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In the 70s Schelling introduced a multiagent model to describe the segregation dynamics that may occur
with individuals having only weak preferences for “similar” neighbors. Recently variants of this model have
been discussed, in particular, with emphasis on the links with statistical physics models. Whereas these models
consider a fixed number of agents moving on a lattice, here, we present a version allowing for exchanges with
an external reservoir of agents. The density of agents is controlled by a parameter which can be viewed as
measuring the attractiveness of the city lattice. This model is directly related to the zero-temperature dynamics
of the Blume-Emery-Griffiths spin-1 model, with kinetic constraints. With a varying vacancy density, the
dynamics with agents making deterministic decisions leads to a variety of “phases” whose main features are
the characteristics of the interfaces between clusters of agents of different types. The domains of existence of
each type of interface are obtained analytically as well as numerically. These interfaces may completely isolate
the agents leading to another type of segregation as compared to what is observed in the original Schelling
model, and we discuss its possible socioeconomic correlates.
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I. INTRODUCTION

In the 1970’s, Schelling �1,2� introduced a model aiming
at simulating the interactive dynamics of individuals having
specific requirements regarding their neighborhood. This
model was based on the intuitive idea that people of a same
type �e.g., White/Black� have some preference for living in a
neighborhood where the fraction of residents of their own
type is not too small. Empirical studies have given some
support to this hypothesis �3,4�, even though such prefer-
ences might be the indirect consequence of other factors
�e.g., blacks may choose segregated neighborhoods because
they have access to social support�. In Schelling’s model,
agents of two groups with different socioeconomic features
coexist on a chessboard-city. They individually move to
maximize a utility function that depends on their tolerance to
different neighbors. With such dynamics, a phenomenon of
segregation emerges even when the agents are not especially
intolerant. This collective behavior not foreseen in the indi-
vidual choices has been considered in social science as the
paradigm of global phenomena emerging from local social
interactions. Moreover, this model and its outcomes present
similarities to physical systems as noted, in particular, in
�5–7�. The simplicity of the model combined with its wealth
of results, its interdisciplinarity, are obvious reasons why it
has drawn so much attention among scientists.

In the recent years, numerous variants of Schelling’s seg-
regation model have been considered. Much as for the Ising
model in physics, Schelling’s segregation model in social
science is the basis for exploring the effect of various factors
on the collective dynamics. Among the variants studied, dif-

ferent individual preferences have been dealt with. Schelling
initially proposed a binary utility function to summarize the
preferences of the agents, separating their neighborhoods in
only two groups: satisfying or not, depending on the fraction
of nearby agents of their own type. A further step was to
consider other utility functions that may even be continuous.
In particular, it has been shown that segregation may prevail
even with agents having a strict preference for a mixed
neighborhood �8,9�, i.e., with an utility function which is
maximal when there are equal numbers of similar and differ-
ent neighbors. The influence of the vacancy density on the
results has also been widely studied �10,11�. However, all
these models deal with closed systems: a fixed number of
agents of each type is allowed to move within the city lattice.
Schelling himself �2� has discussed a case of segregation
with an open city, but within a different setting: he consid-
ered a mean-field type model with a city reduced to a single
global neighborhood, with a finite number of agents of two
types who can only decide either to enter or leave the city,
the focus being on the effect of heterogeneity—each agent
having his own tolerance threshold. To our knowledge, there
is no study of Schelling’s segregation in an open city with
local neighborhoods �12�. Adding the possibility for external
moves, one has thus a non fixed vacancy density.

Recently, we have shown �13� that Schelling’s model is
linked to the Blume-Emery-Griffiths �BEG� spin-1 model
with a fixed density of vacancies and with kinetic con-
straints. The BEG model �14� has been used, in particular, to
modelize binary mixtures and alloys in the presence of va-
cancies. Starting from this correspondence, one can propose
a natural generalization of Schelling’s model on an open do-
main, with a parameter playing the role of a chemical poten-
tial for the number of vacancies. The new dynamical system
then corresponds to the zero-temperature dynamics �15–17�*laetitia.gauvin@lps.ens.fr
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of a Blume-Emery-Griffiths model under kinetic constraints.
The parameter controlling the vacancy density can be inter-
preted as measuring the attractivity or hostility of the urban
environment. Let us remark that the absence of temperature
keeps the model close to the spirit of the original Schelling
segregation model which considers deterministic decision
processes.

