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We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to
mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes
leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, how-
ever, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a
two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of
annealing is already sufficient to stabilize a biaxial nematic structure.
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Quenched and annealed degrees of freedom of statistical
systems are known to produce phase diagrams with a number
of distinct features �1�. The ferromagnetic site-diluted Ising
model provides an example of a continuous transition, in the
quenched case, which turns into a first-order boundary be-
yond a certain tricritical point, if we consider thermalized
site dilution �2�. Disordered degrees of freedom in solid
compounds, as random magnets and spin glasses, are ex-
amples of quenched disorder, which lead to well-known
problems related to averages of sets of disordered free ener-
gies. In liquid systems, however, relaxation times are shorter,
and the simpler problems of annealed disorder are more rel-
evant from the physical perspective. In this paper, we show
that distinctions between quenched and annealed degrees of
freedom are particularly relevant in statistical models of mix-
tures, which have been used to account for the elusive biaxial
nematic phase of liquid crystals �3�.

Uniaxial nematic phases, with the director along a single
axis, have been fully characterized in the phase diagrams of
a large number of thermotropic as well as lyotropic liquid
crystals �3,4�. The existence of a biaxial nematic structure,
however, has been subjected to some debate �5�. A biaxial
nematic phase was predicted by calculations for different lat-
tice models �6�, and has been found by Yu and Saupe �7� in
the phase diagram of a ternary lyotropic mixture. In the or-
dered region of this mixture, in a phase diagram in terms of
temperature and concentration of one of the compounds,
there is a nematic biaxial structure bounded by two distinct
uniaxial nematic structures, loosely associated with either
prolate �cylinderlike� or oblate �disklike� molecular aggre-
gates. Transitions between the ordered uniaxial nematic and
the disordered phases are discontinuous, in agreement with
the Maier-Saupe approach, and transitions between uniaxial
and biaxial structures are continuous, with a critical line that
is supposed to end at a Landau multicritical point. More
recent experimental work has indicated the existence of nem-
atic biaxial structures in a certain number of new thermotro-
pic compounds, formed by anisotropic banana-shaped mol-
ecules �5�.

Although earlier theoretical calculations indicated the ex-
istence of a stable biaxial nematic structure �6�, which is also
supported by a Landau–de Gennes expansion �8�, mean-field
calculations by Palffy-Muhoray and collaborators �9�, using
the Maier-Saupe interactions to consider a mixture of cylin-
ders and disks, precluded the stability of an intermediate bi-

axial structure, except under some special circumstances. A
few years ago this problem was reanalyzed, in terms of a
schematic discrete version of the Maier-Saupe model, in a
paper by Henriques and Henriques �10�, who pointed out the
existence and stability of a biaxial nematic phase, bordered
by two critical lines meeting at a Landau multicritical point
�8�, in close contact with the experimental findings of Yu and
Saupe �7�. The calculations of Henriques and Henriques,
however, which can be carried out for any distribution of
molecular shapes, implicitly assumed a quenched polymor-
phism, which may not be adequate for these liquid crystal-
line systems.

Given the scarcity of experimental data on these biaxial
phases, the apparently conflicting theoretical results �6,11�,
and a few recent and not so conclusive simulations �12,13�,
there is still room for revisiting the statistical problem of
a mixture of cylinders and disks. Along the lines of the
work of Henriques and Henriques �10�, we then perform
standard statistical-mechanics calculations for a simple dis-
crete version of the Maier-Saupe model, which we call
the basic model, with the inclusion of a binary distribution
of shapes to mimic a mixture of prolate and oblate mole-
cules �cylinders and disks�. We draw clear distinctions be-
tween quenched and annealed distributions of shapes. In the
quenched case, we show the existence of a stable biaxial
phase in the temperature-concentration phase diagram, in
qualitative agreement with experiments, and in accordance
with the work of Henriques and Henriques. In the annealed
case, however, the same model system leads to an unstable
biaxial phase, in connection with the earlier calculations of
Palffy-Muhoray and collaborators, which provides an ex-
ample of the distinctions between the effects of quenched
and annealed disorder degrees of freedom.

Although the results for the quenched distribution seem to
be in agreement with the experimental phase diagrams, re-
laxation times in both liquid and liquid crystalline systems
are relatively short, and the physics of disordered couplings
in these liquid systems should be better represented by ther-
malized variables. Even in the annealed situation, however,
we should make an attempt to account for a certain degree of
separation between relaxation times. We then resorted to a
two-temperature formalism �14�, with orientational degrees
of freedom and disorder variables coupled to different heat
reservoirs, at temperatures T and T�=nT. In this application
of the formalism, we show that a small difference of tem-
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peratures is already enough to change the phase diagram of
the fully annealed case, and to stabilize the biaxial nematic
structure, which probably provides an explanation for the
elusive nature of this phase behavior.

