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We consider dynamic response of a cytoskeletal network to both thermal and motor-induced fluctuations.
The latter are viewed in two independent ways, as either additive or multiplicative colored noise. Due to a
natural upper frequency limit of the motor agitation, the response of a living cell is similar to that of an
equilibrium system in the high-frequency domain. At lower frequencies, the role of motor agitation manifests
itself in intensified network fluctuations, which is equivalent to effective growth of the environment tempera-
ture. The effective temperature becomes frequency dependent, which signifies violation of the conventional
fluctuation-dissipation theorem. The motor action affects the dynamic shear modulus in two opposite ways: by
stiffening the network through filament prestress and softening it through increased agitation. The latter ten-
dency is isolated when only single-headed motors are present. The theory is in good agreement with experi-
mental measurements of the amplitude of the shear modulus under these conditions.
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I. INTRODUCTION

The fluctuation-dissipation theorem �FDT� is one of the
fundamental laws of equilibrium statistical mechanics. It es-
tablishes the connection between thermal fluctuations of
some physical quantity and the response function describing
variation of this quantity under the action of a weak external
periodic field �1�. Violation of the FDT is always connected
with nonequilibrium behavior of the system. Nevertheless,
FDT has been extended �2� also to glasslike nonequilibrium
systems by introducing some effective temperature Teff dif-
fering from the thermodynamic temperature T of the system.
The effective temperature in glasses and gels has been esti-
mated both theoretically �3,4� and experimentally �5,6�.
Some findings are, however, contradictory �5,6�. Moreover, it
was found in a recent study of colloidal glasses, gels, and
supercooled liquids �7� that the effective temperature Teff co-
incided with the thermodynamic temperature, within the ex-
perimental accuracy, in the frequency range 0.1–104 Hz, so
that no deviations from FDT were detected under these con-
ditions.

The conventional FDT is certainly violated in biologically
active systems, in particular, in living cells �8–12� where
there is a source of agitation additional to thermal fluctua-
tions. This activity is largely due to motor proteins convert-
ing chemical energy of adenosine triphosphate �ATP� mol-
ecules into mechanical work �13�. Theoretical description of
the phenomenon is a formidable problem. As a rule, it is
based on various kinds of specific models of filament-
cytoplasm interactions �8,14,15�. In the present paper, we
attempt to draw a general picture on a phenomenological
level by computing the dynamic shear modulus G��� of ac-
tive matter and effective temperature under conditions of
both thermal and motor activities. For this purpose, we gen-
eralize the approach by Gittes and MacKintosh �16� to semi-
flexible polymer networks subject to motor-driven fluctua-
tions. The latter are introduced phenomenologically in two
different ways: �i� as additive stochastic noise imitating ac-
tive cytoplasmic stirring �17� or random motor binding-

unbinding processes and �ii� as multiplicative stochastic
noise mimicking the active tension of the filaments. Both
kinds of noise are motor driven and are present simulta-
neously. Nevertheless, in order to clarify the peculiarities of
both mechanisms, we consider their action separately from
each other.

The paper is organized as follows. In Sec. II, we reiterate
main results of the well-established Granek-Morse-Gittes-
MacKintosh �GMGM� theory of viscoelasticity of equilib-
rium semiflexible polymer networks �16,18,19� leading to
the bending fluctuation spectrum and the response function,
and check the relation between the two explicitly to facilitate
further extension of the theory to nonequilibrium systems. In
Sec. III, we generalize the classical problem to the case of
motor activity and demonstrate the effect of additive colored
motor noise. The case of multiplicative colored motor noise
is studied in Sec. IV. In both cases, the results are given in
terms of the effective frequency-dependent temperature
Teff���. It is shown that the natural upper frequency limit of
motor agitation restores quasiequilibrium response at high
frequencies. The effective temperature Teff exceeds the ther-
modynamic temperature T only in the low-frequency domain
where motor agitation prevails over thermal fluctuations. The
dynamic shear modulus G��� of active matter is computed
and compared with available experimental data in Sec. V.

