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Chimera states are a recently new discovered dynamical phenomenon that appears in arrays of nonlocally
coupled oscillators and displays a spatial pattern of coherent and incoherent regions. We report here an
additional feature of this dynamical regime: an irregular motion of the position of the coherent and incoherent
regions, i.e., we reveal the nature of the chimera as a spatiotemporal pattern with a regular macroscopic pattern
in space, and an irregular motion in time. This motion is a finite-size effect that is not observed in the
thermodynamic limit. We show that on a large time scale, it can be described as a Brownian motion. We
provide a detailed study of its dependence on the number of oscillators N and the parameters of the system.
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I. INTRODUCTION

The so-called chimera states, discovered in 2002 by Kura-
moto and Battogtokh �1�, have recently attracted consider-
able attention �2–10�. Displaying a self-organized spatially
intermittent pattern of regions with coherent and incoherent
motion, they constitute a new paradigm of dynamical behav-
ior that can serve as a prototype for various physical phe-
nomena, e.g., coexistence of synchronous and asynchronous
neural activity �so-called “bump” states� �11–14� or
turbulent-laminar flow patterns �15�. From the point of view
of synchronization theory �16–19� they can be considered as
a remarkable example of partial frequency synchronization,
appearing in a system of identical oscillators, where phase-
locking occurs only in the coherent region. The most simple
system that shows this type of behavior are arrays of coupled
phase oscillators �20,21� that will be also used in this Rapid
Communication. As in the Kuramoto-Sakaguchi system, a
phase lag parameter has to induce a certain amount of repel-
ling between the oscillators. Similarly, this could be provided
also by a coupling delay �5,6�. From the point of view of
classical pattern formation in spatially extended systems, the
appearance of chimera states requires two essential ingredi-
ents: nonlocal coupling �3� and the discrete nature of the
medium. Besides numerical experiments, a refined version of
Kuramoto’s self-consistency approach �8,10,22,23� for the
thermodynamic limit up to now has been the main tool for
their investigation.

In this Rapid Communication we focus our attention on
the finite dimensional nature of the chimera states. We report
an essential feature of the chimera state that is not captured
by the self-consistency approach for the thermodynamic
limit: whereas in earlier papers the chimera states have been
described as a regime with time independent regions of co-
herent and incoherent motion, we point out that, on top of the
chaotic motion within the incoherent region, the coherent
and incoherent region themselves show a chaotic motion of
their position on the unit circle. It turns out that, on a suffi-
ciently large time scale, the motion of the chimera’s position
manifests itself as a Brownian motion. The main purpose of

this Rapid Communication is to determine the properties of
this motion, their scaling behavior with the number of oscil-
lators, and their dependence on the system parameters as
well as on the type of the coupling function.

II. MODEL

Our model is a ring of N identical nonlocally coupled
phase oscillators with phases �� = ��1 , . . . ,�N�

�̇k�t� = � −
2

N
�
j=1

N

G�xk − xj�sin��k�t� − � j�t� + �� . �1�

Here � denotes the natural frequency of the oscillators that
can be set to zero, and �� �0,� /2� is a phase lag. The os-
cillators are assumed to be uniformly distributed over the
interval �−1,1� with positions xk=−1+2k /N, k=1, . . . ,N.
With these positions the coupling function G�x� determines a
nonlocal coupling on a macroscopic scale that is independent
on the actual number of oscillators. We suppose that G�x� is
a nonnegative even function, which has to be 2-periodic to
account for the ring topology of the network and is normal-
ized to �−1

1 G�x�dx=1. The simplest way to represent a non-
local coupling is the steplike function

Gstep�x,r� = �1/�2r� , if �x� � r

0, if �x� � r
	 �2�

that has already been used in �24� for different purposes.
Alternatively, one can use a cosine coupling function �3�

Gcos�x,r� =
1

2
�1 + r cos��x�� �3�

or an exponentially decaying function �1�.

III. SYMMETRIC AND ASYMMETRIC CHIMERA STATES

Chimera states are remarkable by the fact that they show
in a homogeneous system the emergence of a spontaneous
pattern, consisting of a coherent and an incoherent region.
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According to �3,4�, the main ingredients for their appearance
in a system of form �1� are a Sakaguchi parameter � smaller,
but close to �

2 , and a nonlocal coupling. In contrast to earlier
results, we present here also chimera states for a simple step-
like coupling function. Figure 1 shows a typical fixed time
snapshot of phases �k for a chimera state. In one part of the
domain the oscillators are phase locked, whereas in the other
part we observe an incoherent motion. Moreover, the time
averages of the local phase velocities differ between the co-
herent and incoherent region. The average phase velocity
profile can be determined by a Kuramoto-type self-
consistency approach �1�, see also Fig. 3�a�.

