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The phase field crystal �PFC� model captures the elastic and topological properties of crystals with a single
scalar field at small undercooling. At large undercooling, new foamlike behavior emerges. We characterize this
foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of
foam dynamics. This minimal model reproduces von Neumann’s rule for two-dimensional dry foams and
Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that
its second moment is larger than previously reported experimental and theoretical studies of soap froths, a
finding that we attribute to the wetness of the foam increasing with time.
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I. INTRODUCTION

Computational modeling of large-scale systems usually
involves either detailed molecular-dynamics simulations, in
which every particle must be tracked, or a highly coarse-
grained model in which the underlying symmetries are
known and are used to derive a continuum model from the
underlying physics. Molecular dynamics is limited to small
systems and/or to very short times, and coarse-grained mod-
els tend to fail at places where the underlying symmetries are
broken, such as at defects and dislocations. The phase field
crystal �PFC� model �1� is an intermediate approach with the
advantage of diffusive time scale but with atomic scale res-
olution of molecular dynamics. The PFC model can be used
to capture the dynamics of defects and dislocations in large
crystals �2,3�, the dynamics of grain interactions �4�, molecu-
lar dynamics of vacancies �5�, and even nonlinear elasticity
�6�. In addition, it is amenable to methods such as coarse
graining and adaptive mesh refinement �7�.

The dimensionless phase field crystal equation �1�,

��

�t
= �2���2 + 1�2� + r� + �3� , �1�

where � is a continuous density field and r is a parameter
interpreted as an undercooling, is a density-functional theory
�2�, best thought of as arising from phenomenological and
symmetry considerations. In particular, this is the simplest
class of models appropriate for systems whose dynamics is
governed by minimizing departures from periodicity �8�, as
opposed to the situation in other materials processes, such as
spinodal decomposition, where the dynamics minimizes de-
partures from spatial uniformity. In principle this approach
only holds for small values of the undercooling r, beyond
which the strong nonlinearity may in principle overwhelm
the crystal’s symmetries, leading to such artifacts as merger
or dissolution of the “atoms” of the model.

In this Rapid Communication, we explore an interesting
feature of the phase field crystal model in the limit of large
undercooling, which we show turns out to facilitate a simple,
scalar, and minimal model of foams. At large undercooling,
the periodic phases found at low undercooling have higher

free energy than a mixture of two immiscible liquids. The
result is a coarsening foamlike structure, which we analyze
in order to propose a minimal, modified PFC model that is
capable of describing quantitatively both wet and dry foams
at the level of a continuum scalar theory that is computation-
ally efficient.

II. EQUILIBRIUM PHASE DIAGRAM

The phase diagram of the PFC model has been computed
for small undercoolings �1�. We shall use the same methods
to construct the phase diagram at larger values of the under-
cooling in order to see what may be found there. First, how-
ever, we will convert the PFC equation and PFC energy to a
nondimensionalized form with respect to the equilibrium liq-
uid �constant phase� density. We define a parameter related to
the undercooling: ��−r. In terms of this new parameter, the
energy minimizing density for the constant phase is �
= ���, so we will introduce a nondimensional order param-
eter ��� /��. This gives us the following free energy:

F = �
V

1

2
���2 + 1�2� + ��−

1

2
�2 +

1

4
�4	dV �2�

and corresponding equation of motion:

��

�t
= �2���2 + 1�2� + ��− � + �3�� . �3�

We then construct the phase diagram at large � by calcu-
lating the energy minima of the one-mode approximations
for the constant phases L� :�=�0, where the subscript �
refers to the sign of the average density �0; the striped phase
S :�=�0+AS cos�x�, where AS=���4–3�0

2� /3; and the two
triangular lattices �� :�=�0+ �A��B���cos�k1� ·r��
+cos�k2� ·r��+cos�k3� ·r���, where the kj� are the lattice vectors of
the regular triangular lattice, A�=−��0 /5, and B�

=���15–36�0
2� /15.

Even though the one-mode approximation is not accurate
at these large values of �, we may use it to understand heu-
ristically the behavior observed, thus motivating our form for
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the modified phase field crystal model introduced below. Our
main results, for the modified phase field crystal model, are
fully time-dependent and independent of this approximation.

The equilibrium phase diagram is obtained by substituting
the various ansatz into Eq. �3� and performing a common
tangent construction. The result is shown in Fig. 1 �solid
lines�. We find a series of previously undiscovered invariant
points as � increases. At �=2.56, the coexistence region be-
tween the striped and triangular phases disappears, giving
rise to a coexistence between stripes and one of the liquid
phases. Then, at �=5.45 the striped phase vanishes, leaving
only a region of immiscible liquid-liquid coexistence, and
the regions comprised entirely of the liquid phases.