As we will see, a striking feature of this model is to dis-
play a variety of interfaces between clusters of agents of a
same type. There may be direct contacts between agents of
different types as well as lines of vacancies isolating clusters
of agents �lines that we henceforth call borders�. Such lines
have already been observed in some variants of Schelling’s
model, though in a marginal way since the vacancy density
was fixed and therefore could not adjust according to the
control parameters to create homogeneous lines. Here, we
exhaustively study the shapes and sizes of these borders and
how they are related to the value of the control parameters.
Among the relevant points, the absence of contacts between
the two types of agents may be considered another kind of
segregation, one that is not encompassed by the classical
Schelling model.

The paper is organized as follows. In Sec. II, we recall
Schelling’s original model of segregation and relate it to the
BEG model. We then introduce the generalization to the case
of an open city. In Sec. III, we present numerical simulations
of the model, showing the existence of phases with different
types of interfaces. In Sec. IV, we give the analytical expres-
sions of the phase boundaries in parameter space. Finally in
Sec. V, we discuss the results.

II. SEGREGATION MODEL

A. Contact with the Blume-Emery-Griffiths model

In Schelling’s original model of segregation �1�, two types
of agents—to be called here and in the following “red” and
“blue” agents co-exist on a regular square lattice with Moore
neighborhood �eight next-nearest neighbors per site�. Each
lattice site can be either occupied by a single agent or vacant.
The total number of agents of each type is fixed and kept
constant. An agent at a site is said to be satisfied if there is at
least a fraction 1−T of the agents in his neighborhood who
are of his own type �T=2 /3 in �1��, i.e.,

Nd − T�Nd + Ns� � 0, �1�

where Nd and Ns are, respectively, the numbers of different
and similar neighbors. The parameter T is called the toler-
ance. Starting with a random configuration, some agents are
unsatisfied. With a random sequential dynamics, unsatisfied
agents are displaced to a satisfying vacancy �to the closest
one in �1��. For a wide range of tolerance T and of vacancy
density, the iteration of this process yields regions composed
of similar agents �see e.g., �5,13��, phenomenon usually
called segregation.

From a physicist’s point of view, it is interesting to see
that there exists a correspondence between the Schelling seg-
regation model and spin-1 models. Let us introduce spin-1
variables ci taking the value 0 if the location i is vacant, and

1 �respectively, −1� if this location is occupied by a red �re-
spectively, blue� agent. The satisfaction condition at site i
can then be written:

− ci�
�j�

cj − �2T − 1�ci
2�

�j�
cj

2 � 0, �2�

where the sums are on the eight nearest neighbors of site i.
Because ci=0 at an empty site, this condition is also true for
a site with no agent—one can thus consider the satisfaction
condition as a site property rather than an agent property. If
an agent is allowed to move from a site where he is not
satisfied to an empty site where he is, one can check that the
Schelling dynamics admits the following Lyapunov function:

ES = − �
�i,j�

cicj − K�
�i,j�

ci
2cj

2, �3�

where K=2T−1, and the sum ��i,j� is on all pairs of nearest
neighbors.

This function ES Eq. �3� corresponds to the energy of the
Blume-Emery-Griffiths model �14�, originally introduced to
study the superfluidity of He3-He4 mixtures, under the con-
straint that the number of sites of each type �0, �1� is kept
fixed. Hence the Schelling model is equivalent to the zero-
temperature dynamics of the BEG model, with kinetic con-
straints �no direct exchange red/blue�, and with a fixed num-
ber of agents. In the full version of the BEG model, the
energy contains the additional term DBEG�ici

2 �the sum being
over all the sites�, so that the total number of vacancies is
fixed only in average through the Lagrange multiplier DBEG:

EBEG = − �
�i,j�

cicj − K�
�i,j�

ci
2cj

2 + DBEG�
i

ci
2. �4�

The limit DBEG→−� corresponds to the absence of vacan-
cies, i.e., the Ising model, and large positive DBEG corre-
sponds to high vacancy densities. The term DBEG does not
appear in the energy ES of the Schelling model, not because
it corresponds to DBEG=0, but because the density of vacan-
cies is fixed. The particular case K=0 �that is, T=1 /2� is
known as the Blume-Capel model, much studied for its own
sake �18,19�.

