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Optimal transport on supply-demand networks
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In the literature, transport networks are usually treated as homogeneous networks, that is, every node has the
same function, simultaneously providing and requiring resources. However, some real networks, such as power
grids and supply chain networks, show a far different scenario in which nodes are classified into two catego-
ries: supply nodes provide some kinds of services, while demand nodes require them. In this paper, we propose
a general transport model for these supply-demand networks, associated with a criterion to quantify their
transport capacities. In a supply-demand network with heterogeneous degree distribution, its transport capacity
strongly depends on the locations of supply nodes. We therefore design a simulated annealing algorithm to find
the near optimal configuration of supply nodes, which remarkably enhances the transport capacity compared
with a random configuration and outperforms the degree target algorithm, the betweenness target algorithm,
and the greedy method. This work provides a start point for systematically analyzing and optimizing transport

dynamics on supply-demand networks.
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I. INTRODUCTION

Network transport has attracted increasing attention in re-
cent years (see the review papers [1,2] and the references
therein). Indeed, it describes a large number of natural phe-
nomena and technological processes, such as substance flow
in a metabolic network, power transmission in an electric
network, information propagation in the Internet, and so on.
A matter of prime importance is to make the transport pro-
cesses more effective and efficient, corresponding to maxi-
mizing the global capacity and minimizing the average de-
livery time. Previous works that addressed this issue can be
roughly classified into two categories: one concerns the op-
timization of underlying topology [3-5], while the other fo-
cuses on the design of highly efficient routing protocols
[6-10].

A latent assumption in most previous works is that every
node in a transport network plays the role of a host; that is to
say, every node has the ability of creating a certain kind of
substance, energy, or information. However, the real world is
far from this assumption. For example, in an electric network
[11,12], there are two kinds of nodes: power stations and
transformer substations. The power is generated in the
former nodes, flowing to the latter ones, and then imported to
customers through them. Therefore, power stations behave as
a kind of suppliers, while the transformer substations are
customers holding demands. In some Internet serving sys-
tems, such as music libraries (e.g., audioscrobbler.com; see
Ref. [13]), movie-sharing systems (e.g., Netflix.com; see
Ref. [14]), and online viewing site (e.g., YouTube.com; see
Ref. [15]), all the resources are located in a few servers,
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while other connected nodes, usually personal computers,
only regale themselves with those services. Those examples
give rise to a general concept of supply-demand network,
whose nodes are classified into two categories: supply nodes
provide some kinds of services, while demand nodes play the
role of customers. Analysis of supply-demand networks has
found its applications in various real systems, ranging from
the power grids [16,17] to supply chain networks [18,19].

In this paper, we propose a general model for the transport
on a supply-demand network (see the Appendix for the dis-
cussion about searching process on supply-demand net-
works, which is similar yet different from the transport dy-
namics), whose capacity is very sensitive to the locations of
supply nodes. By applying a simulated annealing (SA) algo-
rithm, we obtained the near optimal locations of supply
nodes subject to the maximal network transport capacity. The
proposed algorithm performs obviously better than the ran-
dom selection, degree targeted, betweenness targeted, and
greedy methods.

II. MODEL

Consider a network consisted of N nodes, which are clas-
sified into two categories: one is called the supplier that pro-
vides a certain kind of service, and the other is called the
customer who requires this service. Here, the service is an
abstract concept and can stand for substance, energy, infor-
mation, etc. For simplicity, we use the language of the Inter-
net; that is to say, every customer needs some information
packets (resource), and only the suppliers can generate these
packets. We assume that the demands are uniformly distrib-
uted, namely, each customer needs a unit number of packets
(one can simply say one packet). For a given customer, we
suppose that this packet is always sent by one of the nearest
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FIG. 1. Illustration of the distribution of edge loads in a supply-
demand network. The gray solid and hollow circles denote supply
and demand nodes, respectively. In each of (a)-(c), the circle
marked by a star is the target demand node, and the resulting loads
are labeled besides corresponding edges. Integrating (a)—(c), the
distribution of edge loads can be obtained, as shown in (d). Here,
Liax=4/3.

suppliers. However, in general case, there are several nearest
suppliers and for each there are several shortest paths. In the
real implementation, one of those shortest paths should be
randomly picked, and the packet will follow this path from
the supplier to the customer. In the numerical calculation, to
reduce the fluctuation, if there are in parallel k shortest paths
from a customer to the suppliers (generally, those paths aim
to several nearest suppliers), we assume that the packet is
divided into k pieces, each goes through one shortest path
and contributes 1/k to the traffic load (see an illustration in
Fig. 1).

