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It is well known that at the gel-liquid phase-transition temperature a lipid bilayer membrane exhibits an
increased ion permeability. We analyze the quantized currents in which the increased permeability presents
itself. The open time histogram shows a “−3 /2” power law which implies an open-closed transition rate that
decreases like k�t�� t−1 as time evolves. We propose a “pore freezing” model to explain the observations. We
discuss how this model also leads to the 1 / f� noise that is commonly observed in currents across biological
and artificial membranes.
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I. INTRODUCTION

Lipid bilayer membranes undergo melting transitions at
temperatures that are generally close to physiological tem-
peratures �1�. In the fluid phase there is free lateral diffusion
of the lipids with a diffusion constant in the �m2 /s regime.
In the solid or gel phase the lipids are arranged in a more
rigid two-dimensional lattice. Near the phase-transition tem-
perature solid lipid domains drift in the liquid embedding.

The solid-to-liquid transition involves significant changes
in the volume and in the surface area. This leads to increased
volume compressibility and area compressibility at the phase
transition �1�. Consequently, Brownian noise causes rela-
tively large fluctuations in volume and area at the point of
phase transition. Monte Carlo simulations have affirmed that
fluctuations are indeed particularly large at the solid-liquid
interface near solid domains in the liquid membrane �2�.

Already in 1973 it was reported that the sodium perme-
ability of an artificial lipid bilayer membrane peaked sharply
at the melting temperature �3�. Given the large fluctuations at
the solid-liquid interface this result is no surprise. What was
truly surprising was the discovery in 1980 by Antonov et al.
that this increased permeability comes in the form of quan-
tized currents �4�. For a relatively small transmembrane volt-
age ��100 mV� “channels” of a fixed conductance in the
picosiemens to nanosiemens regime appeared to open and
close. The behavior strongly resembles that of ion channel
proteins �5�. It is startling that just the lipid domains by
themselves can actually exhibit the same behavior as is ex-
hibited by the specialized complex proteins that ion channels
are. The results of Antonov et al. have been reproduced
many times and for many different kinds of membranes �see
references in �1��. However, the quantized currents that ap-
pear to turn on and off have, so far, defied explanation. In
this paper we study the statistics of the open and closed
times. On the basis of the analysis of experimental data we
propose an explanation.

Electroporation, i.e., the “punching” of holes in a lipid
bilayer membrane with an electric field, has been studied
extensively by theoreticians and experimentalists �6�. In our
experiments we followed a procedure that was first described
by Mueller et al. �7�: a black lipid membrane �BLM� is as-
sembled in a small aperture �80 �m diameter� in a thin

�25 �m� electrically insulating Teflon film. The compart-
ments on both sides of the film contain a 150 mM KCl so-
lution. Across the film there is a constant electric potential
and the resulting transmembrane current is measured. For
further details the reader is referred to Refs. �8,9�. Our
bilayer membrane was made up of dioleoyl-
phosphatidylcholine and dipalmitoyl phosphatidylcholine in
a 2:1 ratio. We picked these phospholipids and this ratio
because they give rise to a phase transition at room tempera-
ture, i.e., 19 °C. For reasons explained later in this paper, the
membrane was also made to contain 15.9 mol % octanol.
Typical results are depicted in Fig. 1.

II. DATA AND ANALYSIS

Figure 1 does indeed look like an ion channel that is fluc-
tuating between one open and one closed state. Open and
closed levels seem less pronounced than for many typical ion
channels �5�, but the current histogram shown in Refs. �8,9�
reveals a maximum at an “open” level of about 15 pA. We
put the cutoff at Im

co=10 pA and associated a transmembrane
current of Im� Im

co with the closed state and a transmembrane
current of Im� Im

co with the open state. The results that we
found on the statistics of open and closed time intervals ap-
peared robust under small variations �about �1 pA� of Im