Hence, the obvious next step is to generalize the Schelling
model to the case of an open system for which the number of
agents is not fixed. In order to allow for exchanges with a
reservoir of agents, one has to define the agent’s utility in a
way allowing to compare the degree of satisfaction at differ-
ent locations and between being in or out of the lattice. The
full BEG model provides the simplest way to do so, with the
parameter DBEG giving the satisfaction loss �if DBEG�0� or
gain �if DBEG�0� of an agent if he leaves the city from a site
with a fully vacant neighborhood. In the next section we
detail the resulting multi-agent model.

B. Schelling’s model with an open city

We now specify our variant of Schelling’s model for an
open system—but still with a lattice of fixed size, the city
being not allowed to grow. We introduce an index of dissat-
isfaction �instead of a “satisfied or unsatisfied” binary status�.
As regards to the dynamics, any agent—whether he is satis-
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fied or unsatisfied—may move to a randomly chosen site if
this provides him with a larger degree of satisfaction. As the
system is open, we do not fix neither the total number of
agents, nor the ratio of red/blue agents. We assume that there
is an infinite reservoir of agents outside the city-lattice. An
agent may leave the city if this increases his degree of satis-
faction, and new agents may enter the city. A parameter D
controls the flux of agents leaving or entering the lattice,
acting as a chemical potential for the vacancy density. The
control parameters of the model are, thus, the tolerance T and
the vacancy “chemical potential” D.

Let us now define the index of dissatisfaction. For an
agent within the city �lattice�, the index depends on the het-
erogeneity of his neighborhood and on an intrinsic attractive-
ness of the city. The dissatisfaction index Idissat for a neigh-
borhood composed of Nd different and Ns similar neighbors
is:

Idissat = Nd − T�Nd + Ns� + D , �5�

where T is the tolerance of the agents about the heterogeneity
of their neighborhood. The smaller the index Idissat, the more
satisfied the agent. With the spin-1 notation introduced in the
preceding section, one can write the dissatisfaction index at
site i as

Ii
dissat = −

1

2
ci�

�j�
cj −

1

2
�2T − 1�ci

2�
�j�

cj
2 + Dci

2, �6�

where, as in Eq. �2�, the sums are on the eight nearest neigh-
bors of site i. Without loss of generality we can assume that
an agent outside the lattice has an index of dissatisfaction
that is null. This is equivalent to state that D is the satisfac-
tion loss �if D�0� or gain �if D�0� of an agent who leaves
the city from a site with a fully vacant neighborhood or
conversely, it is the gain �if D�0� or loss �if D�0� of an
agent who enters the city at a site with a fully vacant neigh-
borhood. Hence, D indicates how welcoming the lattice is.
Indeed, a very negative value of D easily makes the environ-
ment satisfying for the agents. While a large value of D leads
to the impossibility of satisfying the agents, consequently
making the environment hostile. D can be seen as a measure
of the �un�attractiveness of the urban environment �20�, and
we will call it “urban attractiveness” for short �although one
should remind that a positive value of D means a hostile
environment�. In the present socio-economic context, it
would have been more suitable to take the opposite sign to
define D in Eq. �5� but we choose the sign in order to have a
direct correspondence with the BEG model.

Starting from a random initial configuration, each agent
tries to increase his degree of satisfaction �i.e., to decrease
Idissat�. In order to do this, internal or external exchanges are
tested with equal probability. In the case of an external ex-
change, a site is randomly chosen, if it is empty, the arrival
of an agent �one of the two types with equal probability� is
attempted. The occupancy becomes actual only if the target
dissatisfaction index Idissat is smaller than 0 �the value of the
dissatisfaction index outside the lattice�, that is, if the num-
bers of similar Ns and different Nd neighbors at the target site
satisfy:

Nd − T�Nd + Ns� + D � 0. �7�

If the site is occupied by an agent, the latter remains at this
location only if its neighborhood meets the previous condi-
tion �Eq. �7��; otherwise the agent is removed from the lat-
tice. Note that here the tolerance T can be understood as the
maximal proportion of different neighbors tolerated in order
to remain in the lattice when the environment is neutral �that
is, at D=0�.