In analogy to the Curie-Weiss model of ferromagnetism,
the Maier-Saupe model is given by the energy

H = −
A

N
�

1�i�j�N
�

�,�=1,2,3
�i� jSi

��Sj
��, �1�

where A is a coupling constant, the orientational degrees of
freedom are given by

Si
�� =

1

2
�3ni

�ni
� − ���� , �2�

where �n� i�=1 for i=1,2 , . . . ,N, and ��i� is a set of �disor-
dered� couplings representing either prolate ��i=+1� or ob-
late ��i=−1� molecular groups. This model is further simpli-
fied if we suppose that the director n� i assumes six values
only, along the Cartesian axes, n� i= ��1,0 ,0�, �0, �1,0�,
and �0,0 , �1�, according to an early suggestion of Zwanzig.

In the quenched case, ��i� is a set of independent, identi-
cal, and identically distributed random variables, associated
with a probability distribution p��i�. For a given configura-
tion ��i�, the partition function is written as

Zq��i� = �
�n� i�

exp		

N
�

1�i�j�N
�

�,�=1,2,3
�i� jSi

��Sj
��
 , �3�

where 	 is the inverse of a dimensionless temperature, and
we choose A=1. We now use standard Gaussian identities to
write the partition function as an integration over the inde-
pendent terms of a symmetric tensor Q. In the thermody-
namic limit, taking into account the self-averaging properties
of this problem, we can write

Zq =� �dQ�exp�− 	Nfq� , �4�

where

fq =
1

2�
�

Q��
2 +

1

2
��i�

�

Q��

−
1

	�ln	2�
�

exp�3

2
	�iQ���
� . �5�

The equations of minima, �g /�Q��=0, lead to the usual
traceless tensor order parameter of the Maier-Saupe ap-
proach. We then introduce the standard parametrization Qxx
=−�S+
� /2, Qyy =−�S−
� /2, and Qzz=S, and consider a
double-delta probability distribution, p��i�=c���i−1�+ �1
−c����i+1�, where the parameter c represents the concentra-
tion of prolate ��=+1� molecules. We then have

fq =
1

4
�3S2 + 
2� −

1

	
ln 2

−
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ln	2 exp�−

3

4
	S�cosh�3

4
	
� + exp�3

2
	S�


−
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ln	2 exp�3

4
	S�cosh�3

4
	
� + exp�−

3

2
	S�
 ,

�6�

which leads to the phase diagram of Fig. 1, with thermody-
namically stable uniaxial �S�0;
=0� and biaxial �S�0;

�0� nematic structures, and two critical lines meeting at the
Landau multicritical point, 	=4 /3 and c=1 /2.

In order to make contact with the standard Landau–de
Gennes phenomenology, we expand the free energy fq in the
neighborhood of the Landau multicritical point, in terms of
the quadratic and cubic, I2=Tr Q2 and I3=Tr Q3, invariants
of the tensor order parameter,

fq = −
3

4
ln 6 +

1

2
�1 −

3

4
	�I2 −

1

3
�2c − 1�I3

+
1

12
I2

2 +
1

6
�2c − 1�I2I3 +

1

15
I3

2 + ¯ . �7�

According to published analyses �8� of this phenomenologi-
cal expansion, a positive coefficient of I3

2 is indeed enough to
stabilize the biaxial phase.

We now turn to the annealed case, which is associated
with the canonical partition function

Za = �
��i�

��
�n� i�

exp		

N
�

1�i�j�N
�

�,�=1,2,3
�i� jSi

��Sj
��
 , �8�

where the sum over ��i� is restricted by the fixed concentra-
tions of the molecular types. As �=+1 corresponds to a pro-
late and �=−1 to an oblate molecule, we have Np−No
=�i=1

N �i, and No=N−Np, where Np �No� is the number of
prolate �oblate� molecules, and N is the total number of mol-
ecules. We then introduce a chemical potential and change to
the grand-canonical ensemble,
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FIG. 1. Temperature-concentration phase diagram for a
quenched distribution of shapes. First-order transitions between the
isotropic region and the uniaxial nematic structures �Nc and Nd� are
indicated by the solid line. Dashed lines indicate second-order
transitions.
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For the same basic model, with six choices of the unit vec-
tors, we have

�a =� �dQ�exp�− 	N�a� , �10�

with the grand potential per particle
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1
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which can also be written as
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Given the thermodynamic fields T and �, we show that a
biaxial solution exists but that it is thermodynamically un-
stable, in agreement with the calculations of Palffy-Muhoray
and collaborators. In the T−� phase diagram there is just a
first-order boundary, at �=0, for T=1 /	�3 /4, between two
distinct uniaxial structures. In this fully annealed situation,
we can also draw the corresponding temperature-
concentration phase diagram, as shown in Fig. 2, in which

we sketch the tie lines of coexistence of the two uniaxial
nematic phases.