co.
We took data for 30 s. We checked that there was no drift of
the open-closed statistics in the course of the analyzed time
interval.
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FIG. 1. A typical result of the BLM experiment described in the
text �see also Refs. �8,9��. This current trace was obtained at a 210
mV transmembrane voltage. Measurements were done at a few de-
grees above the melting temperature. We sampled data for 30 s. A
300 Hz filter was applied. The resulting open times are collected in
a histogram �Fig. 2�a��.
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When putting together an open time histogram like Fig.
2�a�, the bin size choice generally constitutes a compromise.
For a small bin size, the number of events in each bin may
become very small and, especially for large open times, the
statistical variations from bin to bin will overwhelm any gen-
eral trend. For larger bin size, one can lose a lot of informa-
tion in the region of the shorter open times. In Ref. �10� a
method is described to join data for different bin sizes into
one histogram. In Ref. �11� an actual computer program is
provided to construct such a histogram. That program was
configured to work with our data. At each bin width, 20 bins
were allocated to count occurrences. The smallest bin size ti
was twice the minimum open time, and at each cycle the bin
size increased as ti+1=1.1ti. In Ref. �11� a factor of 2 was
used in place of 1.1. We took the smaller number so as to
generate more data points over a smaller range of time. In
order to fit the histograms with different bin sizes together,
the counts in each bin were normalized by 1 / �tiNtotal�, where
Ntotal is the total number of open times. The first bin must be
excluded because it will contain all of the times unresolved
at time ti �11�. As soon as a bin is encountered that contains
no counts the loop breaks to the next ti. Eventually, the bins
become large enough that the counts become too sparse or all
of the counts are in the first bin and no more information can
be obtained. Figure 2�a� shows how, over more than 2 de-
cades, the open time histogram is well fitted with a power
law.

When normalized, the histogram is a probability density
function of open times f�t�. If we let P�t� denote the prob-
ability that the pore stays open till time t or longer, then

f�t�=−Ṗ�t�. The distribution f�t� is related to the transition
rate k�t� out of the open state in the following way: k�t�
= f�t� / P�t�=− d

dt ln P�t�. Reference �11� also shows how to
calculate the transition rate k�t� from the open time histo-
gram data. Kinetic rate constants were calculated at each bin
size by fitting the second, third, and fourth bins to a single
exponential if those bins contained any counts. The result is
depicted in Fig. 2�b�.

The pure lipid bilayer has a heat capacity maximum at
19 °C. The phase transition occurs in a range around this

temperature. At 19 °C we regularly recorded what looked
like two channels that were open at the same time. The
analysis of such observations is problematic: when one of the
two simultaneously open channels closes, there is no way to
know which one of the two it is. The resulting ambiguity
makes an accurate open time histogram impossible. We also
did a number of experiments with different concentrations of
octanol dissolved in the membrane. The anesthetic octanol is
a very nonpolar substance. Much of this substance will dis-
solve among the lipid tails of the phospholipids. This will
bring down the melting temperature Tm of the membrane
through the same mechanism by which the addition of salt
brings down the freezing temperature of water �12�. By dis-
solving the appropriate amount of octanol in the membrane,
we can achieve any desired shift of Tm. Increasing the differ-
ence between the ambient temperature and Tm makes channel
openings correspondingly more rare. The results that are de-
picted in our Figs. 1 and 2 were obtained with an octanol
concentration in the membrane of 15.9 mol %. In Fig. 3 of
Ref. �9� it can be seen that 15.9 mol % octanol leads to a
melting temperature that is about 5 °C below the tempera-
ture at which experiments were performed. With
15.9 mol % octanol double openings constituted a negligible
fraction of the total amount of openings. Similar results were
obtained for 7.9 mol % octanol �8,9�.

Ion channel proteins with a closed state �C� and an open
state �O� have commonly been modeled as two-state mol-
ecules with Markovian transitions connecting the two states.
The simple C�O scheme with transition rates that do not
depend on time leads to exponentially distributed lifetimes in
both the open and closed states. However, nonexponential
distributions like our apparent power law �Fig. 2�a�� have
been often encountered. Electrophysiologists have com-
monly explained nonexponential distributions of closed and
open times with kinetic schemes that contain more than two
states �13�.

An alternative approach has been to model a transition
with a time-dependent transition rate, e.g., k�t�� t−� �10�.
There is ample biomolecular justification for such a decreas-
ing transition rate when we are dealing with the complicated
ion channel proteins. These are protein complexes with a
behavior that is often not adequately described with states
and rates or with a straightforward one-dimensional reaction
coordinate. Even a relatively simple protein like myoglobin
turns out to be better described in terms of diffusive motion
in a many-dimensional conformational space �14�. With the
power law k�t�� t−� we imagine a channel that, after crossing
the activation barrier to the other state, diffuses away from
that activation barrier. The transition rate back to the original
state then decreases and the channel thus “stabilizes in its
state” as time progresses.