If the bandwidth (i.e., traffic capacity) of each edge is
identical, the maximal edge load L, is the key factor de-
termining the traffic condition. Actually, the traffic conges-
tion will occur when L,,,, exceeds the bandwidth. Therefore,
given a limited bandwidth, the smaller L,, corresponds to
higher transportation capacity. Analogously, in the previous
studies [3,7], the maximal node load is used to quantify the
system’s performance: the smaller the maximal node load,
the higher the transport capacity. In this paper, we use edge
load instead of node load because in the real systems, such as
the Internet and the highway, the congestion usually happens
along the edges, not at the nodes [20].

Given network structure and the number of suppliers, we
aim at finding out the optimal configuration of suppliers (i.e.,
the locations of suppliers) making L,,,, as small as possible.
This is an optimization problem with L, being the objec-
tive function, and the algorithm presented in this paper (see
below) can be directly extended to the case with maximal
node load being the objective function. In addition, since
many real transport networks have heterogeneous degree dis-
tribution (see the examples shown in Refs. [21,22]), we use
scale-free networks to mimic their topologies.

III. ALGORITHM

In a supply-demand network of N nodes and M suppliers,
there are in total (,Z) different configurations for suppliers’
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locations. Finding the optimal solution by evaluating all the
possible configurations is infeasible when N>M>1. The
optimization of a system with many degrees of freedom with
respect to a certain objective function is a frequently encoun-
tered task in physics and beyond (a similar optimization
problem, named p-median problem, was proved to be non-
deterministic polynomial-time (NP) hard [23], where the op-
timal configuration of M suppliers is required to minimize
the total distance of all demand nodes to their nearest sup-
pliers). One special class of algorithms used for finding the
high-quality solutions to those optimization problems is the
so-called nature inspired algorithms, including simulated an-
nealing [24,25], genetic algorithms (GAs) [26,27], genetic
programming (GP) [28], extremal optimization [29,30], and
so on. Here, we adopt the SA algorithm, whose procedure is
as follows:

(i) Randomly choose an initial configuration, denoted by
S0, Calculate its maximal edge load L, and set the best
solution as $°'=5° and LI=!=L . Set the system time as
t=1.

(ii) Randomly pick one supplier from the configuration
S*=! and change its location randomly; denote this new con-
figuration as §'. Calculate its maximal edge load L] ,..

(i) If L' <L then set SP'=§'" and L>'=L'
Lt = Lt—l

max max’ . max max‘ If
max = Limay, We accept the current .conﬁguranon, that is, set
t+t+1 and repeat (ii). Otherwise, if L

1 >L"! the current
configuration is accepted with probability e

max Ar%l_ax’ A
—AT where T is a
. _ 7t -1
temperature-like parameter and A=L, , —L_ .

When a con-
figuration is rejected, the algorithm directly goes back to (ii)
and keeps the system time ¢ unchanged.

To obtain the high-quality solution, one shall repeat step
(ii) as long as desired. In this paper, we terminate the algo-
rithm if the variance of L! _in the latest 10* time steps is
smaller than a threshold 107°. Note that one time step corre-
sponds to one implementation of step (ii), which is different
from the system time ¢. The parameter T is crucial for the
algorithmic efficiency. According to the Metropolis’ guid-
ance [31], in the initial stage, the accepting probability of a
new configuration should be close to 1. Therefore, we first
choose a relatively low temperature 7}, and numerically cal-
culate the corresponding accepting probability, resulted from
a random change of one supplier’s location in a completely
random configuration. The temperature is doubled until the
accepting probability reaches a threshold quantile of 0.50.
During the optimizing process, the temperature should
slowly decrease [25]; here we adopt the simplest method,
that is, we set T+« aT after every Q time step, where the
parameter « is 0.90 and the period is set as Q=0.1NM.