In order to make contact with the Landau–de Gennes phe-
nomenology, we can also write an expansion in the neigh-
borhood of the Landau multicritical point, 	=4 /3 and �=0,

�a = −
3

4
ln 12 +

1

2
	1 −

3

4
	
I2 −

2

9
�I3

+
1

12
I2

2 −
1

18
I2I3 −

1

135
I3

2 + ¯ . �13�

In contrast to Eq. �7�, the coefficient of I3
2 is negative, which

now precludes the stability of a biaxial nematic structure �8�.
If we use standard techniques of statistical physics, it is

straightforward to show that the Helmholtz free energy fa of
the annealed version of the basic Maier-Saupe model differs
from the corresponding free energy fq of the quenched ver-
sion by a term corresponding to the entropy of mixing,

fa = fq +
1

	
�c ln c + �1 − c�ln�1 − c�� . �14�

This is indeed a quite general result, which we have been
able to show for a class of mean-field self-averaging disorder
variables, with the insertion of the appropriate form of the
entropy of mixing. It is interesting to point out a resemblance
with a derivation by Mazo of a quenched Helmholtz free
energy that includes, in addition to the expectation of the
logarithm of the partition function, a usually inaccessible
term of entropy �15�. We remark that quenched situations are
far from true thermodynamic equilibrium, and that in the
quenched case we do not have access to the entropy of mix-
ing. Of course, the thermodynamic analysis of the Helmholtz
free energy fa, which should be a properly convex function
of the density c, leads to the same results of the analysis of
the grand potential �a, written in terms of the thermody-
namic fields, T and �.

We now search for a stable biaxial phase in a situation of
partial annealing, which may be represented by the introduc-
tion of two heat baths, at different temperatures, associated
with the relaxation times of the orientational �quicker� and
disorder �slower� degrees of freedom �14�. Given a configu-
ration � of the slower disorder variables, we can schemati-
cally write the probability of occurrence of a configuration 
of the orientational variables,

P���� =
1

Z

exp�− 	H�,��� , �15�

where T=1 /	 is the temperature of a heat bath, and

Z = Z��� = �


exp�− 	H�,��� . �16�

The time evolution of �i is given by a Langevin equation,

�
��i

�t
= − z�t��i −

�H
��i

+ 
i�t� , �17�

where z�t� is a multiplier associated with the chemical poten-
tial, �
i�t�=0, and
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FIG. 2. Temperature-concentration phase diagram in the fully
annealed case. The horizontal tie lines indicate the coexistence be-
tween two distinct uniaxial nematic phases. In the inset, we show an
amplification of a section of the �narrow� coexistence region be-
tween uniaxial nematic and isotropic phases. There is no stable
biaxial nematic structure.
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�
i�t�
 j�t�� = 2�T��ij��t� − t�� , �18�

where we have introduced the temperature T� of a second
heat bath. With the assumption of quick and slow time
scales, it is reasonable to replace �H /��i by its average
value,

�H
��i

⇒ � �H
��i
�



=
�Hef f

��i
, �19�

where

Hef f = Hef f��� = − kBT ln Tr exp�− 	H�,��� . �20�

We then assume that the probability of a configuration ��i� is
given by the grand-canonical expression

P��� =
1

��	�,	,N,��
exp�	��Np − 	�Hef f� , �21�

where

��	�,	,N,�� =� �d����
��

exp	− 	H�,��

+
	�

2 ��
i

�i + N�
�n

, �22�

with n=T /T�, which resembles the number of replicas in
spin-glass problems. The application of this formalism to the

basic Maier-Saupe model leads to a grand potential �, with
the following expansion about the Landau multicritical point,
	=4 /3 and �=0,

� = −
3

4
ln 6 −

3

4n
ln 2 +

1

2
	1 −

3

4
	
I2 −
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9
n�I3 +

1

12
I2

2

+
2

27
	 9

10
− n sech2�2

3
n��
I3

2 + ¯ . �23�

For n=1, we regain the results for the fully annealed situa-
tion, given by Eq. �13�. From the coefficient of I3

2, we imme-
diately see that the biaxial nematic phase is stable for n
�9 /10, which indicates that a relatively weak departure
from the fully annealed situation is already enough to pro-
duce a stable biaxial structure.

In conclusion, we use a basic Maier-Saupe model of a
binary mixture of cylinders and disks to investigate the sta-
bility of a biaxial nematic phase. In the quenched case, the
biaxial phase is thermodynamically stable. In the fully an-
nealed situation, it becomes unstable, but in a situation of
partial annealing, represented by couplings to heat reservoirs
at different temperatures, we may recover thermodynamical
stability.
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Vieira.
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