II. VISCOELASTIC RESPONSE AT EQUILIBRIUM

A network of cross-linked semiflexible polymers is char-
acterized by a number of different length scales. A single
filament is described by its contour length L, the steric diam-
eter d, and the persistence length Lp=� /T, where � is the
bending rigidity and T is the thermal energy �Boltzmann con-
stant is rescaled to unity�. An ensemble of filaments is char-
acterized additionally by the mesh size � �the average dis-
tance between filaments� and by the entanglement length Le,
defined as a characteristic distance between polymer links,
entanglement nodes, or other steric constraints. The abun-
dance of length scales, which may be ordered in different
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ways, leads to a wide variety of the various concentration
regimes of semiflexible polymers �19�. The cytoskeletal actin
filament network of living cells belongs to the class of tightly
entangled polymers with the typical relation of length scales
L�Lp�Le���d.

Consider first a filament segment of length l�Le stretched
by a longitudinal force � under conditions of thermal equi-
librium. The energy of the segment equals the sum of bend-
ing and stretching energies �19–21�,

U =
�

2
�

0

l � �2y

�s2�2

ds +
�

2
�

0

l � �y

�s
�2

ds , �1�

where y�s� is the transverse deviation of the segment and s is
the arclength along its smooth averaged contour. The corre-
sponding Langevin equation is

� � y/�t = − ��4y/�s4 + ��2y/�s2 + f�s,t� , �2�

where � is the friction coefficient �per unit chain length� for
transverse undulations of the polymer and f�s , t� is a random
force, assumed to be uncorrelated white noise with
	f	�s , t�
=0 and the correlation function

	f	�s,t�f
�s�,t��
 = 2T��	
��s − s����t − t�� . �3�

The fluctuating quantity of interest in this formalism is the
total end-to-end distance change of an inextensible segment,
�l�t� �16,18�. For small deformations, it is defined as �21�

�l�t� = −
1

2
�

0

l

��y/�s�2ds . �4�

In general, the variation �l�t� can be treated in two alterna-
tive ways. The first �active� technique determines the re-
sponse of the projected length to an additional oscillating
force ����exp�−i�t�. The corresponding response function is
	���=�l��� /����. The second �passive� technique is based
on computing the correlation function of the end-to-end ther-
mal fluctuations,

��t� = 	�l�t��l�0�
 − 	�l�0�
2. �5�

FDT establishes the relation between the imaginary part
	���� of the response function and the spectral density
��l2��,

	���� = ��/2T���l2��. �6�

The advantage of the formalism based on Eqs. �2� and �3�
is a possibility to determine separately in a closed form both
the left- and right-hand sides of Eq. �6� and thereby to check
FDT directly. This technique will further enable us to com-
pute the effective temperature and detect deviations from
FDT in a nonequilibrium system.

The transverse displacement of the segment y�s� is pre-
sented in a standard way as a sum of bending modes,

y�s,t� = 2�
n=1



yn�t�sin
�ns

l
. �7�

Using this in Eq. �2� reduces the Langevin equation to the
spectral form

�yn/�t = − ��bn4 + ��n
2�yn + fn�t�/� , �8�

where �b= �� / l�4� /� and ��= �� / l�2� /� are characteristic re-
laxation rates, and

fn�t� = l−1�
0

l

f�s,t�sin
�ns

l
ds . �9�

Similar to Eq. �3�, the spectral force modes fn�t� are uncor-
related random variables with zero mean 	fn�t�
=0 and the
correlation function

	fn,	�t�fp,
�t��
 = T�l−1�np�	
��t − t�� . �10�

The spectral representation of the length change �l�t� takes
the form

�l�t� = − �2l−1�
n=1



n2yn
2�t� . �11�

The bending modes excited by the stochastic modes fn�t� are
themselves stochastic variables with zero mean 	yn�t�
=0.
Their nontrivial even-power averages can be found by solv-
ing Eq. �8� subject to correlation �10� in a standard way �22�
for both passive and active microrheology settings.

Using the passive technique, one studies free fluctuations
�l�t�. The formal solution of the Langevin equation �8� is

yn�t� = �−1�
−

t

fn�t��e−an�t−t��dt�, �12�

where an=�bn4+��n
2. Multiplying Eq. �12� by yn�0� and av-

eraging with the help of Eq. �10� yields the time correlation
function

	yn�t� · yn�0�
 = T��lan�−1e−ant. �13�

Correlations of higher orders are computed in a similar way,
e.g., for any component un�t� of yn�t�, we have

	un
2�t�un

2�0�
 = 	un
2�0�
2 + 2	un�t�un�0�
2. �14�

This relation demonstrates that the stochastic variables yn�t�
excited by Gaussian white noise are Gaussian as well. The
end-to-end fluctuation correlation function ��t� follows from
Eqs. �5�, �4�, �7�, �13�, and �14�,

