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When neurons in layer 1 fire irregularly under stochastic noise, it is found synchronous firings can develop
gradually in latter layers within a feed-forward multilayer neural network, which is consistent with experimen-
tal findings. The underlying mechanism of propagation of firing rate is explored, then rate encoding realized by
synchronization is clarified. Furthermore, the effects of connection probability between nearest layers, stochas-
tic noise, and ratio of inhibitory connections to total connection on �i� propagation of firing rate by synchro-
nization and �ii� coherence of firing pattern are investigated, respectively. It is observed that �i� there is a
threshold for connection probability, beyond which firing rate of each layer can propagate successfully through
the whole network by synchronization. The dependence of firing rate on layer index is very different for
different connection probability. In addition, larger the connection probability is, more rapidly the synchrony is
built up. �ii� Increasing intensity of stochastic noise enhances firing rate in output layer. Stochastic noise plays
a constructive role in improving synchrony by causing the synchronization more quickly. �iii� The inhibitory
connection offsets excitatory input therefore reduces firing rate and synchrony. As layer index increases,
coherence measure goes through a peak, i.e., the coherence of firing pattern is the worst at certain a layer. With
increasing the ratio of inhibitory connections, the variability of firing train is enhanced, exhibiting destructive
role of inhibitory connections on coherence of firing pattern.
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I. INTRODUCTION

Synchronization of neural activity appears in different
parts of the mammalian cerebral cortex �1�, and underlies
different neural processes in both normal and anomalous
brain functions �2�. It has been suggested that synchroniza-
tion plays a vital role in information processing in the brain,
e.g., processing information from different sensory systems
to form a coherent and unified perception of the external
world �1–9�. On the other hand, synchronization has been
detected in pathological conditions such as Parkinson disease
�10,11�. And epileptic seizures have long been considered
resulting from excessive synchronized brain activity �12�. It
has stimulated a great deal of theoretical and numerical
works. By virtue of complex network methods, the effects of
topological properties of underlying networks �13–16� are
investigated. By using nonlinear dynamical analysis, many
researches for synchronization mechanisms are also pre-
sented, such as dynamical properties of synaptic coupling
�17,18�, influence of efficacy of synaptic interaction on firing
synchronization in excitatory neuronal networks �19�, effects
of distributed time delays on phase synchronization of burst-
ing neurons �20�, synchronization transition induced by syn-
aptic delay in coupled fast-spiking neurons �21�.

It is known that another research focus for neuron net-
work is about the signal transmission and signal encoding.

Neurons fire spikes when the total dendritic inputs reach a
threshold, and information is encoded in the spike trains.
There are two kinds of encoding mechanisms, namely, the
firing rate and the spike timing. The firing-rate encoding is a
traditional coding scheme, assuming that most, if not all,
information about the stimulus is contained in the firing rate
of the neuron. As the sequence of action potentials generated
by a given stimulus varies from trial to trial, neuronal re-
sponses are typically treated statistically or probabilistically.
They may be characterized by firing rates, rather than as
specific spike sequences �22�. Differently, when precise spike
timing or high-frequency firing-rate fluctuations are found to
carry information, the neural code is often identified as a
temporal code. A number of studies have found that the tem-
poral resolution of the neural code is on a millisecond time
scale, indicating that precise spike timing is a significant el-
ement in neural coding �23�. In nervous systems, information
is transferred from one neuron group to its next groups �22�,
and many functional groups are involved in every informa-
tional processing.

Recently, it is found, theoretically and experimentally, the
information encoding, especially firing-rate encoding, is
tightly associated with synchronization process �24–27� in
various neuronal networks. Among these networks, an inter-
esting and well studied model is multilayer feed-forward net-
work. It was found that synchronous firings can be propa-
gated in a stable manner through such a network under
appropriate conditions �24�. The firing rates of deep layers
seem to be independent of the input firing rate in an
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integrate-and-fire model �25�. Then propagation of the rate
code in a feed-forward network was argued to be almost
impossible �25�. However, this may be neuronal model de-
pendent. To study the precise role of synchronous neuronal
firing in signal encoding and examine what kinds of signals
can be carried by synchrony �26,27�, a multi layer feed-
forward network of neurons in an in vitro slice preparation of
rat cortex using an iterative procedure is reproduced. This
experiment showed that when constant and time-varying fre-
quency signals were delivered to the network, the firing of
neurons in successive layers became progressively more syn-
chronous. Notably, synchrony in the in vitro network devel-
oped even with uncorrelated input, persisted under a wide
range of physiological conditions and was crucial for the
stable propagation of rate signals. The firing rate was repre-
sented by a classical rate code in the initial layers, but
switched to a synchrony-based code in the deeper layers,
implying that synchrony plays an important role in the rate
coding scheme. It will be interesting to provide a theoretical
work to investigate the relation between synchronization and
signal processing in neuron network.

