Kampen ex-
pansion and numerical simulations are in near perfect agree-
ment. The spectrum shows a pronounced peak at a frequency
of approximately �=0.05, indicating the existence of ampli-
fied oscillations with that characteristic frequency. The am-
plitude of these oscillations is proportional to N−1/2 �see Eq.
�27�� the proportionality constant is determined by the area
under the power spectrum. Depending on the choice of pa-
rameter values one can then expect the amplitude of the qua-
sicycle will be of order one up to system sizes of 104 or so,
i.e., comparable to the species concentrations at the deter-
ministic fixed point. Even for very large populations the os-
cillations can therefore be significant. If the trajectory of the
system is monitored over a time scale much smaller than the
oscillation period, then this may lead to intervals in time in
which the concentration of AllC is found to be consistently
higher than that of TFT or AllD, that is, to intermediate pe-
riods where cooperation dominates the population. Such ef-
fects may, for example, be relevant when evolutionary time
scales are much longer than time windows over which mea-
surements can be made.

Having shown that the analytical approach captures the
properties of quasicycles accurately, we can now compare
the magnitude of the stochastic oscillations for the different
update processes at the same values of c and u. The power
spectra of the fluctuations in the AllC concentration are
shown in Fig. 7 for the four update rules at one fixed muta-
tion rate and for a specific choice of the complexity cost.
Results indicate that the Fermi process produces demo-
graphic oscillations of a higher frequency than the other up-
date rules, in line with the time series shown in Fig. 5. Even
though the power spectra for the Moran and linear Moran
update rules are seemingly indistinguishable in Fig. 7, they
are not analytically equivalent.

The magnitude of the peak in the power spectra is a good
proxy for the amplitude of the stochastic quasicycles, and the
height of the peak is in turn largely determined by the in-
verse of the real part of the relevant eigenvalue of the deter-
ministic dynamics at the fixed point. In the deterministic sys-
tem, perturbations about the fixed-point decay with a time
constant proportional to the inverse of this real part, and it is
intuitively easy to see that the magnitude of stochastic oscil-
lations diverges as the real part of the largest eigenvalue

tends to zero. More specifically, as shown in �48�, the mag-
nitude of the peak in the spectra diverges as the system ap-
proaches a Hopf bifurcation, where the stable spiral becomes
an unstable one. The resulting delta-function peak in the
power spectrum indicates that a limit cycle is born in the
unstable phase. This can also be seen from Eq. �31� and the
definition of the matrix �. At the Hopf bifurcation the rel-
evant eigenvalue of J is purely imaginary, and when � be-
comes equal to the imaginary part of this eigenvalue, the
matrix � becomes singular, such that the expression on the
right-hand side of Eq. �31�, involving the inverse of �, di-
verges.

In order to compare the relative magnitude of stochastic
oscillations in the four different dynamics at fixed values of
u and c, it is therefore useful to determine how far or near to
the instability the pair �u ,c� places the respective dynamics.
In Fig. 8 we plot the instability lines indicating the occur-
rence of a Hopf bifurcation in the �u ,c� plane for the four
different types of dynamics. For any fixed c one finds that
uc,F

�1� �uc,L
�1� �uc,LM

�1� �uc,M
�1� and that accordingly for any u suf-

ficiently large to place all four dynamics in the stable regime,
the Fermi process is much closer to the limit-cycle regime
than the other types of dynamics, and would therefore be
expected to have a larger peak in the power spectra. As dis-
cussed above we furthermore find that the Fermi process,
with its alternative form of the pairwise comparison process,
produces demographic oscillations of a higher frequency
than the other update rules, see Fig. 7.