��t� =
�4T2

l4�2 �
n=1


n4

an
2e−2ant. �15�

The Fourier transform of this relation determines the power
spectrum of the end-to-end thermal fluctuations,

��l2�� =
4�4T2

l4�2 �
n=1


n4

an�4an
2 + �2�

. �16�

The active technique assumes that, besides a constant
force �0, there is also an oscillating component ��,

� = �0 + ��e−i�t. �17�

The linear response �l� of the filament length to the oscillat-
ing force is defined by the response function 	���=�l� /��,
which can be computed by averaging Eq. �11�. Using Eq.
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�17� in Eq. �12� and linearizing with respect to �� yields,
after integration,

� �	yn
2�t�


���

�
��→0

= −
2�2T

l3�2an

e−i�t

2an − i�
. �18�

The resulting explicit relation for the response function is
�16,18,19�

	��� =
2�4T

l4�2 �
n=1


n4

an�2an − i��
. �19�

Thus, we have determined independently the response func-
tion 	��� and the power spectrum of thermal fluctuation �l�.
Substituting both quantities into Eq. �6� proves that FDT is
indeed fulfilled, as expected in the case of thermodynamic
equilibrium.

III. MOTORS AS ADDITIVE NOISE

The above approach is readily generalized to active
motor-driven systems. To extend the theory to active media,
we should first define a specific way of describing the motor
activity. We will do it in two different ways to be described
separately in the sequel.

First, in addition to a passive stochastic force f	�s , t� we
consider an active fluctuating force f	

M�s , t�, assumed to be a
random variable with zero mean independent of thermal
fluctuations,

	f	
M�s,t�
 = 	f	�s,t�f


M�s�,t��
 = 0. �20�

We choose the active force correlation in the form of corre-
lated �colored� noise,

	f	
M�s,t�f


M�s�,t��
 = ���e−�t−t��	
��s − s�� . �21�

Here, � is the characteristic active energy analogous to the
thermal energy T in Eq. �3�. One can roughly estimate it as
the energy of ATP hydrolysis; thus, ��10T �13�. The in-
verse correlation decay time � plays a role of a cutoff fre-
quency typical of the motor work �13�, implying that at fre-
quencies higher than � the motors become inactive. The
frequency � can be identified with the characteristic motor
attachment or detachment time. Thus, the motor fluctuating
force f	

M�s , t� is introduced into the Langevin equation �2� as
additive colored Gaussian noise �23�.

We consider first the simplest limiting case of infinite cut-
off frequency, �→. Then the fluctuating motor force re-
duces to �-correlated white noise similar to thermal fluctua-
tions in Eq. �3�. It is clear that in this particular case a system
with motor agitation is isomorphic to a purely thermal sys-
tem taken at some effective temperature. Indeed, direct cal-
culation of the response function 	��� and the fluctuation
spectrum ��l2�� identical to that in Sec. II shows the effective
temperature to be equal to Teff=T+�. Evidently, the
fluctuation-dissipation relation �6� should hold for the effec-
tive temperature Teff rather than for the thermodynamic tem-
perature T. Thus, in the case of white motor noise, Teff re-
duces to a constant differing from T only by a fixed factor. In
the general case of colored noise, Teff should be, however,

frequency dependent and cannot be unequivocally expressed
through the motor power.

Further on, we will determine Teff using the relation pro-
posed in Ref. �2�,

Teff =
���l2��

2	����
. �22�

At equilibrium, Teff reduces to T since FDT must hold. For a
nonequilibrium system, the ratio Teff /T can be viewed as a
measure of motor activity.

We return now to the colored motor noise problem de-
fined by Eqs. �2� and �21�. Transverse fluctuations of the
filaments include both thermal and motor components yn

T ,yn
M

as additive contributions,

yn�t� = yn
T�t� + yn

M�t� . �23�

The motor correlation function 	yn
M�t� ·yn

M�0�
 is determined
similarly to Eq. �13� using Eqs. �12� and �21�,

	yn
M�t� · yn

M�0�
 =
�

�lan
��an�

�e−ant − ane−�t

� − an
. �24�

The function ��an�=� / ��+an� determines the relative im-
pact of different modes on the agitation: modes with the
relaxation rate much higher than the cutoff frequency � are
effectively frozen.