As stated in �1,3�, the initial data have to be carefully
prepared, since the chimera state typically coexists with a
stable coherent state. Figure 1�a� shows a chimera state with
a reflection symmetry �k=�N−k+1 as presented in �3,4�.
However, we were unable to reproduce this as a stable state
of system �1�. Instead, Fig. 1�a� has been obtained by artifi-
cially imposing this symmetry. Using a nonsymmetric
scheme, we observed instability with respect to asymmetric
perturbations, i.e., already arbitrarily small deviations from a
symmetric state lead after a short period of integration to an
asymmetric configuration, see Fig. 1�b�. Moreover, in con-
trast to the chimera states with artificial symmetry, the asym-
metric chimera states exhibit a further interesting behavior.
Instead of being localized stationary patterns as reported ear-
lier, they exhibit chaotic fluctuations of their position along
the unit circle. It turns out that the itineracy of the chimera
position depends sensitive on the initial condition. Figure 2
shows the motion of two chimera trajectories with initial
conditions that differ only by 10−3. We are now going to
investigate in detail the stochastic properties of this irregular
motion. To this end we have performed extensive simula-
tions, using a Runge-Kutta scheme for numerical integration
of system �1�. As default parameters we used �=1.46,
�=0, and r=0.7 for the piecewise constant coupling function
Gstep�x ,r�.

IV. DETERMINING THE POSITION OF A CHIMERA
STATE

In order to analyze the motion of the chimera’s position,
we first have to find a way how to determine its instanta-
neous position. We decided for this purpose to make use of
the spatial variation in the phase velocities. Following Kura-
moto’s self-consistency approach, one can determine a inho-
mogeneous profile of effective frequencies. This indicates
that in average, the phase velocities in the incoherent domain

are faster than in the coherent domain and closer to the natu-
ral frequency of the oscillators that we have chosen here to
be zero. Hence, for any fixed time moment, we compare the

instantaneous phase velocities �̇k with a periodic reference
profile f�x ,��=−1−cos ��x−�� and determine the position
of a chimera at time t0, given by �� �t0� as the value �, where
the function

F��� ª
1

N
�
k=1

N

��̇k�t0� − f�xk,���2 �4�

attains its global minimum. Figure 3 shows a time snapshot
of phase velocities, their time average that can be determined
from the self-consistency approach and the corresponding
target function F��� from which we determine the position.
In this way, we obtain for a chimera trajectory �� �t� a time-
dependent position ��t� as given in Fig. 4. Note that on a
small time scale it appears as a smooth function with irregu-
lar oscillations, whereas on larger time scales it shows prop-
erties of a stochastic motion.

V. STOCHASTIC PROPERTIES OF THE DETERMINISTIC
MOTION OF THE POSITION

To reveal the nature of the chimera’s motion, we present
now the results of a stochastic analysis for the numerical

FIG. 1. Phase snapshots of �a� symmetric and �b� nonsymmetric
chimera states. N=200.
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FIG. 2. �Color online� Sensitivity to initial conditions: two chi-
mera trajectories with initial conditions that differ by 10−3. �Color
coded time-averaged phase velocities, dark region: coherent mo-
tion�. N=200.
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FIG. 3. �Color online� �a� Snapshot of phase velocities �orange/
gray dots�; time averaged phase velocities �black dots� following
the profile given by Kuramoto’s self-consistency equation. For the
given phase velocities, the reference function f�x ,�� with �=0
�dashed green curve� minimizes the distance function F��� shown in
�b�.
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simulation data obtained as described above. We start with
the normalized autocorrelation function for the displace-
ments

C��� =

�̇�t��̇�t + ���


�̇2�t��
, �5�

and the characteristic correlation time

�c = �
0

	

