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Stochastic cellular automata model of neural networks
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We propose a stochastic dynamical model of noisy neural networks with complex architectures and discuss
activation of neural networks by a stimulus, pacemakers, and spontaneous activity. This model has a complex
phase diagram with self-organized active neural states, hybrid phase transitions, and a rich array of behaviors.
We show that if spontaneous activity (noise) reaches a threshold level then global neural oscillations emerge.
Stochastic resonance is a precursor of this dynamical phase transition. These oscillations are an intrinsic

property of even small groups of 50 neurons.
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I. INTRODUCTION

Understanding the dynamics and structure of neuronal
networks is a challenge for biologists, mathematicians, and
physicists. Neurons form complex networks of connections,
where dendrites and axons extend, ramify, and form synaptic
links between neurons. Due to long axons the structure of a
typical neuronal network has small-world properties [1-4].
In particular, neuronal networks in mammalian brains have
short path lengths, high clustering coefficients, degree corre-
lations, and skewed degree distributions [3]. Complex archi-
tectures of this kind are known to strongly influence pro-
cesses taking place on networks [5-7]. Complex wiring of
neurons may be important for the emergence of oscillations
and synchrony in the brain [4]. Apart from this highly het-
erogeneous and compact structure, neural networks are noisy
[8]. This makes a stochastic approach to neuronal activities
unavoidable [8,9]. Intuitively, noise is damaging; however, in
neural networks noise can play a positive role, supporting
oscillations and synchrony [8,9] or causing stochastic reso-
nance [10,11]. According to experimental data, oscillations
and stochastic resonance may be considered as “noise ben-
efits” [11]. The origin of these phenomena, mechanisms, and
functions of oscillations in neural networks are topical prob-
lems of great importance for the understanding of brain func-
tion [8,11]. Cultured neural networks provide well-controlled
systems for in vitro investigations [ 12]. Despite their simplic-
ity, these cultured networks demonstrate an extremely rich
repertoire of activity due to interactions between hundreds to
millions of neurons. However, at present there is no complete
understanding of the dynamics of even these very simple
neuronal networks. Recent investigations [12] reveal that
global activation of living neural networks induced by a
stimulus can be explained on the base of the concept of boot-
strap percolation—a version of cellular automata—without
going into details of neuron dynamics.

In the present paper we propose a stochastic cellular au-
tomata model of noisy neural networks. Based on experi-
mental data we assume that activation processes are stochas-
tic, i.e., neurons can be activated with a certain probability
either by an external stimulus, spontaneously, or by fluctuat-
ing inputs from active presynaptic neurons. These networks
include two neural populations, excitatory and inhibitory
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neurons, and have a complex network architecture, i.e., the
small-world property and heterogeneity are taken into ac-
count. We consider model neurons which fire regular trains
of spikes with a constant frequency. The stochastic dynamics
of these networks takes into account processes of spontane-
ous neural activity, which plays the role of noise, the activa-
tion of neurons by a stimulus or neural pacemakers, and
interactions between neurons. With this model we aim to
understand the role of noise in the emergence of oscillations
and the origin of stochastic resonance. Although the model is
simple, it demonstrates various patterns of self-organization
of neural networks, hybrid phase transitions, hysteresis phe-
nomena, neural avalanches, and a rich set of dynamical phe-
nomena driven by noise: decaying and stable oscillations,
and stochastic resonance.

Using exact analytical methods and simulations of the sto-
chastic dynamics of this model, we demonstrate that noise
can play a constructive role in neural networks. We show that
at a critical level of noise a neural network undergoes a dy-
namical phase transition from a state with incoherent neu-
rons to a state with synchronized neurons and global oscilla-
tions. Oscillations of neural populations emerge if
spontaneous neural activity (noise) is above a critical level.
Stochastic resonance is a precursor of global oscillations. At
a given spontaneous neural activity, a critical fraction of neu-
ral pacemakers can also stimulate oscillations. We consider
several mechanisms leading to global oscillations in neural
populations: the difference in dynamics of excitatory and in-
hibitory neurons or the existence of synaptic delays. These
mechanisms lead to similar oscillations. We also show that
global oscillations are intrinsic properties of the neural net-
works under consideration. One should note that these oscil-
lations are nonlinear waves with a certain amplitude and a
specific shape which are determined by the structural and
dynamical parameters. They do not depend on initial condi-
tions in contrast to waves in linear dynamical systems. We
demonstrate that the network structure plays an important
role. In neural networks having the structure of classical ran-
dom networks the larger is the connectivity, the broader is
the region with global oscillations. Our simulations reveal
that oscillations are an intrinsic property of even small
groups of neurons. 50-1000 neurons display oscillations
similar to infinitely large networks despite stochastic fluctua-
tions which are usually strong in small networks. The pro-
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FIG. 1. Firing rate v versus input V: (a) type 1 neuron; (b) type
2 neuron; (c) the step function approximation used in the present

paper.

posed model also explains a discontinuous transition in the
activation processes of living neural networks observed ex-
perimentally in [12]. Neural avalanches precede this transi-
tion. Simulations support our analytical solution.

