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We present numerical studies of electrical breakdown in disordered materials using a two-dimensional
thermal fuse model with heat diffusion. A conducting fuse is heated locally by a Joule heating term. Heat
diffuses to neighboring fuses by a diffusion term. When the temperature reaches a given threshold, the fuse
breaks and turns into an insulator. The time dynamics is governed by the time scales related to the two terms,
in the presence of quenched disorder in the conductances of the fuses. For the two limiting domains, when one
time scale is much smaller than the other, we find that the global breakdown time tr follows tr� I2 and tr

�L2, where I is the applied current and L is the system size. However, such power law does not apply in the
intermediate domain where the competition between the two terms produces a subtle behavior.
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I. INTRODUCTION

Motivated by important aspects such as failure prediction
and material improvement, resistor network models �1–4�
have been intensively used for numerical studies of mechani-
cal and electrical breakdown phenomena in disordered me-
dia. The quasistatic fuse model �1�, although very simple,
reproduces the basic damage regimes in breakdown phenom-
ena �5,6�. In the infinite disorder limit �7� the percolation
regime is present. The fracture is totally disorder driven, and
fuses burns out randomly until global breakdown is reached.
If the disorder is small, there is little precursor damage until
a single fracture is developing from one end of the system to
the other. This is the nucleation regime.

However, the quasistatic fuse model contains no real dy-
namics and does not capture time dependency in correlations
caused by the local currents. Dynamical effect has been in-
cluded in the fuse model to study the elasticity problem �8�.
Sornette and Vanneste �9,10� developed a model for electri-
cal breakdown and plastic deformation, which they referred
to as the dynamic thermal fuse model. The temperature of a
fuse was governed by a general Joule heating term, ib /g, and
a heat loss term, −aT, which can be considered as a simpli-
fication of a full spatial diffusion description. This model has
been experimentally realized by Lamaignère et al. �11�, and
later Mukherjee et al. �12,13� by studying electrical break-
down of carbon-polymer composites. This shows that the
thermal fuse model is able to capture some of the phenom-
enology of breakdown in disordered media, such as critical
behavior in the breakdown time. However, the model does
not take into account the correlations due to heat diffusion
between fuses. Thermal interaction with neighbor fuses has
previously been studied by Pennetta et al. �4,14� in a biased
percolation model. But this model implies instant thermali-
zation of the fuses and thereby neglects time-dependent ef-
fects.

With the thermal fuse model as a base we introduce spa-
tial heat diffusion in the system. We study how the interplay

of quenched disorder, current enhancement effects, and heat
diffusion give rise to time-dependent effects which may
seem counterintuitive with respect to the quasistatic fuse
model and the biased percolation model.

II. MODEL

Our simulations are based on the thermal fuse model pro-
posed by Sornette et al. �9,10�. The model consists of a
square lattice oriented at 45° with respect to the two bound-
aries opposite of each other, which act as busbars �see Fig.
1�. Each bond in the lattice is an electric fuse which behaves
like an ohmic resistor when intact. A voltage is applied over
the busbars which induces a total current I in the lattice. To
each fuse j we assign a conductance gj from a power-law
distribution p�g��g−1+�. The conductances are generated
from gj =xj

B, where xj is a uniformly distributed random
number in the interval �0.5,1.5�, and B=�−1. We call B the
disorder parameter. The values of the conductances are set at
the beginning and never changed, corresponding to a
quenched disorder.

Our model differs from the thermal fuse model by Sor-
nette et al. in the sense that the term −aT is replaced by a
spatial diffusion term. We also use a fixed b=2, which cor-
responds to the Joule heating effect. There is no loss of heat
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FIG. 1. A small network of L=4. The black fuses are the 6
heat-exchanging neighbors to fuse j.
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at the boundaries, so the system will always reach global
breakdown for I�0. We then arrive at the following heat
equation for our model in two dimensions in the continuum
limit:

�T

�t
�x,y,t� =

i2

gC
�x,y� + D�2T�x,y,t� , �1�

with boundary condition �T /�n=0 on the top and bottom
boundary. Periodic boundary conditions are applied in the
horizontal direction. The heat capacity is C=1 for every fuse,
and D is the thermal diffusivity. The evolution in time is
given by explicit Euler integration, and adaptive time step is
used. When a fuse reaches its temperature threshold Tr, cho-
sen equal for all fuses, it breaks and irreversibly turns into an
insulator. This is the way the temperature field reacts back on
the current field. All the fuses start at equal temperature.
When a fuse burns out, the current redistributes itself instan-
taneously in the network. The network will then heat up until
another fuse burns out. The total current is kept constant
during the fracture process, with I=1 for the results herein, if
not specified otherwise. The fuses interact with the six near-
est neighbors through heat diffusion �see Fig. 1�. Note that if
more than one fuse reaches the threshold Tr within the same
time step, those fuses are broken before the temperature field
is updated. This ensures that the currents are instantaneously
redistributed. The current distribution is calculated by the
conjugate gradient method.