C2�t�dt . �6�

Figure 5 shows that the amplitude of C��� exponentially de-
cays to zero. Moreover, it turns out that the correlation time
�c does not significantly depend on N or on the other param-
eters. Based on this observation, we can treat the chimera’s
motion on sufficiently large time scales as a stationary sto-
chastic process. Taking a sufficiently large time step 
t, we
construct now from our simulation data a histogram of the
increments 
� of � in each time step. In order to eliminate
the fast deterministic oscillations, we have used for this pur-
pose local time averages of ��t�. Figure 6�a� shows that for
fixed 
t their distribution can be nicely described by a
Gaussian

��
�� =
1


2���
t�
e−
�2/2��
t�, �7�

with center at zero, and variance ��
t�. Extracting the vari-
ance ��
t� for different values of 
t by a fitting procedure,

we can represent the dependence ��
t�. Figure 6�b� shows
that ��
t� follows a linear dependence

��
t� = 2D
t �8�

that can be used to extract the diffusion coefficient D of a
corresponding Fokker-Planck equation. Hence, the chimera’s
motion can be described as a Brownian motion. In order to
study the scaling behavior of the diffusion coefficient D�N�
with the number of oscillators N, we have repeated this pro-
cedure for values N varying from 60 to 800. Plotting the
results in a double logarithmic scale, see Fig. 7, we obtain an
almost perfect linear behavior with a slope of approximately
−1.69, provided by a least-squares fitting. This number is
surprisingly close to −5 /3, however, we cannot provide at
the moment a theoretical explanation why the diffusion co-
efficient should follow the power law N−5/3. In any case, this
observation underlines that the chimera’s motion is a finite-
size effect that vanishes in the thermodynamic limit, where
the chimera state is neutrally stable with respect to shifts of
its position. The growing instability for smaller N corre-
sponds with the fact that for sufficiently small N �N�50� it
becomes difficult to observe the chimera regime at all. In-
stead, chimeralike states exist only as transients and collapse
to a completely coherent state after a finite time.

VI. DEPENDENCE OF THE CHIMERA’S MOTION
ON THE SYSTEM PARAMETERS

We present now some results on the dependence of the
diffusion coefficient D on the phase lag parameter � and on
the coupling radius r. Figure 8 shows the variation of D for
different values of � and r. One can observe a clear depen-
dence that is mainly correlated with the size of the coherent
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FIG. 4. �Color online� Time evolution ��t� of a chimera’s posi-
tion, N=200: �a� Brownian motion on large time scales and �b�
deterministic irregular oscillations on a short time scale.
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FIG. 5. �Color online� Normalized autocorrelation function �5�
for ��t� evaluated from a time interval T=106. N=200.

FIG. 6. �a� Histograms of displacements 
� corresponding to

t=200 �circles� and 
t=600 �squares� with fitted normal distribu-
tion �Eq. �7�� �solid lines�. �b� Variance � for coupling function
Gstep�x ,0.7� �squares� and Gcos�x ,0.99� �circles� shows linear de-
pendence on time step 
t �see Eq. �8��. N=100.
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FIG. 7. The dependence of the diffusion coefficient D on the
number of oscillators N follows a power law D�N��N−5/3.
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part. Indeed for chimera states with � close to �
2 , where the

coherent region is small �3,4�, we obtain a large diffusion D.
Also the type of coupling function has a significant impact
on the size of the diffusion coefficient. Indeed, the motion is
most pronounced for the steplike coupling function, where at
the same number of oscillators, the diffusion coefficient D is
typically by a factor of two bigger than for the cosine cou-
pling function, see Fig. 6�b�.

VII. CONCLUSIONS

In this Rapid Communication, we have investigated the
spatiotemporal behavior of chimera states in arrays of non-
locally coupled phase oscillators. We show that chimera
states exist also for steplike coupling functions. In contrast to
�3,4�, we were unable to find stable symmetric chimera states
using an asymmetric scheme. For chimera states without ar-
tificially imposed symmetry, we observe a chaotic motion of
the chimera’s position along the unit circle. The motion
shows a sensitive dependence on the initial data and is a
finite-size effect that vanishes in the thermodynamic limit.
We show that it can be described as a Brownian motion and
study its dependence on the coupling coupling radius r, the
phase lag parameter �, and the shape of the coupling func-
tion. For the corresponding diffusion coefficient D, we dis-
covered for increasing number of oscillators N a scaling be-
havior D�N��N−5/3. This is rather uncommon for
thermodynamic limits and resembles the famous Kolmog-
orov law for the energy distribution in turbulent flows �25�.
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