For comparison, we also implement some other algo-
rithms. A brief introduction is as follows: Random allocation
(RA)—the locations of suppliers are selected completely
randomly. Degree target algorithm (DTA)—the suppliers
are the M nodes with the highest degrees. Betweenness target
algorithm (BTA)—the suppliers are the M nodes with
the highest betweennesses (see Refs. [32,33] for the defini-
tion and calculation of node betweenness). Greedy method
(GM)—first, we consider the case with only one supplier and
find out the optimal location of this supplier that minimizes
the corresponding L,,,.. Then, we add one supplier and find
out its optimal location under the condition that the location
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FIG. 2. The objective function L,,, vs time step in the optimiz-
ing process of the SA algorithm. This figure illustrates a typical
result on a BA network of size N=1000 and average degree (k)
=6. The number of suppliers is set as M =10.

of the first added supplier is fixed. Repeating this operation,
that is, at the kth step, we add the kth supplier and find out its
optimal location subject to minimal L,,,, under the condition
that the locations of former k—1 suppliers are fixed. This
algorithm is terminated when M suppliers are added already.
Notice that the above-mentioned algorithms are presented in
this paper to address the optimization problem for transpor-
tation capacity of supply-demand networks; however, the
ideas of DTA and BTA have already been applied in inten-
tional attack [34,35], epidemic immunization [36,37], pin-
ning control of synchronization [38,39], and so on.

IV. RESULTS

In this paper, all the numerical simulations are imple-
mented based on the Barabdsi-Albert (BA) model [40],
which is one of the minimal models reproducing the hetero-
geneous degree distribution of real-world networks. Figure 2
reports a typical optimizing process, during which the objec-
tive function L,,, fluctuates strongly in the early stage and
approaches a relatively stable value lately. The proposed SA
can reduce the objective function L., by more than ten
times compared with its initial value corresponding to a ran-
dom selection of suppliers. We implement SA in BA net-
works for different M from 1 to 10 and take the average over
100 independent network configurations. As shown in the
inset of Fig. 3, SA performs much better than RA. We also
compare SA with the above-mentioned algorithms, DTA,
BTA, and GM, and the results have demonstrated that SA
performs the best. We report two examples, M=5 and
M=10, in Table I. The improvement is in general about
10%. Note that, although SA performs the best, it spends the
longest running time. Actually, the time complexity obeys
the inequality O(SA)>O(GM)>O(BTA)>O(DTA). Since
GM performs not so bad, it is a strong candidate especially
for huge-size networks, that is, GM might be a considerable
trade-off of time complexity and accuracy of solution.

PHYSICAL REVIEW E 81, 066105 (2010)

X

ma

FIG. 3. (Color online) Algorithmic performance for BA net-
works. The main plot shows a comparison among DTA, BTA, GM,
and SA, while the inset reports a comparison between RA and SA.
The number of suppliers, M, varies from 1 to 10, while the network
size N=1000 and the average degree (k)=6 are fixed. All the data
points are obtained by averaging over 100 independent network
configurations.

Note that, although BA model has successfully captured
the degree heterogeneity of real networks, it lacks some other
important structural properties, such as the community struc-
ture [41] and rich-club phenomenon [42]. DTA might per-
form worse if the network has strong community structure or
presents the rich-club phenomenon. The reason is that a good
algorithm should prefer to allocate suppliers to different
communities rather than putting them together in a commu-
nity containing many very-large-degree nodes, and if the
very-large-degree nodes are closely connected to form a rich
club, selecting them as a whole is of low efficiency since the
increasing suppliers cannot substantially reduce the average
distance from customers to suppliers. As a start point, we
only discuss here simulation results on BA networks and
leave the investigations of algorithmic performance on more
complicated topologies as an open issue.