In order to clarify how synchronization dynamics contrib-
ute to rate encoding, some theoretical questions remain un-
clear. �i� How to associate the experimental observations in
Ref. �26� with a theoretical model. How the structure of neu-
ron network determines its encoding function. �ii� What is
the underlying mechanism leading to synchronization phe-
nomena in the neuron network. By using a simple
McCulloch-Pitts model, the research work by Nowotny has
already shown that threshold function of neurons and feed-
forward character of the network are sufficient to explain the
observed synchronization phenomena �28�. No other detail
of the neuron dynamics is necessary. While in our paper, the
Hodgkin-Huxley �HH� neuron model is used because HH
neurons model firings more realistically. In addition, our
coupled HH neurons model provides rich parameters, which
is advantageous to give some quantitative predictions for fu-
ture experiments. Therefore, based on the potential neuron
network structure with HH neuron model, it is possible to
make further efforts to answer another two important ques-
tions as below. �iii� What is the effect of connection prob-
ability and stochastic noise on firing-rate propagation by syn-
chronization. �iv� Most previous researches for rate encoding
are focused on excitatory synapse, however inhibitory con-
nection is also important �29�. Inhibitory synapses constitute
approximately 15% of the synapses on cortical neurons.
Most of these synapses arise from smooth stellate neurons
within 400 microns of the target cell, but some are from
basket cells as far as 1–1.5 mm away. Recurrent loops in-
volving two or more neurons with excitatory and inhibitory
synapses are found in biological systems such as hippocam-
pus �30–32�. Therefore, the excitatory synapse and inhibitory
synapse should be simultaneously considered. Few work has
been referred to that so far.

To get an insight into the above questions, a theoretical
model of ten-layer feed-forward multilayer network is pro-
vided. We show that firing rate can be propagated by syn-
chronization in this feed-forward neuronal network. This is
relevant to the propagation of the rate signal, consistent with
experimental findings. This paper is organized as follows.

The feed-forward network model is introduced in Sec. II. In
Sec. III, simulation results of the theoretical model show that
synchronous firings can develop gradually within this net-
work. Then the underlying mechanisms of propagation of
firing rate realized by synchronization are clarified. Further-
more, the effects of connection probability between nearest
layer, stochastic noise, and ratio of inhibitory connections to
the total connection on �i� propagation of firing rate by syn-
chronization and �ii� coherence of firing pattern are investi-
gated, respectively. We end with our conclusions in Sec. IV.

II. MODELING AND SIMULATION

A ten-layer feed-forward network with N=200 HH neu-
rons in each layer is constructed, as shown in Fig. 1. Layer 1
is called as input layer. Noise is introduced into the input
layer only and causes the neurons in layer 1 to fire randomly.
Each neuron in latter layers �i.e., layer 2,3,…,10� receives
synaptic inputs randomly about M =200� P1 from the previ-
ous layer, P1 is the connection probability between any two
adjacent layers. Layer 10 is considered as output layer. There
are no couplings between the neurons within the same layer.
The dynamical equations for the network are

Cm
dVij

dt
= − �gKni,j

3 �Vij − VK� + gNami,j
3 hi,j�Vij − VNa�

+ gl�Vij − Vl�� + I0 + Ii,j
syn�t� + �1,j�t� , �1�

where Vl is the resting leakage potential for a leakage con-
ductance gl, VK, and VNa are K+ and Na+ reversal potentials,
Cm is the capacitance, where gNa, gK, and gl are the maxi-
mum conductances for the sodium, potassium and leak cur-
rents. The membrane potential of neuron j in layer i is rep-
resented with Vij. mi,j and hi,j are the activation and
inactivation variables of the sodium current and ni,j is the
activation variable of the potassium current. The gating vari-
ables yi,j =mi,j, hi,j, ni,j satisfy the differential equation

dyi,j�t�
dt

= �y�1 − yi,j�t�� − �yyi,j�t� , �2�

with nonlinear functions �y and �y given by

�m = 0.1�V + 40�/�1 − exp�− �V + 40�/10�� , �3�

FIG. 1. A schematic of the model of a ten-layer feed-forward
network with 200 neurons in each layer. Each neuron receives
200� P1 inputs from the previous layer. P1 denotes the connection
probability between nearest layer.
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�m = 4 exp�− �V + 65�/18� , �4�

�h = 0.07 exp�− �V + 65�/20� , �5�

�h = 1/�1 + exp�− �V + 35�/10�� , �6�

�n = 0.01�V + 55�/�1 − exp�− �V + 55�/10�� , �7�

�n = 0.125 exp�− �V + 65�/80� . �8�

For simplicity, the subscript ij for Vij is neglected. The pa-
rameter values are VNa=50 mV, VK=−77 mV,
Vl=−54.4 mV, gNa=120 mS /cm2, gK=36 mS /cm2, gl
=0.3 mS /cm2, and Cm=1 �F /cm2 �33–35�. The choice of
parameters in Eqs. �3�–�8� is the same as that in the original
paper written by Hodgkin and Huxley �33�. The original HH
equations not only provide a good model for spike genera-
tion and conduction in the squid axon, but also incorporate
the important features of neuronal excitability, activation and
inactivation of voltage-dependent currents taking place at
different time scales. The proper biophysical level of abstrac-
tion used by Hodgkin and Huxley enables direct experimen-
tal assessment of model parameters, as well as the natural
extension of the model to more complicated excitable mem-
branes than that of the squid giant axon.

I0 is a constant injected current, and we set I0
=1 �A /cm2 through paper. The Gaussian white noise satis-
fies ��1,j�t��=0, ��1,j�t1��1,m�t2��=2D1� j,m��t1− t2�. D1 is the
noise intensity introduced in layer 1. It is noted the noise
imposed on all neurons in layer 1 is the only input for the
whole neuron network.

We adopt the synaptic current Ii,j
syn�t� from layer �i-1� de-

scribed by an alpha function �35�. The alpha function syn-
apse is a phenomenological model based on an approximate
correspondence of the time course of the waveform to physi-
ological recordings of the postsynaptic response �36�. The
equation of the synapse is like

Ii,j
syn�t� = −

1

M
	
p=1

M

gsyn��t − ti−1,p��Vi,j − Vsyn� , �9�

with

��t� = �t/��exp�− t/��	�t� . �10�

Where � is the characteristic time of the interaction, 	�t� is
the Heaviside step function, and ti−1,p is the beginning time
of the synaptic interaction, i.e., the firing time of the presyn-
aptic neuron pth in layer �i−1� coupled with neuron �i , j�.
First, the synaptic inputs are all considered as excitatory �i.e.,
the cases investigated in Sec. III A and III B�. So, we take
Vsyn=0.0 mV for excitatory synapses. Equation �10� yields
pulses with the maximum value of e−1 at t= ti−1,p+� and with
the half-width of 2.45� �37�. So � characterizes the duration
of the synaptic interaction. � is set to 2 ms and gsyn is fixed as
0.6 unless specified elsewhere.

Firings of each neuron are recorded and converted into a
time series of standard pulses Uj =UA or UB with UA=1 of
width 2 ms and UB=0 corresponding to the firing and non-
firing states. For numerical integration of Eqs. �1� and �2�,

the Euler method is used with a time step of 0.001 ms. The
additive Gaussian white noises in the Langevin equations,
i.e., Eq. �1�, are generated by Box-Mueller algorithm method
�38�.

III. RESULTS

A. Successful propagation of firing rate by synchronization

Now, as an illustration, the simulation results under the
noise intensity D1=5.0 and the connection probability P1
=0.1 are provided in Fig. 2. The firing patterns in different
layers are plotted in Fig. 2�a�. For each layer �e.g., layer
1,2,3,4,7,10�, the post stimulus time histograms �PSTH� are
shown in Fig. 2�b� accordingly. The PSTH shows the number
of spikes collected at the output of the summing center per
unite time. As a function of time, the PSTH is known as the
instantaneous firing rate. It was assumed that this function
encodes the information of the signal. The denser the row of
dots is in Fig. 2�a�, the more pronounced the peak at the
corresponding time is in Fig. 2�b�.