III. TWO COMPETING TIME SCALES

A series of final fracture patterns for different values of D
and B are shown in Fig. 2. The fracture which disconnects
the network in two pieces is outlined, and the temperature
field is indicated by colors. B=1 yields a uniform distribu-
tion, while B�1 gives a broader distribution with a tail to-
ward large conductances. Note the lower cutoff at 0.5B and
upper cutoff at 1.5B in the distribution.

The time dependence is governed by the two time scales
�0=gCTr / i2 and �1=�2 /D. The competition between these
time scales generates different domains of behavior. For �0
��1 the domain is referred to as the large-current domain. If
we consider D=0, the large-current domain is present for all
values of B. By comparing the fracture patterns for B=1 and
B=5 we see that for B=5 a few large cracks appear, while
for B=1 the pattern is more diffuse, with single broken fuses.
Due to the broader distribution for B=5, the small conduc-
tances will heat up much faster than the large conductances,
and the cracks will grow along pathways of small conduc-
tances. This is contrary to what the quasistatic fuse model
gives, where increased disorder results in more single broken
fuses and a diffuse breaking pattern. This difference can be
attributed to where the disorder is applied in the two models.
In our model the disorder is in the conductances, while in the
quasistatic fuse model the disorder is in the thresholds of the
fuses.

As D is increased, an intermediate domain appears. Since
the diffusion smoothens temperature differences, the disorder

(b)(a) (c)

(d) (f)(e)

FIG. 2. �Color online� Temperature distribution with fracture patterns at the moment global failure is reached. The fracture which
disconnects the network in two pieces is outlined. A system size of L=100 is used. �a� B=1 and �b� B=5. A fixed seed is used for the random
number generation so that the effect of the diffusion is clear.
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in the temperature field decreases, and the effect of the re-
distribution of the local currents becomes more apparent.
This is visible in form of a less diffuse damage pattern, and
a more localized crack �see Fig. 2 for D=0.1 and D=0.5�.

Sufficiently large values of D yields �0	�1, and the
small-current domain appears. This is dominated by the re-
distribution of the local currents and is characterized by a
single crack disconnecting the system, with little precursor
damage. Similar behavior appears for low disorder in the
quasistatic fuse model.

The three domains are visible when we plot the break-
down time tr as a function of I on a log-log scale. This is
shown in Fig. 3. For both the small- and large-current do-
main we find a good fit with the power law

tr � I−2. �2�

To recover this, it is sufficient to show that the order of
local breakdown events is independent of the value of I. For
the large-current domain we can neglect the diffusion term in
Eq. �1�. Then we realize that the first fuse to break will not
change when I is changed and that the local currents are
proportional to the applied current, i� I, between each break-
ing event. It follows that rest of the breaking sequence will
follow in the same order when I is changed. A more com-
plete derivation of Eq. �2� is given in Ref. �10�.

In the small-current domain the temperature differences
are small, and the value of the diffusion term in Eq. �1� will
only be significant in a short period of time after each break-
ing event. Hence, it is reasonable to assume i� I between
each breaking event, and we obtain Eq. �2� for this domain as
well.

The presence of the three domains for different values of
I is in agreement with the thermal fuse model by Sornette et
al. �9,10� and experimental results. Lamaignère et al. �11�
fitted the time-to-failure data with Eq. �2� for large values of
I, and tr��I− Ic�−2.1 for small values of I. Mukherjee et al.
�13� found a good fit with tr��I2 / Ic

2−1�−1. By letting Ic
→0, which is the case in our model due to no heat loss, these
fitting laws are consistent with Eq. �2�. In the intermediate
domain there is a crossover from the small-current to the

large-current domain. In this domain the order of local break-
down events depends strongly on the value of I, and the time
dependence is more subtle. Figure 4 shows the breakdown
time versus D. We find that larger values of D result in
longer tr since high temperatures are more effectively
smoothened out. This result is qualitatively in agreement
with the biased percolation model �4�. However, a probabi-
listic approach to the disorder was used, while our model
uses quenched disorder in the conductances of the fuses. This
difference manifests itself in the impact D has on the perco-
lation threshold pc. This is shown in the inset of Fig. 4.
Diffusion causes less disorder in the temperature field, hence
we find that pc decreases as D increases. This is contrary to
what the biased percolation model gives, which approaches
ordinary percolation �pc=0.5� for vanishing disorder in the
temperature field. We also find that the difference in tr be-
tween the two limiting domains for D=0 and D	0 in Fig. 4
is smaller for B=1 than for B=5. This difference reflects the
time scale, �1, at which temperature differences are smooth-
ened out, and �1 decreases with decreasing disorder.