Due to the additivity of the motor noise and the linearity
of the Langevin equation �2�, the Gaussian character of fila-
ment fluctuations is preserved �22�. In particular, it is easy to
check that Eq. �14� holds as well for the components of the
total fluctuation �23�. Respectively, the end-to-end fluctua-
tion correlation �5� is computed as

��t� = �4l−2�
n=1



n4�	yn
T�t� · yn

T�0�
 + 	yn
M�t� · yn

M�0�
�2.

�25�

The explicit expression for the power spectrum ��l2�� of the
end-to-end fluctuation can be found here by using Eqs. �13�
and �24� and Fourier transforming the result.

The motor contribution 	M��� to the response function is
additive to its thermal value �19� and is determined in the
same way,

	M��� =
2�4�

l4�2 �
n=1


n4��an��� + 2an − i��

an�2an − i���� + an − i��
. �26�

It is clear that in the limiting case of thermal white noise,
�→ and �→T, so that Eq. �26� reduces to Eq. �19�. At
high frequencies, � /2��� ,�b ,�� the leading term in Eq.
�26� is

	M��� =
2�4�

l4�2

i

�
�
n=1


n4

an
��an� . �27�

Higher terms decay as �−7/4. The resulting scaling of the
motor-driven contribution proportional to �−1 is different
from the well-known scaling 	T�����−3/4 which follows
from Eq. �19� for the equilibrium network �16,18,19�.
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Since both the response function 	��� and the fluctuation
spectrum ��l2�� are known, we can find the effective tem-
perature Teff��� with the help of Eq. �22�. The resulting ratio
Teff /T is plotted as a function of the dimensionless frequency
� /�=� /2�� in Fig. 1 for several values of the dimension-
less motor power � /T. We have used in the calculations the
parameters of a real polymer network taken from Ref. �10�:
�b=40 Hz and ��=40 Hz. The value of the cutoff frequency
� has been tentatively taken equal to 100 Hz. The conven-
tional FDT is restored at ��� since motors become inactive
at high frequencies. Deviations from the conventional FDT
increase with decreasing frequency and growing �. The
curves for different �’s almost collapse to a single curve in
the plot of the combination �−1�Teff /T−1� shown in the in-
set.

Accounting for additive motor noise allows one to de-
scribe qualitatively recent experimental results by Mizuno et
al. �10� measuring mechanical response of cross-linked actin
filaments driven by myosin II molecular motors. Both mea-
sured spectra, ���l2�� /2T and 	����, are shown in Fig. 2 by
the thin solid line and triangles, respectively. The theoretical
dependences computed with the help of Eqs. �19�, �26�, and
�25� are shown by the thick solid and dotted lines. We have

used the values of parameters �b=20 Hz and ��=40 Hz
close to those indicated in Ref. �10�. The motor power and
cutoff frequency are taken to be �=10T and �=20 Hz, re-
spectively. As seen in Fig. 2, the theoretical curves fit quali-
tatively the behavior observed in the experiment. In both
cases, the spectra ���l2�� /2T and 	���� are close to each
other at high frequencies and notably different in the low-
frequency domain where the motor-driven fluctuations pre-
vail over thermal noise.

IV. MOTORS AS MULTIPLICATIVE NOISE

We return now to the Langevin equation �2� and switch on
the motor activity in a different way, modeling it by a time-
dependent stretching force ��t�. Accordingly, the motor fluc-
tuating forces are introduced into the Langevin equation �2�
as multiplicative white Gaussian noise �23�. The spectral
equation �8� is now modified to

�yn/�t = − ��bn4 + ��n
2 + �m�t�n2�yn + fn

T�t�/� , �28�

where �m�t�= �� / l�2�m�t� /� and the parameters �b and �� are
defined as before. The thermal origin of the additive noise
fn

T�t� is indicated here explicitly.
As before, we start with the simplest case of �-correlated

noise with zero mean,

	�m�t�
 = 0, 	�m�t��m�t��
 = 2J��t − t�� . �29�

A rough estimate of the noise intensity J can be done accord-
ing to Ref. �25�.

The formal solution of Eq. �28� reads �cf. Eq. �12��

yn�t� = �−1�
−

t

fn
T�t��exp�− an�t − t�� − n2�

t�

t

�m�t1�dt1�dt�.