�i� Subject to Gaussian white noise, each neuron in layer 1
fires spikes irregularly. It is observed that the spatiotemporal
firing pattern exhibits a uniform distribution. �ii� In layer 2
and layer 3, the numbers of spikes decrease, implying that
the firing rate decreases. However, there is a tendency of
synchrony, and several blurry columns of spikes appear in
the firing pattern in layer 2. This becomes clear in layer 3
and 4 where there are several distinct columns of firings. The
underlying mechanism can be observed from the small time
window from the PSTH in layer 3 and layer 4 �referring to
the dashed red box in Figs. 2�a� and 2�b��. It is shown that
weak spike train �see arrow marked with 1 in Fig. 2�c�� fails
to propagation while strong one �see arrow marked with 2�
can be propagated successfully. Therefore, weak spike trains
are lost, and strong spike trains lead to some clear column.
�iii� At layer 7, the synchrony is well established, meaning
that all �or almost all� 200 neurons fire spikes about simul-
taneously. Globally, the successful propagation of firing rate
originated from layer 1 by synchronization is realized. The
synchrony is created gradually in the feed-forward neuron
network by �i� integrating and strengthening the spiking in-
puts reached simultaneously in each layer, �ii� weakening
and even preventing the transmission of sparse spiking in-
puts.

As proposed in Ref. �28�, the probability distribution for
number Ai of active neurons in layer i, i.e., P�Ai=ai� is ob-
tained by theoretical derivation. The development of syn-
chronization in the feed-forward neuron network can be ob-
served clearly by evolution of P�Ai=ai� from layer to layer.
Therefore, motivated by this idea, based on the simulation
data obtained in Fig. 2�b�, we also plot directly probability
distribution for different layer corresponding to the case in
Fig. 2, as shown in Fig. 3. It is found the initial probability
distribution for number of active neurons in the input layer
will quickly develop to a bimodal distribution with sharp
peaks at 0 and N, which is very obvious since layer 6. The
synchronized events are those when all neurons fire �right
peak at N� and the probability of events with just a few
active neurons is practically zero. Obviously, the asymptotic
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bimodal distribution represents the synchronization phenom-
enon observed in Fig. 2.

An interesting question is raised about how the successful
transmission of firing rate in the neuron network observed
here originates from special network structure and neuron
model. A detailed qualitative explanation about the dynami-
cal mechanism is provided below. First, neurons in any given
layer share a large quantity of common synaptic inputs. Here
connection probability between neighboring layers is P1
=0.1, and neurons share about 1% of the same synaptic in-
puts, which leads to the correlation between the neurons.
This common input tends to evoke spikes within a restricted
time window, leading to partial synchrony between corre-
sponding postsynaptic neurons. Second, for the HH neuron,
most of postsynaptic currents do not actually contribute to
the generation of spikes and only result in small fluctuations
of membrane potential. Only coincident synaptic inputs can
effectively trigger postsynaptic spikes, that is, the HH neuron
is most sensitive to presynaptic pulses arriving simulta-
neously, acting as a detector for the temporal coincidence of
presynaptic pulses.

In order to give a quantitative analysis for the signal trans-
mission in the feed-forward neuron networks, furthermore, to
clarify the relationship among network structure, dynamics
and function, we investigate the effects of noise �D1�, con-
nection probability �P1� and ratio of inhibitory connections
�P2� on the propagation of firing rate by synchrony and the
coherence of firing pattern below, respectively.

B. Effects of connection probability and stochastic noise on
propagation of firing rate by synchronization

It is speculated that the successful propagation of firing
rate produced in layer 1 may depend on the noise intensity
D1 and the connection probability P1. If the noise intensity is
small, the firings of spikes are quite sparse in layer 1, then
the synchrony in later layers hardly occurs and the firing rate
cannot be propagated in the network probably. This means a
large enough noise intensity is required for the propagation
of the rate signal. In addition, though it is enough for P1
=0.1, the connection probability cannot be too small, or else
no enough common synapses are shared by neurons in the

FIG. 2. �Color online� �a� Dot-raster plots of spike times of the network for D1=5.0 and P1=0.1 showing firing patterns in different
layers. Each row of dots represents a spike train for a single neuron with index 1
 j
200. A synchrony means that all �or almost all� 200
neurons fire spikes about simultaneously. �b� The corresponding post stimulus time histograms �PSTH� showing the number of spikes
collected at the output of the summing center per unite time. The denser the row of dots is in �a�, more pronounced the peak at the
corresponding time is in �b�. �c� and �d� A small time window from the PSTH in layer 3 and layer 4 �referring to dashed red box in �a� and
�b�� showing weak spike train �see arrow marked with 1� fails to propagation while strong one �see arrow marked with 2� can be propagated
successfully.
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same layer. In this subsection, a full investigation about the
effect of connection probability and stochastic noise on
propagation of firing rate by synchrony is provided.