V. ITERATED PRISONER’S DILEMMA WITH ERRORS

In this section we study an extended version of the iter-
ated PD game, allowing for a fourth pure strategy, win-stay
lose-shift �WSLS�. It is appropriate to include this strategy in
the discussion when so-called “trembling-hand” errors are
considered �23�. Trembling-hand errors introduce the possi-
bility of a player making a mistake after they have decided
what to play, that is, a player cooperating when they meant to
defect, or defecting when the intention was to cooperate. We
will assume that the two players make errors of this type
independently with a small probability ��0 in any given
round. TFT’s disadvantage is then that it can become locked
into a cycle of alternate cooperation and defection with an-
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FIG. 7. �Color online� A comparison of the power spectra for
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=0.05. N ranges from 104 to 106 and the number of runs for each
simulation is of order 104.
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other TFT player after a mistake occurs. In such games, TFT
can be outperformed by WSLS �17�. WSLS cooperates ini-
tially and then keeps using its strategy �cooperation or defec-
tion� whenever it receives payoff T or R and switches its
strategy �from cooperation to defection or vice versa� if it
receives P or S. WSLS does not become locked in such
cycles when playing against TFT or WSLS. We include the
WSLS strategy in our game, extending the dynamics to three
degrees of freedom.

In the presence of trembling-hand errors the outcome of a
PD game between two fixed players and iterated for a finite
number of rounds will generally be stochastic and depend on
the timing at which errors occur in the interaction sequence.
In order to simplify matters we will therefore follow �23� and
restrict the discussion to cases in which an interaction be-
tween two players consists of an infinite number of iterations
of the PD game. It is then appropriate to use the expected
payoffs per round, i.e., for two fixed players, say of types
i , j� �AllC,AllD,TFT,WSLS�, one formally considers an
infinite sequence of PD interactions, and uses the mean pay-
off per round to define the payoff matrix elements aij. The
payoff matrix can then be worked out for small error rates
and is given in �23� and reproduced in Appendix B for con-
venience. The complexity cost, c, is no longer a relevant
parameter now that the number of rounds is infinite.

Previous work on this game has shown that in the limits
of zero mutation and weak selection the population can ei-
ther fix on WSLS or AllD depending on the values used in
the payoff matrix �23�. We continue to use the parameter
values given in Sec. II A and explore how the dynamics of
the game depend on mutation and error rates and identify
and classify demographic oscillations. Analyzing the four
update rules given in Sec. II C we again find a mixed fixed
point on which we focus our analysis—since demographic
oscillations may occur about this fixed point when it is a
stable spiral. We use Eq. �13� with four strategies to track the
location and stability properties of the mixed fixed point as u
is varied. The path of the mixed fixed point at constant � and
changing u for the Moran process, is shown in Fig. 9. The
dashed lines are the result of a similar perturbative expansion

to that carried out in Sec. III, where again we see good agree-
ment with numerical results for changes in u up to u�0.01.

Similar to our analysis of the three-strategy game, we
can determine the stability of the mixed fixed point as a
function of the model parameters � and u. The classification
of the nature of the fixed points is more involved for the
four-strategy game, however, as we are analyzing a three-
dimensional dynamical system. Stable spirals are now fixed
points with one pair of complex-conjugate eigenvalues with
a negative real part and an additional real-valued negative
eigenvalue. If the sign of the real part of the pair of complex-
conjugate eigenvalues is opposite to that of the real-valued
eigenvalue we will refer to the fixed point as a spiral saddle
�49�. Fixed points with three real-valued negative eigenval-
ues of the Jacobian are referred to as stable nodes. The re-
sulting phase diagram for the Moran dynamics is shown in
Fig. 10. The other three types of microscopic dynamics give
qualitatively similar phase diagrams, but the exact quantita-
tive positions of the various phase lines will generally be
different.

When the mixed fixed point is a spiral saddle the deter-
ministic dynamics can either converge to a limit cycle or to
the attractor at AllD, depending on initial conditions. For
locations in the parameter space where the mixed fixed point
of the deterministic dynamics is a stable spiral, we again
observe demographic oscillations, and they can be character-
ized analytically in a manner similar to that discussed in the
previous section. We depict the resulting power spectra for
the Moran process in Fig. 11. As seen in the figure WSLS
and AllD in particular undergo strong demographic oscilla-
tions, with a comparable magnitude between the two strate-
gies.