�30�

Forming the quadratic functions and averaging them with the
help of the expression

�exp��
0

t

��t1�dt1�� = exp�1

2
�

0

t �
0

t

	��t1���t2�
dt1dt2�
�31�

valid for a Gaussian process ��t� �23�, we obtain

	yn�t� · yn�0�
 =
T

�l�an − 2an
M�

e−�an−an
M�t, �32�

where an
M =�Jn

4=2�� / l�4Jn4 /�2. Comparing this expression
with its thermal analog �13� shows that multiplicative motor
noise causes slowing down of the relaxational processes and
increases the fluctuation amplitude. The fourth moment of
any component un of the transverse fluctuation takes the
form

	un
2�t�un

2�0�
 = 	un
2
2�1 + 2

an − an
M

an − 4an
M e−2�an−2an

M�t� . �33�

The discrepancy between this expression and Eq. �14� indi-
cates a non-Gaussian character of bending fluctuations. The
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FIG. 1. �Color online� Effective temperature Teff as a function of
the dimensionless frequency � /�, where �=� /2�, for chosen val-
ues of the dimensionless motor power � /T. The parameters are
�b /�=0.4 and �� /�=0.4. Inset: the function �Teff /T−1� /� plotted
against � /�.
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FIG. 2. �Color online� Comparison of the computed spectra
���l2�� /2T �thick solid line� and 	���� �dashed line� for motor
power � /T=10 with the respective experimental spectra �10�
�shown, respectively, by the thin solid line and triangles�. The pa-
rameters are �b=�=20 Hz and ��=40 Hz.
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deviation can be quantified by calculating the kurtosis �n�t�
= 	�un�t�4
 /3	�un�t�2
, where �un�t�=un�t�−un�0�. The ana-
lytical expression for �n�t� is rather cumbersome. Its limiting
values are �n�0�= �1−2sn��1−13sn

2� / ��1−sn�2�1−4sn�� and
�n��= �1−3sn� / �1−4sn�; �n�t� changes monotonically be-
tween these limits. The parameter sn=an

M /an cannot exceed
1/4. Physically, this corresponds to failure of linear descrip-
tion by the Langevin equation in the form �2�.

Next, we obtain the power spectrum of end-to-end fluc-
tuations ��l2�� and the response function 	���. The former
follows from Eqs. �11� and �33�,

��l2�� =
4�4T2

l4�2 �
n=1


1 − sn

�1 − 2sn��1 − 4sn�an

n4

4an
2�1 − 2sn�2 + �2 .

�34�

The response function is found analogously to Eqs. �17� and
�18�. In the case of motor activity, Eq. �18� remains valid
with the substitution an→an−an

M =an�1−sn�. Finally, the re-
sponse function is computed as

	��� =
2Tq4

�2 �
n=1


n4

an�1 − sn��2an�1 − sn� − i��
. �35�

The effective temperature determined from Eqs. �22�, �34�,
and �35� for the dimensionless motor activity parameter
�J /�b varying from zero to 1/5 and chosen values of prestress
is plotted in Fig. 3. The dependence Teff��� is more complex
than that for white additive noise where it reduces to a con-
stant value but its frequency variation is not very pro-
nounced. The effective temperature again increases with the
noise intensity and, following a slight dip at �=O��b�, ap-
proaches a constant limit at high frequencies.

Finally, we consider a more general case of multiplicative
colored noise with the correlation function

	�m�t��m�t��
 = J�e−�t−t�. �36�

The effective temperature can be found numerically accord-
ing to the scheme given above. We have used in calculations
the same value �=100 Hz of the cutoff frequency as before.
The characteristic rates are taken as �b=40 Hz and ��

=10 Hz, so that their ratio is the same as for the white noise

case in Fig. 3. The calculation results are shown in Fig. 4.
The dependence of the effective temperature on frequency
proves to be similar for both additive and multiplicative
noise. The similarity of the results is not surprising since in
both cases the spectrum of motor agitation has a natural up-
per limit—the cutoff frequency �. At frequencies ���, the
motors become inactive and only thermal fluctuation re-
mains. Owing to the motors, the fluctuations become stron-
ger and appear to be caused by environment temperature
increasing over its thermodynamic value T to a frequency-
dependent effective level Teff. This can be viewed as viola-
tion of the conventional fluctuation-dissipation theorem ex-
pressed by Eq. �6�.