This can be understood by considering the influence of
the two terms in the free energy. At small �, the wavelength
selection term that was added to produce periodic phases is
dominant. As � increases, the term that drives � to have the
values of �1 becomes dominant so that eventually the wave-
length selection term �1+�2�2� is a small perturbation and
the equilibrium phases are determined by the average value
of �0

2 /2−�0
4 /4, which is minimized by the constant phases.

III. DYNAMICS

The phase diagram we have just computed represents the
behavior of this system in its final equilibrium state. How-
ever, the approach toward that equilibrium changes as � in-
creases. Starting from a hexagonal lattice, the system at-
tempts to coarsen into two regions: one composed of L+ and
the other composed of L−. However, because of the small
residual wavelength selection, there is a finite energy cost to
removing spatially patterned structures. As such, debris of
the triangular and striped phases remain, forming boundaries
between regions of the majority liquid. The residual striped
phase forms three-way connections, partitioning the system
into a series of coarsening bubbles. However, the PFC atoms
are also dynamically conserved by this infinitesimal energy
barrier, which eventually halts the coarsening dynamics.

If we consider that experimentally foams must be pre-
pared by processes more involved than simply quenching a

mixture, it seems reasonable to attempt to prepare a foamlike
initial condition via some sort of process applied to our sys-
tem, before we stop and allow the system to evolve on its
own. For liquid foams, something such as bubbling and
drainage may be used. However, we will consider the sim-
pler process of producing a foam via the expansion or inter-
nal production of gas. This method is used in the production
of metal foams �and is the responsible for the foam structure
of bread�. As such, let us consider what happens if material is
added to the bubbles over time. We do this by changing the
average density of the system to more and more favor the
majority phase �reducing �0� over time. This can provide
enough energy to destabilize the PFC atoms while still re-
taining the stripelike cell walls, which will still remain stable
for a longer period as they can move perpendicular to their
length to create large bubbles of one of the liquids. The pro-
cess of reducing the average density strongly influences the
immediate coarsening behavior, and so we attempt to inflate
the foam as much and as quickly as possible without causing
the cell walls to break, after which we stop and allow the
foam to coarsen. It is after this time that we begin to make
measurements.

The end result is a foamlike state �Fig. 2�a��, which coars-
ens to a stationary point at which there are no more free
adjustments that can be made to approach the equilibrium
state. Thus, even a small perturbative addition of wavelength
selection is sufficient to stabilize a foamlike structure.

Although this behavior is interesting from the point of
view of understanding the properties of the phase field crys-
tal model, it does not behave like a physical foam. The ar-
rested coarsening and inability to get rid of residual atoms
prevent this from being used as a model for studying coars-
ening foams. We now alter the free energy so as to destabi-
lize the residual atoms while retaining the overall cellular
structure so that we may recover physical foam dynamics.

In effect what we wish to do is to weaken the wavelength
selection while encouraging k=0 structures. A stripe has one
k=0 direction and one direction with the selected wave-
length, whereas an atom has two directions with the selected
wavelength. If the selected wavelength sits at a local energy
minimum, but the global minimum is at k=0, then this
should help remove residual atoms in favor of bubble inter-
faces.

FIG. 1. Solid lines, phase diagram associated with the free en-
ergy in Eq. �2�. Dashed lines, phase diagram associated with the
modified free energy in Eq. �5�.

FIG. 2. �a� Final state obtained from Eq. �3� with �=16 and
�0=−0.41 after coarsening. Residual atoms coexist with large foam
cell regions. �b� Simulation using the modified PFC equation for
�=20, quenched with �0=0.4 initially, and then drained to �0

=−0.6. The result is a dry foam structure with no residual atoms. �c�
Simulation of the modified PFC equation for �=20 and �0=0.25,
allowed to coarsen without draining. The result is a wet foam struc-
ture with circular bubbles.
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The PFC wavelength selection operator ��2+1�2 corre-
sponds in k space to E�k�= �1−k2�2. We modify this by in-
troducing two parameters k0 and b

Emod�k� = �k/k0�2�1 − �k/k0�2�2 − b�k/k0�2 �4�

and then choose k0 so as to retain minima at k= �1: k0
= �3 / �2+�1+3b��1/2. The modified form of the free energy in
real space becomes

Fmod = �
V

1

2
�
−

1

k0
2�2� 1

k0
2�2 + 1	2

+
b

k0
2�2��

+ ��−
1

2
�2 +

1

4
�4	dV . �5�

We can then vary b to control the relative depths of the
minima at k= �1. The most extreme effect is achieved at
b=−1 /3, at which the minima at k= �1 disappear. We use
this value of b throughout the rest of this Rapid Communi-
cation. Figures 2�b� and 2�c� show results from the modified
PFC equation.