II. MODEL

Neurons demonstrate various types of spiking behavior in
response to a stimulus at firing threshold (see, for example,
[13-15]). Type 1 neurons show a continuous transition from
an inactive state to an active state with an arbitrary low firing
rate when the input current is above a threshold input [see
Fig. 1(a)]. For example, cortical excitatory pyramidal neu-
rons exhibit this behavior. Frequencies of tonic spiking of
type 1 neurons lie in the range from 2 to 200 Hz or can be
even higher than 200 Hz. The maximum firing rate is set by
the refractory period of a neuron. Type 2 neurons show a
discontinuous transition to a nonzero firing rate above a
threshold input [see Fig. 1(b)]. They fire in a relatively nar-
row frequency band. For example, Hodgkin-Huxley neurons
demonstrate type 2 neural excitability. Type 2 neurons fire
spikes with frequency about 40 Hz and higher. Fast-spiking
inhibitory interneurons in the rat somatosensory cortex fire in
the frequency range 20-61 Hz [16]. Neurons with type 2
dynamical behavior may play an important role in synchro-
nization of neural activity [17]. Several models have been
proposed to describe the dynamics of individual neurons
(see, for example, [14,15,18-20]).

In the present paper we only consider regular spiking neu-
rons. We approximate the frequency-current response by the
step function [see Fig. 1(c)]. Active excitatory and inhibitory
neurons fire trains of spikes with a constant frequency v
which is the same for all neurons and does not depend on the
input. If 7v>1 then during an integration time 7 (the mem-
brane time constant) a postsynaptic neuron receives [7v]
spikes from an active presynaptic neuron, where [A] stands
for the integer part of a number A. It is assumed that the
spike duration (about 1 ms) is much smaller than 7. The
membrane time constant 7 can range from 1 to 100 ms [21].
For example, for a typical integration time 7=10 ms we
must have »>100 Hz.

Let us consider a neural network with two types of neu-
rons: excitatory and inhibitory neurons (see below). The total
number of neurons is N. The fractions of excitatory and in-
hibitory neurons are g, and g;=1-g,, respectively. Neurons
are linked by directed edges and form a network with an
adjacency matrix a,,,, where n,m=1,2,...,N. An entry a,,,
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is equal to 1 if there is an edge directed from neuron n to
neuron m; otherwise, a,,,,=0. Each neuron can be in either an
active or inactive state. Active neurons fire regular trains of
spikes, as discussed above. We assume that there is no phase
correlation between trains of spikes generated by different
neurons. We define s,(f)=1 if neuron n is active at moment ¢,
and s,(f)=0 if this neuron is inactive. In our model, these
binary variables play an auxiliary role. During the integration
time 7 a postsynaptic neuron receives and integrates spikes
from active presynaptic excitatory and inhibitory neurons.
First we consider the case 7v>1. The total input V()
(postsynaptic potential) at neuron 7 is the sum of inputs from
nearest-neighbor (presynaptic) neurons,

Vo) = [70] 2 50D pd s (1)

where synaptic efficacy J,,,,= = J if neuron m is excitatory or
inhibitory, respectively. We assume that all synapses of exci-
tatory neurons are excitatory, and all synapses of inhibitory
neurons are inhibitory. This is the so-called Dale’s principle
[22]. Recently, the importance of Dale’s principle for dynam-
ics and pairwise correlations in neural networks was dis-
cussed by Kriener ef al. [23]. In our model, the dynamics do
not change qualitatively if |J,,| are different for these two
populations of neurons. Note however that there are physi-
ological reasons for the fact that the magnitudes of inhibitory
efficacies are usually larger than excitatory efficacies (see,
for example, [21]). Active excitatory (inhibitory) presynaptic
neurons give positive (negative) inputs to a postsynaptic neu-
ron, while inactive neurons give no input. For example, the
input from k active excitatory and / inhibitory neurons is V
=[rv|Jk—[7v]JI. We suppose that this input activates the
postsynaptic neuron if V is at least a threshold value V,;,. This
gives the following condition:

k=1=Q=V, /[, (2)

which we will use below. Notice that €} is a dimensionless
parameter. The dimensionless threshold () is on the order of
15-30 in living neural networks [12] and about 30-400 in
the brain. Even if biological neurons have a variable thresh-
old [14], for simplicity, we assume that the threshold does
not depend on the prior activity.