V. VISCOELASTIC RESPONSE OUT OF EQUILIBRIUM

The dynamic shear modulus G��� of the network under
conditions of both thermal and motor activities is propor-
tional to the inverse to the response function 	��� of a single
filament �16,19�,

G��� = �	−1���, � = c
LLe

15
. �37�

The coefficient � is expressed here through the actin concen-
tration c, the contour length L, and the entanglement length
Le; the numerical factor has been obtained by averaging over
random segment orientations. Below we will use instead an
empirical value of this coefficient. The complex function
G��� can be represented in two equivalent forms,

G��� = G���� − iG���� = G���e−i����, �38�

which define the elastic �storage� modulus G���� and vis-
cous �loss� modulus G����, the amplitude G, and the phase
angle ����.

The principal question is how the motors change vis-
coelastic properties of the actin network. Generally, the mo-
tor action affects G��� in two opposite directions. On one
hand, the motors are responsible for filament prestress. This
leads to an increase in the shear modulus �10�. On the other
hand, the motor agitation adds up to the thermal agitation
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FIG. 3. �Color online� Effective temperature as a function of
frequency for some values of the dimensionless motor activity
�J /�b for the case of multiplicative white motor noise, �� /�b=1 /4.

100 101 102 103 104
0

1

2

3

4

ν (Hz)

1/5

1/8

νJ / νb =1/4

0

Teff /T

FIG. 4. �Color online� Effective temperature as a function of
frequency for some values of the motor activity �J for the case of
colored motor noise. The parameters are �b=40 Hz, ��=10 Hz,
and �=100 Hz. The dimensionless value of motor activity �J /�b is
indicated near the corresponding curve.
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that reduces both elastic modulus and viscosity �26�. Both
tendencies are, apparently, manifested simultaneously in the
case of two-headed motors or motor groups �10,24�. The
study of rheology of F-actin network in the presence of
single-headed myosin motor protein by Goff et al. �27� is
especially interesting in this regard. Single-headed myosin
motors working in isolation do not contribute to prestress of
actin filaments and, therefore, in accordance with the above
reasoning, one may expect that the motor activity should
soften the network. Indeed, the data of Ref. �27� clearly dem-
onstrate a decrease in the viscoelastic modulus amplitude
G��� in the presence of motors by a factor of about 2,
compared to its equilibrium value GT��� �see Fig. 5�.

What kind of noise—additive or multiplicative—do
single-headed motors produce? In general, both kinds of
noise should be present also in this case. Indeed, according
to Ref. �27�, motor activity both generates a longitudinal
mechanical force as a result of a power stroke and causes
filament bending due to random binding and unbinding pro-
cesses. The former produces multiplicative noise, whereas
the latter is likely to generate additive noise. According to
the estimates in Ref. �27�, the duration of force production
by a power stroke is much smaller than the characteristic
time of myosin attachment. This indicates that network agi-
tation is caused primarily by additive motor noise. We can
use therefore Eq. �26� alongside with Eqs. �19� and �37�, to
fit the experimental data in Fig. 5. The equilibrium value has
been fitted here to the GMGM relation GT�����3/4

�16,18,19� to obtain the coefficient � in Eq. �37� �see the
upper inset in Fig. 5�. The theoretical dependence calculated
for the additive noise parameters �=1000 Hz and � /T
=1.7 proves to be in good agreement with the data �27�.

We note that the empirical relation G�����7/8 in Ref.
�27� has to break down at high frequencies where the ratio

GT / G has to approach unity. A better motivated relation
can be obtained for the relative deviation

G̃��� =
G���
GT

− 1. �39�

The deviation decays asymptotically as �−1/4, as seen in the
lower inset in Fig. 5. This is in accordance with the �−1

decay of the motor-driven contribution to the response func-
tion 	��� given by Eq. �27�, which is faster than the �−3/4

decay of the contribution of thermal noise.
The exponent in the dependence G��� differs from that

calculated by Liverpool et al. �28�. The two results cannot be
compared in view of a substantial difference between the
models: Liverpool et al. �28� considered coupled longitudi-
nal and transversal filament dynamics and assumed that the
motor noise is white and affects the longitudinal motion only.