IV. RESULTS

We measured the coarsening dynamics and statistics of
the eventual scaling state of the modified PFC equation in
order to compare with physical foams. Coarsening behavior
can be quantified using the average bubble radius �r�t�. We
may easily count the total number of bubbles and so deter-
mine the average bubble area as �A�t�=Atotal /N�t�. If we
assume that deviations from circular geometry are small,
then we may approximate �r�t����A�t�.

For a wet foam, we expect the bubble growth to proceed
as diffusive grain growth so that �r�t�� t1/3. As an example,
we simulate a 1024�1024 system with �=20 and quench
into an average density �0=0.25. We observe a scaling �r
� t0.34 �Fig. 3, filled circles�, consistent with the predicted
growth law.

For a dry foam in two dimensions, von Neumann’s law
�9� predicts that the growth rate of the bubble area is propor-
tional to 	�n−6�, where 	 is an effective diffusivity and n is
the coordination number of the bubble. This implies that the

average bubble radius should scale as �r�t�� t1/2. To measure
the coarsening of a dry foam, we quench from an average
density �0=0.3 and drain slowly to a density of �0=−0.4.
We start measuring the coarsening dynamics after we have
stopped draining. However, our reference point for t=0 is
still the point of the quench. At early times we observe a
scaling �r� t0.47, which is consistent with von Neumann’s
law. At late times, we find that the exponent shifts toward
1/3, indicating a transition to wet foam behavior �Fig. 3�.

As two-dimensional �2D� froths coarsen, they are ex-
pected to reach a self-similar scaling state in which the nor-
malized moments of the distribution of areas and of coordi-
nation number are expected to become time independent.
The second moment of the coordination number distribution
has been used as a probe of this scaling state. Glazier and
Weaire �10� predict that the coordination number distribution
should eventually reach a universal limiting scaling state
with a second moment 
2=1.4, with a strongly nonmono-
tonic transient behavior.

We measure the coordination number distribution of the
dry foam by a watershed algorithm �11�. We superimpose a
grid over the system and fill each bubble with a unique inte-
ger. We then allow these integers to propagate to neighboring
unoccupied cells and then find the total number of different
integers that a given bubble comes into contact with. We
observe a similar time dependence of the second moment of
our distribution, but the measured limiting value 
2
=2.31�0.01 is significantly different from 1.4 �see Fig. 4�.
In other models and simulations of coarsening 2D foams, the
observed limiting value of 
2 has been variously reported as
1.9 �12�, 1.7 �13�, and 1.5 �14�, and experiments have mea-
sured from 1.4 �15� in soap froths to values as small as 0.14
and 0.22 in magnetic froths �16�.

We conclude that the either second moment is not a uni-
versal quantity or that there are strong transients that make
any universal scaling regime difficult to observe in practice.
We note that our foam is not completely dry and that the
absence of a drainage mechanism implies that the foams be-
comes wetter the more they coarsen. Whether real foams
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FIG. 3. Coarsening behavior of wet and dry foams in the modi-
fied PFC equation with �=20, compared with the corresponding
theoretical coarsening laws. FIG. 4. Evolution of the second moment of the bubble coordi-

nation number in a dry foam realized by the modified PFC equation.
The bubble distribution broadens during the transition to power-law
coarsening, after which it reduces to a steady value of 2.31�0.01.
The inset shows a particular distribution at t=1800.
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undergo a corresponding change in regime is not clear.
We have found that in the limit of large undercooling, the

phase field crystal equation produces topologically stabilized
foams. These foams are a consequence of the residual wave-
length selection, which acts as a singular perturbation that
prevents the destruction of cell walls and forces the coarsen-
ing to take place via topological rearrangements. The fact
that this behavior emerges from a minimal model such as the
phase field crystal equation suggests a general mechanism by
which foams may occur in natural systems.

The ingredients of the phase field crystal equation are a
driving force toward certain equilibrium densities, some sort
of spatial relaxation �diffusion, viscosity, etc.�, and some
competing source of wavelength selection. Such a system, in
the limit where the wavelength selection is weak compared
to the other forces, would likely give rise to a foam. This
mathematical structure can be seen in models of magnetic
froths �16�, type-I superconductors �17�, and in models of
polygonal cells found in melting snow �18�.

However, the foams produced in this limit of the PFC
equation have unphysical properties. The wavelength selec-

tion also preserves atoms: bubbles whose diameter is com-
parable to the width of the cell walls. This can be amelio-
rated by modifying the PFC free energy to penalize atoms
while encouraging stripes. As a result, the coarsening dy-
namics of real foams are recovered although the distribution
of bubbles in the resultant scaling state appears to be some-
what different.

If these differences are understood, the modified PFC
equation may be a useful tool in modeling foams, as it is
simpler than other existing methods, such as Q-Potts models
�19� and minimal surface evolution �20�, and is fairly easy to
simulate, having only one field and a spatial structure that is
easily treated with spectral methods.
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