In the case of an internal exchange, both a vacant and an
occupied site are randomly chosen. The agent moves or not
to the empty site on account of the difference between the
dissatisfaction indexes associated with the two locations: if
his current neighborhood is characterized by the set �Ns ,Nd�
of similar and different neighbors, and the target site by the
set �Ns� ,Nd��, the displacement occurs if:

�Nd� − T�Nd� + Ns��� − �Nd − T�Nd + Ns�� � 0. �8�

Let us emphasize that the parameter D disappears in this
difference of indexes, so that the internal moves only depend
on the tolerance parameter T.

A Lyapunov function of this model is the energy of the
Blume-Emery-Griffiths model �Eq. �4��-with DBEG replaced
by 2D �see also the expression Eq. �6� of the dissatisfaction
index�. This shows an equivalence between the zero-
temperature dynamics of this spin-1 model and the present
model, except for the following kinetic restrictions: here red
agents cannot become blue and conversely. The energy is
always decreasing during the dynamics, but the constrained
dynamics create barriers between local minima. Conse-
quently, the energy does not necessarily reach its absolute
minimum. Figure 1 shows the dependency on D of the en-
ergy at the fixed point �or in the stationary regime�, for dif-
ferent fixed values of the tolerance T. On the same figure, the
energy of the corresponding BEG model at zero temperature
limit is also shown: one observes only weak differences be-
tween the two models. We attribute this weak difference to
the fact that the absence of thermal noise makes the inter-
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FIG. 1. �Color online� Mean energy �Es� of Schelling-like and
�EBEG�K=2T−1,DBEG=2D�� of Blume-Emery-Griffiths models
with respect to D for different values of the tolerance T. The quan-
tities have been averaged on 30000 configurations of 100�100
lattices after equilibrium. As for the Blume-Emery-Griffiths energy,
it has been obtained by using a Heat Bath algorithm at a very low
temperature.
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faces robust, the latter contributing to surface terms in the
energy which are small compared to the dominant volume
terms.

III. NUMERICAL SIMULATIONS

Numerical simulations are performed on a L�L lattice
�L=100� with free boundary conditions for different values
of the tolerance T and of urban attractiveness D. The initial
configurations are fully mixed as the agents and vacancies
are randomly placed on the lattice. The dynamics previously
described is applied until the system reaches equilibrium,
i.e., when the computed quantities only have very weak fluc-
tuations or when the system is frozen. Figure 2 shows the
final configuration for different values of T and D.

The variety of observable configurations for the different
values of the urban attractiveness D depends on the tolerance
T. However, there are two extreme phases that we meet at
each tolerance: one without vacancies and one dominated by
vacancies. Actually, at highly negative D, for any tolerance,
no vacancy is present. The agents of the two types are in
direct contact. Indeed, the lattice is so welcoming that agents
prefer to remain in it even with different neighbors. Con-
versely, for the high values of D, the environment is so un-
welcoming that agents massively leave. In-between, accord-
ing to the value of the tolerance considered, vacancies may
appear and create interfaces isolating the two types of agents.
Thus, the interfaces between red and blue agents are of sev-
eral types: the contact can be direct or vacancies can separate
the agents. The interfaces also have several shapes: rugged or
smooth giving more or less compact clusters. A quantitative
analysis will give the existence domains of these interfaces.

A. Numerical analysis: Types of interfaces

To study the occurrence of the phases, we compute differ-
ent quantities such as the mean numbers of different neigh-
bors per site and the density of agents. The number of agents
allows to locate the transition to the state of vacancies. This

quantity has been plotted on Fig. 3 versus the urban attrac-
tiveness for several values of the tolerance.

The density of agents first slightly departs from its maxi-
mum value. This corresponds to the appearance of the first
vacancies. As D increases, the density of agents abruptly
falls to a very low value showing a discontinuous transition
to the predominant vacancy state. This decrease does not
lead to a zero value of the density because some small clus-
ters of agents remain in a “sea of vacancies.” Note that for
high T, the appearance of the first vacancies almost coincide
with the sharp transition to the predominant vacancy state.