Here we focus on two important aspects of the feed-
forward neuron network: �i� the firing rate ri in each layer,
which is obtained by averaging over all the neurons in this
layer within a long time window of 20 s, and �ii� synchrony
of firing time of neurons Ki. We adopt the average cross
correlation of firing time of neurons �39,40� to quantify the
degree of firing synchronization. Average cross correlation is
obtained by averaging the pair coherence Ki,jm��� between
neuron j and m, i.e.,

Ki =
1

N�N − 1�	j=1

N

	
m=1,j�m

N

Ki,jm��� . �11�

The pair coherence Ki,jm��� is defined as

Ki,jm��� =

	
l=1

k

X�l�Y�l�


	
l=1

k

X�l�	l=1

k
Y�l��1/2 , �12�

which is measured by the cross correlation of spike trains at
zero time lag within a time bin �. To transform the neuronal
activity into spike train, the interval T2−T1 is divided into k
bins of �=1 ms. Then spike trains of neurons i and j are
given by X�l�=0 or 1 and Y�l�=0 or 1 �l=1, . . . ,k�, where 1
represents a spike generates in the bin and 0 otherwise.

The firing rate and corresponding synchrony measure in
each layer under different connection probability and differ-
ent noise intensity are plotted in Fig. 4 and Fig. 5.

�i� When connection probability is very small, e.g., P1
=0.05, the same synaptic inputs shared by different neuron
for each layer is small. It is observed that the signal of firing
rate produced in layer 1 decays quickly even under the
strong noise D1=50.0 �see solid black curves in Fig. 4�.
Therefore, no synchrony is created �see solid black curves in
Fig. 5�.

�ii� When connection probability is slightly large, e.g.,
P1=0.1, neurons share about 1 percent of the same synaptic
inputs. It is found interestingly that the firing rate decreases
in the first three layers, and then increases to a saturated

FIG. 3. The probability distribution for number Ai of active neurons in layer i corresponding to the case in Fig. 2. The insets show
distribution around ai=N, and this part of the distribution determines the probability of synchronous events.

FIG. 4. �Color online� Firing rate ri versus layer i for different
noise intensities �D1=50.0 ���, D1=10.0 ���, D1=5.0 ���, D1

=3.0 ��� and for different connection probability. Solid black
lines:P1=0.05. Dashed red lines:P1=0.1. Dotted blue lines:P1

=0.5.
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value �see dashed red curves in Fig. 4�. Correspondingly, the
synchrony becomes better with deeper layer and a full syn-
chrony is already achieved in the layer 8 �see dashed red
curves in Fig. 5�. Therefore, there is a threshold for P1 be-
yond which the firing rate of each layer can propagate suc-
cessfully through the whole network. Some observations
should be pointed out here. First, such a development of
synchrony is really related to the experimental observation in
Ref. �26� where neuronal firings in iteratively constructed
networks in vitro are asynchronous for the first 2–3 layers
but become progressively more synchronous in successive
layers. Second, an explanation about the curves of firing rate
�see dashed red curves in Fig. 4� is provided. From layer 1 to
layer 2, the firing rate decreases because the numbers of
filtered firings are quite large and the neuron can fire only
when sufficient numbers of presynaptic pulses arrive simul-
taneously. Differently, from layer 3 to layer 10, the firing rate
increases and is finally saturated to a value since the synchro-
nous firings can be propagated stably and the sparse firings
almost disappear. Third, for each noise intensity, the firing
rate in output layer �i.e., layer 10� nearly equals to that in
input layer �i.e., layer 1�, which implies a perfect rate encod-
ing realized in the feed-forward multilayer neuron network.

�iii� When connection probability is very large, e.g., P1
=0.5, the same synaptic inputs shared by different neuron is
also very large. Interestingly, the dependence of firing rate on
layer index is very different from that under P1=0.1. A mo-
notonous increasing curve of firing rate is observed �see dot-
ted blue curves in Fig. 4�, and firing rate is quickly saturated
to a large value from layer 2. The full synchronization is
achieved since layer 4 �see dotted blue curves in Fig. 5� with
a better signaling efficiency than that for P1=0.1. Therefore,
larger the connection probability is, more rapidly the syn-
chrony is built up.