In 1988 Millhauser et al. proposed the following kinetic
scheme to explain the Fig. 2 type statistics that had, at that
time, been found for closed times of several ion channel
proteins �15�,

0 ← 1 � 2 � 3 � ¯ � N . �1�

This model applies to our case in the following way. State
“0” denotes the initial absence of the electropore. The pore

FIG. 2. �a� A histogram on a log-log scale showing the rate of
occurrence of the different pore lifetimes. In order to cover the wide
range of lifetimes, different bin sizes where combined in one graph
following a procedure described in Ref. �11�. For lifetimes larger
than about 3�10−3 s the data are well fitted with the solid line that
represents the theoretically inferred f�t�= t−3/2 / �2��	�. �b� The de-
rived open-to-closed transition rate for an electropore. These data
appear to be well fitted with the solid line k�t�=1 / �2t�, which is the
power law that the theory predicts.
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forms amid high fluctuations in the liquid area near a solid-
liquid interface. States 1 to N denote open states of the pore.
We propose that going from state 1 to state N corresponds to
the freezing of an increasing amount of lipids in and around
the pore’s lining. Upon transiting to state 2, a pore can only
close again after it goes back to state 1. States 1 to N all
correspond to the same pore size and conductance. But as the
state of the pore moves from state 1 to state N, the pore
becomes embedded in an ever larger solid region. For the
pore to close again, it is necessary that the “frozen” sur-
roundings melt again. Such melting can only occur from the
boundaries inward toward the pore. In terms of the kinetic
scheme �1�, the decreasing k�t� for the closing transition
comes about as a significant fraction of the probability dif-
fuses away toward N. Although the individual transitions in
the above kinetic scheme are Markovian, there is a time-
dependent rate k�t� from the 1-to-N set of states back to the
closed zero state.

More than a decade after the above kinetic scheme �1�
was first proposed, Goychuk and Hänggi published a series
of papers where the discrete diffusion in terms of states and
rates was replaced with a continuous time random walk �16�.
They found that the closed time statistics were the same in
this case as what Millhauser et al. had derived. Even for an
energy landscape that is not flat, but has some minor undu-
lations, they found the same power laws to hold. The model
that was worked out by Millhauser, Salpeter, and Oswald and
by Goychuk and Hänggi �MSOGH� was intended to describe
diffusion in a protein’s conformational space. Such a space is
an abstraction. But in our case the MSOGH model actually
describes the much less abstract growth of a solid domain.
Simulations presented in �9� show that even at a few degrees
above Tm, solid domains form in the membrane.

We assume that a pore will most readily form at a solid-
liquid interface where area and volume fluctuations are high.
A pore can then next stabilize if the involved phospholipids
freeze. It will stabilize further if phospholipids around the
pore also freeze. It is this freezing that can make a pore long
lived. This model assumption is consistent with the observa-
tion that pores in a purely liquid membrane have much
higher activation barriers for their formation �more than 250
mV is generally required for observable pore formation� and
close within milliseconds after the transmembrane voltage is
brought back to physiological levels �17,18�.

It turns out that the kinetic scheme �1� can be analytically
solved for the case in which all rate constants are identical
�15�. This is exactly the case we have at hand between states
1 and N, as our diffusion is isotropic and has no directional
bias. Going from state 1 into the direction of state N is just
the attachment of more lipids to the solid raft. For noise
suppression we used a 300 Hz filter as we analyzed the data.
This means that, in effect, we are taking a snapshot of the
system about every 3 ms. It is therefore that Fig. 2 shows a
breakdown of the power law at about 3 ms. Because of the
300 Hz cutoff there is no way of knowing how far the power
law extends for the actual physical process. We therefore
have to take 	�300 s−1 as the rate for the “0←1” transition
in the kinetic scheme �1�. We can model the fluctuating size
of the solid domain as a diffusion in conformational space
and, with the aforementioned results of Goychuk and Hänggi

�16�, we take all the rates in the kinetic scheme to be the
same, 	�300 s−1.