The evolution of the number of different neighbors �Fig.
4� yields the outline of the interface type. As D is increasing,
the number of links between the two different types of agent
decrease as a result of either the growth of the clusters or the
departure of different neighbors.

When the number of different neighbors becomes null, a
full vacancy interface separates the clusters. There no longer
exists contact between different agents. Let us remark that
before a full vacancy interface appears when D is increased,
a thinner interface of vacancies is observed. This interface
that we will characterize as width-1, is such that a path can
be followed between agents by going only “through” neigh-
boring vacant sites without encountering an occupied site.
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FIG. 2. Final configurations obtained for different values of the
parameters T and D with 100�100 lattice. Dark and light gray
pixels correspond to the two types of agents whereas white pixels
represent vacant sites.
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However diagonal contacts between different agents may
still exist. This is not the case for the full vacancy interface
that we will call width-2. Figure 5 illustrates both types of
interfaces by zooming in two configurations.

The plots of the previous quantities on Figs. 3 and 4 give
the existence domains of the different types of interfaces.
However, they do not provide much information about the
shapes of the interfaces.

B. Numerical analysis: shapes of interfaces

To determine the evolution of the shape of the interfaces
between agents, we measure the size of the interface. This
measure, plotted in Fig. 6, is the sum of the numbers of
different neighbors and the number of contacts between va-
cancies and agents.

In the phase free of vacancies, the size of the interface
decreases when increasing D, meaning that the clusters be-
come larger and larger to limit the number of contacts be-
tween red and blue agents. As for the phases whose equilib-
rium configurations comprise width-2 vacancy interface
�respectively, width-1 vacancy interface�, when D increases
within the domain of existence of the phase considered, the
size of the interface first increases then decreases. This be-
havior can be explained as follows: at the lowest values of D
for which the considered regime exists, the interface is rug-
ged, the agents accept vacancies �respectively, different
agents and vacancies� in their neighborhood instead of simi-
lar neighbors. But as D increases, the environment becomes
less welcoming. As a consequence, the agents reorganize
themselves in compact clusters so as to increase the number
of similar agents with respect to the number of vacancies
�respectively, different agents and vacancies� in their neigh-
borhood. This reorganization renders the interfaces smooth
and yields a decrease in total energy even with a large value
of D.

C. Remarks

Let us notice that the main results do not depend on the
initial conditions chosen in the simulations. The results pre-
sented on all the figures have been obtained with random
initial configurations, red agents, blue agents and vacancies
being uniformly distributed in the same proportions �1/3� on
the lattice. If, when increasing D, instead of drawing a ran-
dom configuration for each new value of D, we take as initial
configuration the equilibrium configuration obtained at the
previous value of D, the existence domains of the phases are
not modified. Differences does occur, but only concern the
evolution with D of the size of the clusters: starting from the
previous equilibrium configuration leads to steadily growing
clusters with increasing D, which is not the case when start-
ing each simulation with a new random initial configuration
as described above. When using the same protocol but with a
decreasing D, the locations of the transitions are roughly the
same as those obtained by starting from random initial con-
figurations, except for the transition to the predominant va-
cancy state. Indeed, given that the latter state is stable for any
positive value of D, the transition only occurs at D=0. Ba-
sically, unless we take extreme initial configurations �for ex-
ample, vacancies state�, the existence domains of the phases
do not depend on the initial configuration. Differences can
only be seen in the shapes of the interfaces. Indeed, if we
begin with an equilibrium configuration obtained for a set of
values �D ,T� where the agents are less easily satisfied, and
therefore already presents some structure, it necessarily leads
to more compact clusters than when starting with a random
initial configuration.

IV. THEORETICAL ANALYSIS: INTERFACES

By studying the moves allowed by the dynamics, one can
predict the type of interface for ranges of T and D.