As with the iterated PD considered earlier, the amplitude
of quasicycles resulting from an amplification of intrinsic
fluctuations can be expected to be large when a fixed point of
the stable spiral type is located close to the border between
the stable-spiral and limit-cycle phases. There can then again
be periods in time when WSLS is the most prevalent strat-
egy, despite AllD dominating the fixed point. The power
spectra for oscillations in the concentration of the TFT strat-
egy resulting from the four different update rules are com-
pared in Fig. 12. We again observe that the Fermi process
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exhibits oscillations of a higher frequency and with a larger
amplitude than the other rules. Although spectra for the local
process and the Fermi process overlap in the figure, this is
coincidental at this point in parameter space and will not be
the case in general.

VI. CONCLUSION AND OUTLOOK

In this paper we have used analytical approaches based on
van Kampen’s system-size expansion to study the emergence
of quasicycles in evolutionary games in finite populations.
Most existing studies of such effects are of a numerical na-
ture; we have complemented these giving a systematic ac-
count of the formalism and derived the resulting effective
Langevin equations which describe the statistics and correla-
tions of fluctuations in large but finite populations. This ap-
proach and our general formulas are applicable to a large
class of microscopic update rules and to games with an arbi-
trary number of pure strategies. They are, in principle, also
valid for arbitrary mutation matrices. The results of this pa-
per hence allow one to predict the regions in parameter space
in which coherent quasicycles are to be expected and to com-
pute their spectral properties. In particular coherent cycles,
such as reported in game dynamical systems, e.g., in �14�,
can be understood as a consequence of the combination of

intrinsic noise and the existence of a stable fixed point with
complex eigenvalues in the corresponding deterministic sys-
tem obtained in the limit of infinite populations. In absence
of noise the deterministic system approaches such fixed
points in an oscillatory manner, with oscillations dying away
at a rate proportional to the inverse real part of the relevant
eigenvalue. In finite systems, discretization noise leads to
persistent stochastic corrections perturbing the system at all
times. In the limit of large, but finite system sizes these fluc-
tuations �the noise � in Eq. �29�, together with the prefactor
N−1/2� can be seen as a small perturbation to the deterministic
dynamics, driving the system away from the fixed point. The
attracting fixed point and the oscillatory approach to it on the
deterministic level on the one hand and the persistent intrin-
sic noise on the other then conspire to give coherent and
sustained stochastic cycles, with an amplitude largely deter-
mined by the inverse real part of the least stable complex
eigenvalue.

We have applied the van Kampen formalism to the spe-
cific example of the iterated PD game, where stochastic os-
cillations have been reported in the earlier numerical study
�14�. We have worked out detailed phase diagrams depicting
the nature of the limiting deterministic dynamics and we
have studied systematically how the mutation rate and com-
plexity cost, the two main model parameters, affect the out-
come of the deterministic system. Based on this analysis we
are able to predict the parameter regimes in which stochastic
oscillations occur. In particular we find that oscillation am-
plitudes become maximal when the Hopf bifurcation line in
the phase diagram is approached from within the stable
phase. At the bifurcation line the oscillation amplitude for-
mally diverges, with the power spectrum turning into a delta
function, and as the instability line is crossed a limit cycle is
born.

We have also carried out a detailed comparison of four
different microscopic update rules; results indicate that their
respective phase diagrams are qualitatively similar. The
analysis shows that, at fixed values of the model parameters,
the Fermi process tends to produce stochastic cycles with
larger amplitudes and frequencies than the other update
rules. We have extended our study to a version of the iterated
PD game in which errors of the trembling-hand type occur
with a small, but nonzero rate. The so-called win-stay lose-
shift strategy has here been seen to out compete tit-for-tat,
and accordingly we have considered a four-strategy space
�always defect, always cooperate, tit-for-tat and win-stay
lose-shift� and have identified the regions in parameter space
where coherent cycles are most likely to occur. Analytical
results for the resulting power spectra of these quasicycles
are confirmed convincingly in numerical simulations.