The DTA and BTA have almost the same performance and
give out very similar selections of suppliers since in BA
networks betweenness and degree are very strongly corre-
lated [43,44]. To provide insights of the solution by SA, in
Fig. 4, we give a scatter plot of betweenness versus degree
and mark by red the selected suppliers by SA. Although SA
also prefers large-degree (large-betweenness) nodes, the se-
lected suppliers are remarkably different from those by DTA
or BTA; actually, moderate-degree (moderate-betweenness)

TABLE 1. Comparison of the maximal edge load obtained by
DTA, BTA, GM, and SA. The underlying networks are BA net-
works with N=1000 and (k)=6, and all the data are obtained by
averaging over 100 network configurations.

M/Algorithm DTA BTA GM SA
5 14.73 14.98 13.32 12.37
10 8.25 8.92 7.17 6.31
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FIG. 4. (Color online) Scatter plot of betweenness vs degree in
a BA network with N=1000 and (k)=6. Each small black fork
represents a node. These ten red circles denote the selected suppli-
ers by SA. The smallest degree of suppliers is 9, and the second
smallest one is 12.

nodes also have a chance to be selected by SA. We have
checked the solutions given by SA and found that, in most
cases, only the top 40% large-degree nodes have the chance
to be included. Therefore, in the algorithmic procedure, we
could restrict the candidates of suppliers in those 40% nodes
[i.e., in algorithm step (ii), only the nodes of top 40% degree
have the chance to be selected as a supplier], and then the
number of possible solutions is largely reduced from (Z) to
OX;N). When N> M, the reduced solution space is about 2.5Y
times (e.g., 2.5° =~ 107 and 2.5'°~ 10*) smaller than the origi-
nal one. We have checked this restriction in BA networks
with N=1000, (k)=6, M=5, «=0.90, and Q0=500, which
gives out equivalently good solution while it requires about
ten times shorter CPU time. Notice that the absolute time of
SA is less meaningful since it strongly depends on M, «, and
Q. The comparison reported here is only to show the benefit
due to the restriction.

To further validate our algorithm, we tested it on a net-
work of coauthorships between scientists who are themselves
publishing on the topic of networks [45]. This network con-
tains 1589 scientists, and 128 of which are isolated. Its con-
nectivity is not good. It is consisted of 268 connected com-
ponents. We only consider the giant component, which
contains 379 nodes and 914 edges (more detailed structural
information about the giant component can be found in Table
I of Ref. [46]). As shown in Fig. 5, analogous to the case of
BA networks, L, can be sharply reduced after the SA pro-
cess. Since the target network is highly clustered, more ho-
mogeneous than BA networks in degree distribution, and of
clear community structure [45,46], comparing with the DTA,
the advantage of SA algorithm is remarkable. For M=5 and
M =10, the values of L, obtained by SA are 25.33 and
16.38, respectively, while they are 51.97 and 25.14 by DTA.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a generic model of transport in
the supply-demand network, which is consisted of suppliers
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FIG. 5. The objective function L,,, vs time step in the optimiz-
ing process of the SA algorithm for the collaboration network of
network scientists. The number of suppliers is set as M=10.

(supply nodes) and customers (demand nodes). Accordingly,
a measure of edge load is given, under the assumption that
every customer only requires service from the nearest sup-
plier. In such a network with heterogeneous degree distribu-
tion, its transport capacity is very sensitive to the locations of
supply nodes. We therefore design a simulated annealing al-
gorithm to find out the near optimal configuration of supply
nodes, which remarkably enhances the transport capacity and
outperforms the degree target algorithm, the betweenness tar-
get algorithm, and the greedy method. This work provides a
start point for systematically analyzing and optimizing trans-
port dynamics on supply-demand networks. Even though the
model and algorithm are simple, we get some nontrivial re-
sult, that is, simply picking up those nodes of highest degrees
may be not a good strategy; in fact, some moderate-degree
nodes also have chance to be selected as suppliers.