A. State free of vacancies

Let us take a configuration free of vacancies and write the
conditions for the appearance of at least one vacancy. The

FIG. 5. Types of vacancies interface: width-1 �left� and width-2
�right� interfaces.
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vacancies appear only if at least one agent has an unsatisfy-
ing neighborhood, i.e., the dissatisfaction index Idissat �Eq.
�5�� is positive. Since here Ns+Nd=8, this condition can be
written as follows:

Ns � D + 8�1 − T� . �9�

This resulting vacancy will not be occupied by an agent of
the other type only if the number of different neighbors sat-
isfy this inequality as well:

Nd � D + 8�1 − T� . �10�

Therefore, adding the two previous inequalities, one gets that
the vacancies appear only if:

D � − 4 + 8T . �11�

B. Vacancy interface

Let us assume that the system reaches a configuration
with a complete vacancy interface separating the different
clusters, i.e., no contact between different agents exists. For
at least one agent �let us call it A� to tolerate one different
neighbor, the number of identical agents Ns around him must
verify the inequality:

1 − T�Ns + 1� + D � 0, �12�

TNs � 1 − T + D . �13�

The number of similar neighbors Ns� of his single different
neighbor �let us say A�� has to satisfy this inequality as well:

TNs� � 1 − T + D . �14�

Both agents A and A� have at least two neighbors in common
and they are neighbors with one another, which leads to:

Ns � 5, �15�

Ns� � 5. �16�

Moreover, at least two neighbors of A are in the neighbor-
hood of two neighbors of A�. As we assume there is no pair
of different agents, this constrains two of them to be vacan-
cies. The sum of the similar agents of A and of A� must be
lower than eight. The first link between red and blue agent
appears only if:

8T � TNs + TNs� � 2�1 − T + D� , �17�

D � 5T − 1. �18�

Consequently, if a complete vacancy interface �no contact
between different agents� exists, it subsists at least for D
�5T−1. The same kind of argument can be made to show
that an agent can have two different neighbors only if:

D � 6T − 2. �19�

In other words, if there exists a vacancy interface of width 1,
i.e., such that we can travel all the way by following only
nearest-neighbors �Moore neighborhood� vacancies and

which allows diagonal contacts between agents, this vacancy
interface subsists at least for D�6T−2.

C. Predominant vacancy state

The agents do not leave the lattice if the following condi-
tion is fulfilled:

Nd �
− D + TNs

1 − T
. �20�

It requires a number of similar neighbors at least as great as
D /T. Let us notice that the agents and vacancies are initially
uniformly distributed. As a result, a large majority of agents
do not have more than three similar neighbors. If D /T�3,
the agent will leave in massive numbers and will never come
again because almost no agent have more than three similar
neighbors. Consequently, if D /T�3, the vacancies are pre-
dominant in the equilibrium state.

D. Summary: Domains of existence of interfaces

These analyzes are summarized on the phase diagram rep-
resented on Fig. 7, giving the domains of existence of the
different types of interfaces. The theoretical phase bound-
aries, obtained from studying the dynamical stability of the
interfaces, are in good agreement with what we found via the
numerical simulations presented above, Sec. III A, as illus-
trated by the simulations points marked on the Fig. 7.

V. DISCUSSION

We have introduced a variant of the multiagent segrega-
tion model of Schelling in which agents are allowed to leave
or enter the “city.” The dynamics of this model admits a
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FIG. 7. �Color online� “Phase diagram” of our model in the
parameter space �attractiveness D, tolerance T�. Theoretical phase
diagram: lines determined analytically �see text�, limiting the do-
mains of existence of the different states–free of vacancies, with
predominant vacancy and with vacancy interface. Simulation points
are marked on the diagram: the squares, triangles and diamonds
indicate the points at which, respectively, the first vacancies, the
width-1 interface and the width-2 interface appear. The circles cor-
responds to the last points at which the vacancies are not predomi-
nant. �Remark: the simulations have been done for values of D
incremented by a constant factor 0.2: this gives the numerical pre-
cision of the location of the phases.�
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Lyapunov function which makes it identical to the zero-
temperature dynamics of the Blume-Emery-Griffiths model
with kinetic restrictions. In this model, phases with new fea-
tures compared to both the BEG and Schelling’s models
emerge.