Stochastic noise is unavoidable in real neuron network,
how the noise affects the signal transmission and information
encoding is also one focus of our research. By analysis of
Fig. 4 and 5, some important results are observed: �i� In-
creasing the intensity of stochastic noise enhances the firing
rate in output layer �i.e., the saturated value�, which implies
the output becomes stronger. �ii� Stochastic noise plays a
constructive role in improving the synchrony by causing the

synchronization more quickly and the synchrony curve
sharper. Hence stochastic noise increases the efficiency of
synchrony in the feed-forward neural network, leading to a
better synchronization. �iii� In addition, changing noise has
bigger effects on firing-rate curve than that on synchrony
curve. The sensitivity of ri to stochastic noise is larger than
that of Ki to noise.

C. Effects of ratio of inhibitory connections on propagation of
firing rate and coherence of firing pattern

Above, the synaptic inputs are all considered as excita-
tory. However, inhibitory connection is also important, as
introduced in Sec. I. The synaptic effect is traditionally clas-
sified as excitatory or inhibitory depending on the value of
Vsyn. Here, we take Vsyn=0.0 mV for excitatory synapses,
and −80 mV for inhibitory ones. In this subsection, the ef-
fects of the ratio of inhibitory connection to the total connec-
tion P2 on propagation of firing rate and coherence of firing
pattern are studied, respectively. P2 means that the number of
inhibitory synapses received in layer i from the layer i−1 is
200� P1� P2, others are excitatory synapses. In addition,
here we use the same time constant for the inhibitory con-
nections as the one used for the excitatory connections �re-
ferring to the similar treatment in Ref. �25��.

First, we focus our attention on the effects of P2 on propa-
gation of firing rate and the results are shown in Fig. 6.

�i� For a weak connection probability, e.g., P1=0.1 as
shown in Figs. 6�a� and 6�b�, it is observed that when the
ratio of inhibitory connection is small �see the top three
curves in Fig. 6�a��, with the increase of layer index, the
firing rate is reduced first and then enhanced until the firing
rate is saturated. It implies the firing rate is propagated suc-
cessfully through the neuron network. Meanwhile, the syn-
chronization among neuron in each layer is improved, and
full synchronization is almost achieved since layer 6 �see the
top three curves in Fig. 6�b��. However, when the ratio of
inhibitory connection is large �see the bottom three curves in

FIG. 5. �Color online� Synchrony measure Ki versus layer i for
different noise intensities �D1=50.0 ���, D1=10.0 ���, D1=5.0
���, D1=3.0 ��� and for different connection probability. Solid
black lines:P1=0.05. Dashed red lines:P1=0.1. Dotted blue
lines:P1=0.5.

FIG. 6. Firing rate ri �a� and �c� and synchrony measure Ki �b�
and �d� for different ratio of inhibitory connections �P2=0.5 �+�,
P2=0.4 �� �, P2=0.3 �� �, P2=0.2 ���, P2=0.1 ���, P2=0.05 ���,
P2=0.0 ���� when D1=5.0. From top to bottom: P1=0.1, P1=0.3.
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Fig. 6�a��, with the increase of layer index, the propagation
of firing rate fails. Correspondingly, the synchronization
among neuron in each layer is reduced quickly �see the bot-
tom two curves in Fig. 6�b��. A special case i.e., P2
=0.2�� �, is found. Though the firing rate is very small for
P2=0.2, the synchronization is still slowly achieved in layer
8. In sum, for weak connection probability, the inhibitory
connection offsets the excitatory input, therefore reduces the
firing rate. At the same time, increasing ratio of inhibitory
connection destroys the propagation of firing rate, even
makes the synchronization disappear completely.

�ii� For a strong connection probability, e.g., P1=0.3 as
shown in Figs. 6�c� and 6�d�, it is found the propagation of
firing rate by synchronization is also weakened due to raising
P2. However the firing rate which fails to propagate because
of large P2 in Fig. 6�a� �see the bottom two curves in Fig.
6�b�� �+,�� now is supported and propagated successfully
even the excitatory connection is balanced by inhibitory con-
nection, i.e., the ratio of inhibitory connection P2=0.5.