When all the rates are normalized, the master equation
that is associated with the kinetic scheme is

ṗ1�t� = − 2p1 + p2,

ṗn�t� = pn−1 − 2pn + pn+1 for 1 � n � N ,

ṗN�t� = pN−1 − pN. �2�

We have for the aforementioned P�t�

P�t� = �
n=1

N

pn�t� . �3�

It is obvious from the kinetic scheme �1� that f�t�=
−dP�t� /dt= p1�t�. We start out with p1�0�=1 and pn�0�=0 for
n
2. This implies P�0�=1. For N→� the analytical solu-
tion of Eq. �2� is

pn�t� = exp�− 2t��In−1�2t� − In+1�2t�� , �4�

where In�t� represents the modified Bessel function of order
n. An expansion for t�

1
2n2 leads to

pn �
n

2��t3/2 . �5�

For the open-closed transitions, all that matters is p1�t�. So
for t
1 we have a good approximation with

P�t� �
1

��t
, f�t� �

1

2��t3/2 , k�t� �
1

2t
. �6�

All of these results are also shown in �15�.
We have to unscale the normalized transition rates in the

kinetic scheme before we can relate the data in Fig. 2 to the
theory. Redimensionalization turns the t
1 condition that
goes with Eq. �6� into t
3 ms. Unscaling Eq. �6� leads to
f�t�� t−3/2 / �2��	�. As k�t�t is dimensionless, k�t��1 / �2t�
remains unaffected by the unscaling. Figure 2 shows how the
theory provides an almost perfect fit to the data. The kinetic
scheme �1� and the ensuing theory correctly predict both the
slope and the height of the data points.

The current traces �Fig. 1� make clear that the conduc-
tance of a single pore has a preferred level. Histograms pre-
sented in Refs. �8,9� make this assertion more rigorous. Fig-
ure 3 gives a schematic idea of the architecture of a pore in a
lipid bilayer. If we assume the pore to be cylindrical and
electrolyte filled, then the conductance of 70 pS that we have
at 15.9 mol % octanol corresponds to a pore of about 0.35
nm radius. Such a radius is indeed similar to that of many
protein channels. A single head group covers a surface area
of about 0.6 nm2 in the fluid state and of about 0.5 nm2 in
the gel state. Assuming pores again to be roughly cylindrical
and the pore length to be 5 nm, this means that a pore of a
0.35 nm radius involves about 20 phospholipids.

Considerations involving standard electropore theory
make clear why this quantization can occur. Forming a pore
involves a rearrangement of phospholipids and an activation
barrier has to be crossed to bring about such rearrangement
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�19�. Obviously, a minimum pore radius r0 of a few tenths of
a nanometer is required for a pore to be permeable to water
and ions. For phosphate head groups to keep facing the water
even in the pore’s interior, the phospholipids have to form a
much curved edge �see Fig. 3�. The energy required to create
the edge of a pore of radius r is 2��r, where � is the so-
called line tension �20�. For small pores we can approximate
the energy with just the linear terms in the radius r, i.e.,
E�r�= �2��−�0�wV2�r. Here, V is the transmembrane volt-
age and �w is the relative dielectric permittivity of water. The
term −�0�wV2 describes the Maxwell stress due to the inho-
mogeneity of the electric field that the conducting aqueous
pore causes �21�. This stress is toward further opening of the
pore. Electroporation has commonly been studied with volt-
ages over 300 mV. Such voltages, after all, are required to
permeabilize a lipid bilayer in its liquid state. But for the
smaller voltages that we work with the energy E increases
very rapidly with r. So, in our case, thermal fluctuations
�with a free energy on the order of kBT� will not be suffi-
ciently strong to drive the pore to radii that are significantly
larger than r0. Once frozen a pore will, of course, not change
its radius.