It is worthwhile discussing with more details the corre-
spondence with the Blume-Emery-Griffiths model. Let us
first briefly recall the nature of the phases of the latter. Sev-
eral studies �14,21,22� shows the presence of ferromagnetic,
paramagnetic, predominant vacancies and antiquadrupolar
phases whose typical configurations are lattices with two
sublattices, one with spins equal to zero, one with alternated
spins −1, +1. These configurations do not appear for the
range of parameters for which we have a correspondence
with our variant of the Schelling model. Moreover at low
temperature and in particular in the zero temperature limit, in
the BEG model only ordered phases—ferromagnetic or va-
cancies phases—may exist in the domain of parameters that
we are interested in.

In the Schelling-type open model discussed here, a phase
of vacancies appears at D=3T instead of D=2�K+1�=4T
�corresponding to DBEG=8T� in the Blume-Emery-Griffiths
model. Actually, since the direct exchange between agents of
different types is not allowed by the dynamics, agents do not
have other choices than to leave the system to become satis-
fied. That is why, the equilibrium configurations with a high
density of vacancies appear earlier in the multiagent model.
In the range of values of the parameters at which the ferro-
magnetic phase exists in the BEG model, the deterministic
dynamics with kinetic constraints gives rise to a stable state
with red and blue agents coexisting. Indeed, in this regime,
the agents reorganize themselves to reduce their dissatisfac-
tion index but they do not need to leave the lattice to be
satisfied. Consequently, both types of agents are present on
the lattice and as the system is kinetically constrained, the
completely red or blue configurations do not appear even if
this would minimize the total energy. Moreover, such coex-
istence can be sustained even with moderately friendly envi-
ronments �not too negative D�, thanks to the adjustment of
the interfaces.

As said above, for the range of parameters that we con-
sider, the ground state of the Blume-Emery-Griffiths model
is either ferromagnetically ordered or ordered with all spins
equal to zero. The BEG ground states may show clustering
with vacancy interfaces �which can be flat or rough� but only
if J+K, the sum of the bilinear and biquadratic interaction
coefficients, is negative �23,24�. Since in our model J is
equal to 1, we have always J+K=2T�0. This shows that the
interfaces appearing in our study do not correspond to con-
figurations giving the absolute minima of the BEG energy,
but result from the constrained dynamics.

At this point one may ask what would be the results if a
thermal noise was introduced in our model while keeping the
same kinetic constraints. One may consider the dynamics
where the randomly chosen agent decide to move or not �to
a vacant site or outside the city� according to a Glauber type
choice rule with a temperature like parameter 1 /	: the move
is accepted if it is favorable to the agent, and otherwise ac-
cepted with probability exp�−	
Idissat� where 
Idissat is the
increase in dissatisfaction index. One can then show that,

despite the kinetic constraints forbid a direct exchange be-
tween agents of different types, the system reaches an equi-
librium distribution given by the Gibbs distribution of a BEG
model at temperature 1 /	, with an effective value of D
which is Def f =2D+ ln 2

	 �25�. At a small value of the tempera-
ture 1 /	, one will have a long transient during which inter-
faces separating clusters of agents of different type will ap-
pear. The time scale on which the segregation of the zero-
temperature dynamics will appear and be sustained will be
larger if one increases the rate at which external exchanges
are tried. It is interesting to note that, in contrast with the
BEG model, the dynamics in the present model leads to seg-
regation, but does not lead to an ordered state which would
mean the full exclusion of one type of agent.

Let us now come back to Schelling’s model and more
generally to the socio-economic context. In Schelling’s origi-
nal model and its variants which consider a fixed number of
agents and vacancies, it is known that a phenomenon of seg-
regation appears. This segregation is defined as the grouping
of agents of the same type together, while the vacancies have
no functional role. They do not display patterns and thus play
no major role in the process of segregation. Indeed, as shown
for the variant introduced in �13�, the vacancies are uni-
formly distributed in the equilibrium configurations whatever
the phase, segregated, mixed or mixed frozen. There is no
regard on the interfaces between the groups. In the open
model studied here, a completely different kind of segrega-
tion consisting in the isolation of groups of agents from each
other by vacancies is exhibited. This phenomenon can be
linked to the percolation of vacancies in the network
whereas, with a fixed vacancy density, what matters is the
percolation of the agents of a given type �13�.