Furthermore, the effects of rate encoding are clarified. A
plot of input-output relations is presented for different cases
under which the synchronous firing is developed success-
fully, as shown in Fig. 7. The input rate is average value of
firing rate produced in layer 1 under different noise intensity.
Four average input rates, 5.0, 7.0, 9.0, and 12.0 in Fig. 7 are
determined by four different noise intensities, D1=3.0, D1
=5.0, D1=10.0, and D1=50.0, respectively. The output firing
rate is derived from the firing rate in layer 10. It is found that
though the input-output curves deviate from a linear curve
with a slope of unity, the input and output firing rates are
nearly same under some conditions. For example �i� for P1
=0.1, when the ratio of inhibitory connections P2 is small,
the deviation of input-output curve from the dashed line is
also small. Especially, a good case for rate encoding �shown
with dashed red lines in Fig. 4� can be observed clearer in
Fig. 7 �see the top curve in Fig. 7�a��. �ii� When P1=0.3, our
simulation data shows large average input rate, i.e., large
noise intensity, is advantageous to a perfect rate encoding.
Some points with large average input rates about 12.0 under

D1=50.0 are enclosed by a dashed box in Fig. 7�b�. It is
found the output firing rate, changed in a small relatively
range from 10.0 to 16.0, is very close to the average input
rate. It means this rate encoding is robust relatively to the
change of ratio of inhibitory connections under large noise
intensity.

Second, the effects of ratio of inhibitory connection P2 on
the coherence of firing pattern, are also investigated. A mea-
sure of coherence in layer i is provided by coefficient of
variation Ri, which is derived as below

Ri =

	
j=1

N

�Rij�

N
, �13�

with

Rij =
��Tij

2 � − �Tij�2

�Tij�
. �14�

Tij is the time interval of interspike in the firing of neuron j
in layer i. The Ri actually measures spike train variability in
layer i. It is obvious that higher the R is, weaker the coher-
ence is, hence larger the variability of firing pattern is. Figure
8 shows the coherence measure Ri versus the layer index for
different P2.

�i� For a weak connection probability, e.g., P1=0.1 �Fig.
8�a��, as the layer index increases, each R curve undergoes a
maximum at certain a layer. It implies that the coherence of
firing pattern is the worst at the peak of R curve. After the
synchronization is achieved slowly from about layer 5, the R
curve begins to drop down so that R is small, showing the
coherence of firing pattern becomes better due to the occur-
rence of strong synchrony. At last the coherence is almost
unchanged become of the stable synchronization.

Interestingly, with increasing ratio of inhibitory connec-
tions, the height of R curve rises until P2=0.1, exhibiting the
destructive role of inhibitory connections on the coherence
of firing pattern. Furthermore, due to the failure of propaga-
tion of firing rate �Fig. 6�a��, the R curve for P2=0.2 or larger
P2 drops down.

�ii� For a strong connection probability, e.g., P1=0.3 �Fig.
8�b��, similar to the above case, the R in latter layers is small,
hence the coherence of firing pattern in latter layer is en-
hanced and better than that in input layer due to the stronger
synchrony. The height of peak for R curve is increased due to
increasing P2. It means that increasing ratio of inhibition
connections leads to larger variability of firing pattern, the
destructive role of inhibition connections on the coherence of
firing pattern is very clear. It is noted that, in the case of
balance between the excitatory and inhibitory connection for
P2=0.5, the variability of output spike train is the largest,
i.e., the coherence is the worst. In addition, different with the
case of P1=0.1, even for P2=0.2 or larger P2, the curve does
not descend because of successful propagation of firing rate

FIG. 7. Input-output relations for �a� P1=0.1 and �b� P1=0.3
under different ratio of inhibitory connections P2. The inhibitory
ratios P2 have the same symbols as indicated in Fig. 6. The dashed
lines give a reference curve with a slope of unity.
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under P1=0.3 �Fig. 6�c��. Of course, comparing the R curves
for same P2 in �a� and �b�, the R curve under P1=0.3 is lower
than that under P1=0.1, showing the constructive role of
connection probability on the coherence of firing pattern,
which can be accepted qualitatively.

IV. DISCUSSIONS AND CONCLUSIONS

The transmission of information in neural network is an
important topic in neuron science. Especially, it is interesting
to provide a theoretical frame to investigate the relation be-
tween synchronization and rate encoding in neuron network.
In this article, we construct a feed-forward multilayer neural
network, it is found synchronous firings can develop gradu-
ally within our network, which is consistent with experimen-
tal findings in Ref. �26�. The underlying mechanism of
propagation of firing rate is clarified, then the rate encoding
realized by synchronization is illustrated. Furthermore, the
effects of connection probability between nearest layers P1,
stochastic noise D1, and the ratio of inhibitory connections to
the total connection P2 on �i� rate encoding by synchroniza-
tion and �ii� coherence of firing pattern in such neuron net-
work are investigated, respectively.