The behavior of the phase angle ���� for both equilibrium
and active networks is depicted in Fig. 6. The dashed line
corresponds to the equilibrium GMGM theory. The solid
curve for an active system has been computed using Eqs.
�19�, �26�, and �37� with the same values of parameters as in
Fig. 5. The theoretical results are in qualitative agreement
with the data �27� but quantitative agreement is not as good
as for the respective amplitudes in Fig. 5.

Up to now, we have studied the case of zero prestress of
filaments. A stretching force exerted by two-headed motors
or motor groups may lead to significant variations of elastic
properties of the active system �14,20�. We demonstrate this
by considering the storage G���� and loss G���� moduli of a
stressed network under the action of additive colored motor
noise. The values of the elastic modulus G���� normalized by
its equilibrium low-frequency limiting value GT�0� are
drawn in Fig. 7 against the dimensionless frequency � /�b. In
the absence of motors, �=��=0, the function G���� �de-
picted by the dashed line in Fig. 7� reduces to it equilibrium
GMGM form determined by Eqs. �19� and �37�. The out-of-
equilibrium curves �distinguished by the respective dimen-
sionless prestress values� have been computed for a model
case of additive colored motor noise with the power � /T
=10 and the cutoff frequency � /�b=25. We point out that
motor activity without filament prestress leads to softening of
the network �see the lower curve in Fig. 7�, similar to the
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FIG. 5. The variation of the shear modulus amplitude �G���
of motor-driven network relative to its equilibrium value GT���.
Circles denote the data of Ref. �27�. The solid line is drawn using
Eqs. �19�, �26�, and �37� with the parameters �b=40 Hz, ��=0, �
=1000 Hz, and � /T=1.7. Upper inset: the amplitude of the shear
modulus GT��� for an equilibrium system. The data �triangles� are
taken from �27�. The solid line is a fit to the GMGM relation
GT�����3/4 �16,18,19�. Lower inset: relative amplitude deviation

G̃��� �27� fitted to the �−1/4 asymptotic relation �straight line�.
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above case of single-headed myosin. The filament prestress
causes widening of the plateau region and significant net-
work stiffening in the low-frequency domain. For example,
the stretching force with �� /�b=100 gives rise to growth of
the plateau elastic modulus by almost four orders of magni-
tude �see the upper curve in Fig. 7�.

Let us estimate the corresponding dimensional value of
the stretching force �. Since �b= �� / l�4� /� and ��
= �� / l�2� /�, we obtain for the actin network with the persis-
tence length Lp�17 �m and the entanglement length l
�2 �m �10� the value ��20 pN. This value is quite acces-
sible for motors working collectively �10,13,24�. The above-
mentioned variations of the elastic modulus G� in the low-
frequency domain become, however, less pronounced with
growing frequency. As seen in Fig. 7, all curves gradually
approach the equilibrium curve GT����. This is another mani-
festation of weakening of motor activity in the high-
frequency domain.

The corresponding frequency dependence of the loss
modulus is shown in Fig. 8. The dependence follows ap-
proximately a power law at both low and high frequencies
with an exponent changing close to the boundary of the elas-
tic modulus plateau in Fig. 7. This is indicated by an ill-
defined break of the slope in the log-log plot about this fre-
quency, which becomes more pronounced at higher prestress.

VI. CONCLUSION

The above phenomenological analysis of viscoelastic dy-
namic response of a semiflexible polymer network under

conditions of motor activity allows us to estimate effective
temperature by computing separately in a closed form both
the fluctuation correlation function and the spectral dynamic
response. In contrast to near-equilibrium conditions when the
conventional FDT is valid, the effective temperature is fre-
quency dependent, being higher than thermodynamic tem-
perature at low frequencies and going down to the thermo-
dynamic value at frequencies exceeding the inverse
characteristic time of motor activity. Motor agitation can act
in two ways: as either additive or multiplicative colored
noise. We have not detected qualitatively significant distinc-
tions between the actions of additive and multiplicative
noise, which, apparently, manifest themselves more promi-
nently in the nonlinear regime.

The inverse correlation decay time of the colored noise �
determined by physical speed limitations of motor activity is
the major factor governing the shape of all frequency depen-
dences, but the effect is different for the effective tempera-
ture and viscoelastic response. The effective temperature
quickly decays to its thermodynamic value at ���, but vis-
coelastic response only gradually approaches the near-
equilibrium relation as the frequency grows following the
�−1/4 asymptotic decay law.
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