In our stochastic model we assume that the states of neu-
rons at each moment ¢ are determined by the following rules:

(i) An excitatory (inhibitory) neuron is activated at a rate
f. (f;) either by a stimulus or spontaneously (spontaneous
activity).

(ii) In addition, an excitatory (inhibitory) neuron is acti-
vated at a rate u;, (u;) by nearest-neighbor active neurons if
the total input V(z) at this neuron is at least a threshold value
Vth’ i.e., V([) = Vlh'

(iii) An activated excitatory (inhibitory) neuron is inacti-
vated (i.e., it stops firing) at a rate wu,, (u,;) if the total input
V(#) becomes smaller than V.

(iv) An activated excitatory (inhibitory) neuron spontane-
ously stops firing at rate u,, (u;).

In the brain, neurons receive fluctuating inputs and gen-
erate spike trains [8]. We represent the activation by fluctu-
ating inputs as the stochastic process (ii) with the rates wu,,
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and u,; which can be on the order of the average firing rate.
This determines the time scale in the model. Even if the total
input is on average larger than V,,, it sometimes falls below
V.- As a result, the neuron stops firing. Process (iv) is meant
to represent this. The biophysical meaning of the model pa-
rameters, assumptions, and approximations which are the ba-
sis of our model are discussed in Sec. VII. For other models
with binary variables, see [24-27] and review [20].

In order to describe the dynamics of neural networks, we
introduce a probability pff’)(t) that neuron n of type a is ac-
tive at time 7. Let us define the mean values of pﬁl“)(t) for
excitatory, a=e, and inhibitory, a=i, populations,

pa(t) = 2 p(1)/(gN), (3)

where the sum is over neurons of type a and g, is their
fraction. We name p,(z) and p;(r) “activities” of the excita-
tory and inhibitory populations. On the other hand, p,(¢) and
pi(1) are the respective probabilities that a randomly chosen
excitatory or inhibitory neuron is active at time . We con-
sider neural networks whose structure is of a sparse random
uncorrelated directed network. These networks are small
worlds and can have an arbitrary degree distribution. They
are often considered as a good approximation to real net-
works [2]. The advantage of these networks is that they can
be studied analytically by use of mean-field theory and easily
modeled for simulations. However, they do not take into ac-
count the high clustering coefficient and degree correlations
of real neural networks [3]. Although the mean-field ap-
proach is based on the treelike approximation, it takes into
account exactly the heterogeneity of networks and large
feedback loops [5].

III. BASIC RATE EQUATIONS

Let us derive dynamical equations for the activities p,(7)
and p,(t). We introduce the probabilities W ,(p,(1), p;(t)) and
W.(p,(1),p,(t)) that at time ¢ the total input to a randomly
chosen excitatory or inhibitory neuron, respectively, is at
least (). If at time ¢ an excitatory neuron is inactive, which
takes place with probability 1—p,(¢), then an external field
activates this neuron at a rate f,. This gives a contribution

Jl1=p(0)] (4)

to the rate p,(t) =dp,(t)/dr. If at time ¢ the total input to an
inactive neuron is at least (), which takes place with prob-
ability W,(p,(2),p;(r)), then this neuron is activated at the
rate u,,. This gives one more positive contribution

Iu‘le[l - pe(t)]qfe(pe(t)’pi(t))' (5)

If at time ¢ an excitatory neuron is active, which takes place
with probability p,(¢), and the total input from activated
nearest-neighbor excitatory neurons is smaller than (), which
takes place with probability 1-W ,(p,(¢),p;(t)), then such an
active neuron becomes inactive at the rate wu.. The active
neurons also can stop spontaneously firing with rate w,,.
These processes give two negative contributions:

- lu’lepe(t)[l - \I,e(pe(t)’pi(t))] - /'l’2€pe(t) . (6)

Summing all contributions, we obtain a rate equation,
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pu(t) =fa - Vapa(t) + lu’lu\I’a(pe(t)’pi(t)) . (7)

Here, v,=f,+ u1,+ 1o, and a=e,i.
To clarify the relative role of activation and deactivation
processes, we rewrite Eq. (7) as follows:

pa/Vu :Fa(l - Qa) —Pat (1 - Fa)(l - Qa)\Pa(pe’pi)’ (8)

where p,=p,(t). The dimensionless parameters F,=f,/(f,
+um,) and Q.= u,,/v, determine the relative strength of
stimulation and the spontaneous deactivation of neurons. The
rates v, and v; set the time scale.