In our model, every customer requires the same amount of
resource, which is not in accordance with the elephants and
mice phenomenon [47] found in the real Internet, where a
small fraction of flows contribute to most of the traffic. Cor-
responding to the current model, a flow stands for the re-
source transported from a supplier to a customer, and thus
each flow has the same size although the one passing longer
paths contributes more to the total load. In addition, the pro-
posed algorithm does not fully take into account and make
use of the topological features. We have already mentioned
in the last section that the mesoscopic structure, such as com-
munities and the rich club, may highly influence the solu-
tions. That structural information should be extracted prior to
the optimizing algorithm and be embedded in the algorithmic
procedure in some way to improve the efficiency and/or the
resulting network capacity. All those blemishes listed above
can be treated as open problems worth of future exploration.

In the end, we emphasize that many real systems can be
better described by the current supply-demand network
model, instead of the much simpler assumption [7] that every
node simultaneously plays the roles of supplier and cus-
tomer. We have already mentioned some examples, such as
power grids [16,17] and supply chain networks [18,19]; an-

066105-4



OPTIMAL TRANSPORT ON SUPPLY-DEMAND NETWORKS

other typical example is the software supporting systems in
the Internet, where a system usually has set up several serv-
ers in different locations, and users from everywhere can ask
for downloading of some software. The locations of those
servers play the crucial role in determining the efficiency and
capacity the software supporting system.

This study also provides some complementary informa-
tion for relevant phenomena in disparate systems. For ex-
ample, social scientists have studied how to determine who
should be integrators in a given social communication net-
work to better solve problems, and they have found that
people having extensive relations (i.e., of very large degrees)
may not be the suitable information integrators; instead, the
highest efficient structure makes the distance of all nodes
from the obvious integrator the shortest [48], which is—to
some extent—similar to the results of this paper since the
shorter distance from the integrator statistically corresponds
to higher transportation capacity if the network is not very
heterogeneous (see the Appendix). In addition, empirical
studies show that the public service facilities are not just
located in the place of the densest population, but somehow
more uniformly distributed to make the total travel distance
between people and facilities shorter [49,50]. As a final re-
mark, we note that a very recent work has considered the
network-based transport with multiple sources and sinks
[51], which shows different yet relevant motivation to the
current work.
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APPENDIX: TRANSPORT VERSUS SEARCHING

Searching and navigation describe the problem of how to
find the shortest path connecting a pair of nodes. In the
trivial case where the global topology is known, the shortest
paths can be obtained by the breadth-first search. However,
in the real world, usually only local structural information is
available and the problem changes to how to design a navi-
gation strategy to make the average required time, often
measured by the average path length, as short as possible
[52-55]. The searching efficiency can be largely improved
by making use of some additional information, such as the
metric space information [56,57] and labels of nodes [58].
For supply-demand networks, even with the knowledge of
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n

FIG. 6. Illustration of the different concerns for searching and
transport. In this network, nodes B-D are, respectively, connected
to n other nodes. In the large limit of #, if there is only one supplier,
for searching, the optimal location of this supplier is A with (d)
~2. In comparison, for transport, the optimal location is B or C or
D, with L, = 2;", while if A is the supplier, L, =~n.

global topologies, the searching problem is not trivial. In
such a case, the optimal configuration of suppliers minimizes
the average path length form a demand node to its nearest
supplier. This problem is widely known as the p-median
problem, which has been proved to be NP hard [23].

Searching and transport in supply-demand networks are
two similar problems, both of which ask for an optimal con-
figuration of supply nodes. Their essential difference is that
the possible congestion is not considered in the searching
process, while in the transport dynamics to avoid congestion
is the first-priority requirement. As indicated by some previ-
ous works [3,7], the maximal load plays the key role in trans-
port congestion. When the real transport exceeds the band-
width of an edge, congestion happens and will soon spread to
neighboring edges. Therefore, for searching, the system per-
formance can be characterized by the average distance, while
for transport the maximal edge load is used to quantify the
system throughput.

Note that the sum of loads over all edges is equal to
(N-M){d), where N—M 1is the number of demand nodes and
(d)y is the average path length from a demand node to its
nearest supplier. Therefore, in a network with homogeneous
edge load distribution, the objects to minimize (d) and L,
may lead to more or less the same result. In contrast, for
general networks, the resulted optimal configurations for
searching and transport may be far different. Figure 6 illus-
trates an example.
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