We also made histograms for the closed times. If every
apparent pore opening in Fig. 1 were to stem from the for-
mation of a new pore, then we would have a constant pore
formation rate. Such a constant closed-to-open rate would
lead to an exponential distribution of closed times. However,
also for the closed times we observe a power law an f�t� and
k�t� that appear to follow Eq. �6�. This non-Markovian be-
havior indicates that a poreless membrane carries a memory
for how long ago the most recent pore closed. This puzzling
phenomenon could be explained with the realization that the
lining of a pore consists of about 20 phospholipids and that it
is possible for the pore lining to partially melt. In that case
some individual lipids in the lining could possibly get un-
stuck, move more freely, and clog up the pore. Meanwhile
the main pore architecture remains in place and the pore can
open again and refreeze. When several molecules are able to
move independently into and out of the pore’s interior we
have a mechanism that can be described by the kinetic
scheme �1� and an MSOGH model. The apparent −3 /2
power law for the closed times may be due to a significant
fraction of the observed openings actually being such “re-
openings.” Molecules or clusters of molecules from

the lining of the pore that are moving in and out of the pore’s
interior have also been offered as an explanation for the 1 / f�

noise that has been observed in other biological and artificial
channels in membranes �22�.

Figure 4 shows how the power spectrum of our recording
�Fig. 1� follows a power law in the about 2 decades between
the millisecond and the second regimes where power laws
applied in Fig. 2. It can be derived that the power spectral
density follows 1 / fD when the residence times in both the
open and closed states follow a distribution f�t�� t−�1+D�,
where 0�D�1 �23�. Our power spectrum indeed displays
the predicted −1 /2 slope to a good approximation. Noise
with a power spectrum that drops off like 1 / f�, where 0.5
���1.5, is commonly characterized as “1 / f noise.” �24�.
Already in 1966 it was found that the membrane voltage at
the node of Ranvier of a live nerve cell displays 1 / f� noise
�with an � very close to unity� in the 10–1000 Hz regime
�25�. Recently, these data have been more accurately rere-
corded and it has been claimed that the apparent power law
comes about as a sum of Lorentzian contributions of indi-
vidual types of ion channel proteins �26�. However, the phe-
nomenon discussed in this paper may be partly behind this
observation.

III. DISCUSSION

A 1 / f noise spectrum has also been found when an elec-
tropore is current clamped �27�. But it should be realized that
the underlying physics is completely different for a current
clamped electropore. When the current I through an elec-
tropore in a membrane is kept constant, a negative feedback
mechanism is at work that keeps that pore open. This can be
imagined as follows. Suppose that, through a Brownian fluc-
tuation, a pore narrows. This would increase the pore’s elec-
trical resistance R. With V= IR, this would increase the trans-
membrane voltage V. Through the aforementioned Maxwell
stress, such larger transmembrane voltage increases the force
that widens the pore �21�. It is possible to keep pores open
for hours with a current clamp setup �27,28�. How this nega-

FIG. 3. A pore in a lipid bilayer involves a rearrangement of a
number phospholipids. The figure is adapted from �30�. The polar
head groups of the phospholipids make up the lining of the pore and
make the pore permeable to water and small ions. Shown is a sche-
matic idea of �a� the narrowest part of the pore viewed from the
direction perpendicular to the membrane and �b� a cross-sectional
view in the plane of the membrane through the center of the pore.

FIG. 4. The power spectral density as a function of the fre-
quency for the signal depicted in Fig. 1. A straight line of a slope
−1 /2 is added for reference. Power-law behavior, S�f�� f−1/2, is
apparent in the significant frequency range. It is because of the
logarithmic scale that data points get denser toward the right end of
the graph.
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tive feedback mechanism precisely leads to 1 / f noise is un-
clear, but 1 / f noise is commonly observed in current clamp
setups. Ordinary solid resistors have been shown to exhibit
1 / f noise over 6 decades when current clamped �29�. It
should be realized that our 1 / f noise does not originate in
such fluctuations around the open level. Our experiments are
done under voltage clamp and our noise spectrum arises
from the openings and closings of the pore, such as the ones
that are shown in Fig. 1.

We have presented a description and an explanation of
ion-channel-like behavior of electropores in a lipid bilayer
membrane. The possibility has to be seriously considered
that some of the behavior that is traditionally attributed to
ion channels may actually originate from the lipid mem-
brane. Many important ion channels exhibit open times in
the millisecond regime. When we extrapolate the power laws
found in Figs. 2 and 4 to the millisecond regime, we see that
frequent openings can occur there.
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