With internal/external exchanges being assimilated to, re-
spectively, moving in/out a given area like a city, it may not
seem realistic to have the same probability for both types of
exchanges. However, internal exchanges only induce a mini-
mal level of clustering and, thus, have only a limited impact
on the existence domains of the phases. The equilibrium con-
figurations are conditioned by the external exchanges. Let us
notice that if we use a weak rate of external exchanges, the
system converges to the final states after a long transitory
phase while the internal exchanges dominate the dynamics.
As a result, the proportion of internal exchanges mainly in-
fluences the shapes and size of the clusters but not the type of
the interfaces.

To conclude, we recall and stress that, in the present work,
the build-up of interfaces through the appearance of vacan-
cies is the main focus. Depending on the tolerance threshold
T and the city �un�attractiveness D, the vacancies may be
sporadically distributed along the interface or form complete
connected vacancy borders �large or thin� between agents.
The equilibrium configurations highlight the permanent com-
petition between searching a neighborhood providing a high
enough satisfaction with respect to the level of attractiveness
of the environment, and leaving the city altogether. Contrar-
ily to what would be obtained with a thermal noise, the pos-
sibility to leave the city does not lead to an unstability, which
would make the city occupied by agents of a same single
type. Here, both types of agents coexist in the city, but the
dynamics leads to a segregation into clusters with a variety
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of interfaces between the clusters. We classify these inter-
faces according to two features: �i� their type: blue and red
agents may be in contact or separated by vacancies and �ii�
their shape: rugged or smooth.

As a matter of fact, the most important conclusion is that
here vacancies have a functional role, they allow weakly
tolerant agents to be satisfied. This is not the case in Schell-
ing’s original model where the vacancies are only “conveyor
of moves.” The functional character of the vacancies is
clearly established with the formation of interfaces. When
vacancies do not single handedly allow the agents to be sat-
isfied by decreasing their number of different neighbors, the
interfaces become smooth to increase the number of similar
ones.

Finally, one may speculate on the interpretations of the
results in a socio-economic context. The compactification of
clusters of similar agents encountered when the environment
becomes hostile �large positive D� may be reminiscent of the
strengthening of the links between people via a community
network that sociologists have observed, for example, in
some neighborhoods of Chicago �26�. These strong links
may prevent a massive exodus due to the lack of attractive-
ness of the environment. As for the presence of full vacancy
interfaces obtained for some range of values of the control
parameters, they separate groups in a way which reminds of
sociospatial segregation reinforced by walls, as in Johannes-
burg �27�. In the model, we observe the formation of fron-
tiers with a homogeneous network with no infrastructure or
other physical boundaries. Clearly preexisting structural bor-
ders �roads, parks, rivers…� may affect segregation �Ex-
ample, Paris ring road �27��. How would these physical bor-
ders affect our results? In the range of parameters where
vacancy borders appear, the segregation dynamics can be
expected to take advantage of such pre-existing frontiers
which would then become parts of the social borders. In

other regimes, even if the physical frontiers may facilitate the
emergence of an interface, they will not necessarily lead to
social frontiers. It would therefore be interesting to perform
empirical studies in order to see under which conditions a
physical border is at the same time a social border.

More generally, further studies should focus on variants
that take into account realistic socio-economic features of the
agents or infrastructures of the city. For example, one could
categorize agents according to their income, associate prices
to the vacant sites and move the agents according to their
financial capacities. Also, the level of attractiveness of the
urban environment D could be heterogeneous on the lattice
in order to reflect the presence of more or less facilities in
different areas. In the same vein, one could make the attrac-
tiveness depend on the type of agent who looks at a vacant
place to account for various subjective criteria, and agents
could be given an idiosyncratic tolerance threshold. It would
be interesting to model the presence of ethnical minorities by
changing the relative proportion of agents in the reservoir,
that is, by modulating the proportion of attempted arrivals of
each type of agent. Finally, we have considered an open sys-
tem with an urban domain of a fixed size: one could deal
with a completely open system by letting free the size of the
urban system. This would address issues related to the urban
sprawl, of different natures than the one related to segrega-
tion.
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