IV. SCALING ANALYSIS

Based on analogy to percolation theory �15�, we assume
the following finite-size scaling relation:

tr � Ls. �3�

Figure 5 shows a log-log plot of tr as a function of L. The
total electric resistance R is independent of L in a homoge-
neous two-dimensional system. We assume this for our
model also, and we get i�1 /L. Since i� I in both the small-
and large-current domains, it follows that tr�L2. Hence, for
small values of L, the large-current domain appears ��0
��1�. A crossover to the small-current domain ��0	�1� is
observed for sufficiently large values of L with D�0.

However, in the intermediate domain i� I is not a valid
assumption, and I cannot be replaced by 1 /L in the function
for tr.
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FIG. 3. Log-log plot of the breakdown time tr as a function of I.
The solid lines correspond to Eq. �2�. The data points are averaged
over 10 samples for L=100.
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FIG. 4. Time to failure tr as a function of D with I=1. Inset:
percolation threshold pc as a function of D. The data points are
averaged over ten samples for L=100.
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V. ROUGHNESS OF THE FRACTURE

We define the width of the fracture surface as the height-
height fluctuations w= ��z2�− �z�2�1/2, where z is the height
from the bottom of the network to the fuses that belong to
the fracture surface, i.e., the crack which disconnects the
network. Studies of the quasistatic fuse model in two dimen-
sions establish that the width scales as w�L
, with 
=0.7
within 10% accuracy for different threshold distributions
�16,17�.

We generated between 1000 and 100 samples of sizes
from L=10 to L=100, for various values of B and D. A
log-log plot of w as a function of L is shown in Fig. 6. The
slopes of the linear fits give the exponents 
 listed in Table I.
The roughness exponent 
 seems to be independent of which
time scale is dominating for B=5, i.e., large disorder. We
obtain 
=0.75�0.1, which is in the range of the global
roughness exponent observed in the quasistatic fuse model.
For B=1 the roughness exponent is highly dependent on D

and is approaching unity for increasing D. It means that the
fracture is guided by the structure of the network, and this is
a trivial regime of behavior.

VI. DIVERGENCE OF THE RESISTANCE

In the study by Lamaignère et al. �11� they found that the
total electrical resistance R follows the power law

R � �tr − t�−�, �4�

in a critical region close to tr. A value of �3D�0.65 was
obtained. A log-log plot of R versus �tr− t� / tr for our model is
shown in Fig. 7. The obtained value is �=0.28�0.05. This
is in agreement with the reported value for the thermal fuse
model �10� and seems to be independent of the thermal dif-
fusivity and disorder parameter. However, the critical region
for power-law scaling moves closer to tr as the small-current
region is approached, and as the disorder in the conductances
is decreased �18�.
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FIG. 5. Log-log plot of the breakdown time tr as a function of L.
The solid lines correspond to Eq. �3� with s=2.
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FIG. 6. A log-log plot of w as a function of L. The solid lines are
linear fits to the data and gives the roughness exponents shown in
Table I. The data for different parameter values are shifted verti-
cally for clarity.

TABLE I. Values of 
 for different thermal diffusivities and
disorder parameters.

D B 


0.0 5 0.72�0.1

0.1 5 0.72�0.1

0.5 5 0.76�0.1

10 5 0.77�0.1

50 5 0.76�0.1

0.0 1 0.74�0.1

0.1 1 0.80�0.1

0.5 1 1.0�0.1

1e-06 0.0001 0.01 1
(t

r
-t)/t

r

1

4

16

R

D=0.0, B=5
D=0.5, B=5
D=0.0, B=1
D=0.1, B=1
D=10, B=5

FIG. 7. Log-log plot of R as a function of �tr− t� / tr for different
values of B and D. The data points are averaged over 50 samples of
L=100. The solid lines have slopes between 0.26 and 0.30, giving
��0.28. For D=10 we see that the critical region is very small,
close to tr.
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VII. CONCLUSION

We have investigated a dynamic thermal fuse model with
heat diffusion. The time dependence is governed by the two
competing time scales �0=gTrC / i2 and �1=�2 /D. The break-
down time follows tr� I−2 in both the small-current domain
��0	�1� and large-current domain ��0��1�. This is in agree-
ment with experiments on electrical breakdown of carbon-
polymer composites �11,13�. In the intermediate domain,
competition between the two time scales produces a more
complex behavior. A characteristic feature of this domain is
that increasing the thermal diffusivity lengthens the lifetime
tr of the system.

Heat diffusion introduces new subtleties to the thermal
fuse model, which still remains to be investigated. However,
the power-law behavior in the divergence of the resistance
and in the roughness of the fracture has proven to be robust
and seems independent of the thermal diffusivity and the
disorder in the conductances.
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