There is a threshold for P1, beyond which firing rate of
each layer can propagate successfully through the whole net-
work. Accompanied by the propagation of firing rate, syn-
chronization among neurons in the same layer occurs. The
dependence of firing rate on layer index is very different for
different connection probability �see Fig. 4�. For example, if
the connection probability is very small, e.g., P1=0.05, the
dependence of firing rate on layer index is a monotonous
decreasing curve. While the firing rate decreases in the first
three layers, and then increases to a saturated value when
P1=0.1. Furthermore, a monotonous increasing curve for fir-
ing rate is observed for P1=0.5. In addition, larger the con-
nection probability is, more rapidly the synchrony is built up
�see Fig. 5�.

Increasing the intensity of stochastic noise D1 enhances
firing rate in output layer. Stochastic noise plays a construc-
tive role in improving the synchrony by causing synchroni-
zation more quickly and synchrony curve sharper, hence in-
creases the efficiency of synchrony in the feed-forward
neural network, leading to a better synchronization. In addi-
tion, the changing noise has bigger effects on firing-rate
curve than that on synchrony curve.

When the inhibitory connection is considered, it offsets
excitatory input therefore reduces firing rate and synchrony.
As layer index increases, the R of firing trains goes through a
peak, showing the coherence is the worst at a certain layer.
With increasing P2, the height of R curve rises, exhibiting
destructive role of inhibitory connections on the coherence
of firing pattern. It is noted that, in the case of balance be-
tween the excitatory and inhibitory connection, i.e., P2=0.5
in Fig. 8�b�, the variability of output spike train is the largest.
Theoretical research in Ref. �25� has shown a balance be-
tween excitation and inhibition in a feed-forward network
can account for randomness of firing time. Interestingly, by
the investigation for coherence of firing pattern, our simula-
tion result just provides a quantitative description for the

randomness of firing time in a certain extent for the case of
P2=0.5.

Theoretical work in Ref. �28� has already provided a very
good explanation for the generality of synchronization devel-
oped in a feed-forward neuron network. Therefore, our the-
oretical model is only a specific example and just verifies the
generality of the synchronization predicted by Nowotny. Es-
pecially the probability theory is used to derive theoretically
the probability distribution for number of active neurons in
each layer, hence the appearance or disappearance of syn-
chronization is explored by probability distribution in Ref.
�28�. This theoretical method is very significant and novel,
which has stimulated further development of research for
neuronal network dynamics. Motivated by this idea, as the
first step, a simple investigation for the probability distribu-
tion of neuron firing is also provided in this paper �see Fig.
3�. It should be pointed out that the biological background of
HH neuron model is stronger, therefore, our coupled HH
neuron model is appropriate for the further extension to con-
sider more biological complexities. In addition, the rich pa-
rameters in this theoretical model provide us plenty of con-
trol variables, therefore a full investigation, such as the
effects of P1, P2, and D1 on neuron network dynamics, in-
cluding synchronization of firing pattern and coherence of
firing trains, can be given theoretically. The signification of
our work just lies on such a full quantitative investigation.

Some problems deserve our close attention. In our model,
the internal connection among neurons in the same layer and
the possible feedback in different layer are both not consid-
ered. Based on the further experimental findings about the
neural network structure, it is necessary to improve our
model. The stochastic noise is only introduced into layer 1 in
order to create the signal input of firing rate, we will inves-
tigate the case when all the neurons are disturbed by noise in
future. In addition, for real neural network, how to determine
the connection probability and the ratio of inhibitory connec-
tion, and whether these control parameters are variable are
both challenging tasks, which are our next focuses. Our re-
search provides a theoretical frame to correlate the

FIG. 8. Coherence measure Ri versus layer index i for different
ratio of inhibition connections �P2=0.5 �+�, P2=0.4 �� �, P2=0.3
�� �, P2=0.2 ���, P2=0.1 ���, P2=0.05 ���, P2=0.0 ���� when
D1=5.0. From left to right: P1=0.1, P1=0.3.
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synchronization dynamics with signal encoding in neuron
network, and gives a clear investigation about the relation-
ship between the structure �e.g., connection probability be-
tween nearest layers, and the ratio of the inhibitory connec-
tions� and function �e.g., rate encoding and coherence of
firing pattern� of neuron network.
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