Mathematical techniques of the type we have used here,
most notably the master equation formalism and system-size
expansions, were first devised in statistical physics, but they
are becoming increasingly more popular in the game theory
literature. This extends to equivalent approaches based on
Kramers-Moyal expansions. We attribute this popularity to
the generality with which these methods are applicable and
to the fact that they allow one to obtain an exhaustive ac-
count of the properties of first-order stochastic corrections to
the limiting deterministic dynamics. Exact analytical results
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FIG. 11. �Color online� The power spectra for the four strategies
with Moran updating at u=0.02 and �=0.01. Symbols are results
from numerical simulations at N=12 000, solid lines are the predic-
tions of Eq. �31�.
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can be derived for large, but finite populations, and hence
these techniques make simulations on the microscopic level
redundant �at least in principle�. We expect this to be the case
for games with more complicated strategy structures or with
interaction between more than two players such as, for ex-
ample, in public goods games. The analytical approach can
also be expected to be applicable to other, potentially more
intricate types of human error. For such games it may be
difficult or time consuming to carry out reliable simulations
and to perform exhaustive parameter searches. Analytical
characterizations of stochastic effects such as the ones dis-
cussed in this paper may then be particularly welcome.
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APPENDIX A: SYSTEM-SIZE EXPANSION
OF THE MASTER EQUATION

The van Kampen system-size expansion has been exten-
sively discussed elsewhere, together with explicit examples
�6–8�, and so here we will only briefly summarize the gen-
eral idea and give the final results of the calculation that are
relevant for this paper.

The starting point is the substitution of the ansatz �Eq.
�27�� into master Eq. �11�—or its generalization to more than
three strategies. This yields an expansion in powers of N−1/2,
after a rescaling of time by a factor of N. To leading order
�N−1/2� the deterministic Eq. �13� is obtained. To next-to-
leading order �N−1� the Fokker-Planck Eq. �28� is found. This

is defined in terms of two quantities: Ci=�kJik
k, where J is
the Jacobian of the dynamics given by Eq. �13�, and B a
symmetric matrix. Since we are interested in fluctuations
about stationary states, both Jij and Bij are time independent.

The Jacobian can be obtained in a straightforward fashion
once the dynamics �Eq. �13�� is known. The elements of the
matrix B are found from the N−1 terms in the system-size
expansion to be

Bij =��
k�i

�Ti→k�x� + Tk→i�x�� , if i = j

− �Ti→j�x� + Tj→i�x�� , if i � j .
	 �A1�

Therefore the deterministic and stochastic dynamics to the
order we are working are entirely determined by Ti→j�x�.
This can be found by making the substitutions �ni /N�→xi,
f i→ f i

�, and �→�� in Eq. �10� to obtain

Ti→j�x� = �
k

xkxigki�f��qkj . �A2�

This explicitly shows how to construct Ti→j�x�, once the pro-
cess �defined by gki�f�� and the mutation matrix �qij� have
been given.

APPENDIX B: PAYOFF MATRIX FOR A FOUR
STRATEGY, INFINITELY REPEATED PD

WITH TREMBLING HAND ERRORS

When two players meet and play the PD game over mul-
tiple rounds their state in round � is defined by their actions
in that round, e.g., player 1 cooperates and player 2 defects.
The actions of the pair of players then determines the payoff
they each receive. The payoff matrix for the infinitely re-
peated PD game with trembling hand errors is constructed by
considering the stationary distributions of the state of each
pair of players, to first order in �, the probability of a trem-
bling hand error occurring �23�. It is given by

AllC AllD TFT WSLS
AllC

AllD

TFT

WSLS
�

R − ��2R − S − T� S + ��R + P − 2S� R − ��3R − T − 2S� �R + S�/2 + ��/2��
T − ��2T − R − P� P + ��S + T − 2P� P + ��S + 2T − 3P� �P + T�/2 − ��/2��
R + ��2T + S − 3R� P + ��T + 2S − 3P� � �

�R + T�/2 + ��/2�� �P + S�/2 − ��/2�� � R + ��T + 2P + S − 4R�
� �B1�

where �= �T+ P−R−S�, �= �S+ P−R−T�, and �= �T+R+ P+S� /4.
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