The probabilities W, and V¥, are determined by the net-
work structure. Below we will study a directed classical ran-
dom graph which is the simplest and representative model of
sparse uncorrelated complex networks [2,5]. These random
graphs share the properties of sparse uncorrelated random
networks with a finite second moment of the degree distri-
bution. They are small worlds and have a mean shortest dis-
tance which increases as the logarithm of the number of ver-
tices, in contrast to a three-dimensional system where a mean
shortest distance increases as the cube root of the size. Due
to simplicity, classical random graphs are often used to study
dynamics of systems having a complex network structure
[2,5-7]. In contrast to real networks, sparse random uncorre-
lated networks and in particular classical random graphs
have zero clustering coefficient due to their treelike structure
and negligible (in some cases, weak) degree-degree correla-
tions between neighboring nodes in the infinite-size limit.
Understanding the strength of the clustering and degree cor-
relations on dynamics of systems with complex network ar-
chitecture is an open problem in the theory of complex net-
works [5-7]. Recent investigations of various dynamical
models on complex networks show that in many cases net-
works with clustering demonstrate dynamics qualitatively
similar to treelike networks. In many cases degree-degree
correlations also do not qualitatively change the dynamics.
This challenging problem is discussed in detail in the recent
review [5].

In a classical random graph a directed edge between each
pair of N neurons is present with a given probability c¢/N.
The parameter c¢ is the mean input and output degrees. The
probability B,(c) that a neuron has n input edges is given by
the binomial distribution,

pio=c £ (1-£)" ©)

where CY=N!/(N-n)!n! is the binomial coefficient. We
will study analytically large networks with N>1. In the
infinite-size limit, N — o, the binomial distribution B,(c) ap-
proaches the Poisson distribution P,(c),

P,(c)=c"e“In!, (10)

which is more convenient for calculations. The probability
that a randomly chosen neuron has k active presynaptic ex-
citatory and [ active presynaptic inhibitory neurons is
P (g.p.c)P/(g;p;c). Hence, in the case 7v>1, we get
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k=Q

V.(pe.p;) Z‘Pi(Pe,Pi) = 2 E Pk(gepec)Pl(gipic)
k=Q =0

. (g.pe0)"
=8t > —OU T T(k_ () + 1,g,p0),
e 2 H(k- Q) ( +1,g;pc)

(11)

where I'(k,x) is the upper incomplete gamma function and )
is defined by Eq. (2). Notice that in the case of classical
random graphs we have used the fact that there are no cor-
relations between the numbers of input and output edges.

In the case 7w<<1, during the integration time 7 a postsyn-
aptic neuron receives only one spike or none from an active
presynaptic neuron. If the phase of a train of spikes is uncer-
tain then all we can say is that during the time interval 7 with
probability 7v a postsynaptic neuron receives a spike from an
active presynaptic neuron. In turn, the probability that there
is no spike is 1—7v. Let us assume that there is no phase
correlation between regular spiking neurons. This is a com-
mon assumption at low activity rates [28]. The probability
that during time 7 a neuron receives k spikes from uncorre-
lated n regular spiking presynaptic neurons is

Ci(mv)K(1 = )"k, (12)

In the case of a classical random graph, the probability that
during the integration time 7 a randomly chosen neuron re-
ceives k spikes from active excitatory or inhibitory neurons
is given by the Poisson distribution,

]

> Pol8apa) CLr) (1 = Tv)"* = P(g pre),  (13)
n=k

where a=e,i for excitatory and inhibitory neurons, respec-
tively. k spikes from excitatory and / spikes from inhibitory
neurons activate a postsynaptic neuron if V=Jk—-JI=V,,.
Using probability (13), one can show that the function
WV (p.(1),p;i(t)) in Eq. (7) is given by Eq. (11) if the mean
degree ¢ is replaced with 7vc, and a threshold Q=V,,/J is
used. Therefore, the effective mean input degree is decreased
while the effective threshold is increased in comparison to
the case 7v>1. Note that if trains of spikes generated by
presynaptic neurons are correlated, then Eq. (12) is invalid.
Spikes acting in concert can activate a postsynaptic neuron
more effectively.

One can use another approach. The stochastic rules (i)—
(iv) lead to a rate equation for the activity pf,“)(t) of single
neuron n of type a with ¢,=2,,a,,, presynaptic neurons for a
given adjacency matrix a,,,,,

PO = fo=vp () + 1y 2 O,
{s,,=0,1}

- th(n))H [amnpm(smat)]’ (14)

where V,=[mv]Z,,5,,0mJmn 1S the input at neuron n from
presynaptic neurons m at [ 7v]>1, @(x) is the Heaviside step
function, p,,(s,,=0,1)=1 —pfs)(t), and p,,(s,,=1,1) =p£,f)(t) are
the probabilities that presynaptic neuron m is inactive or ac-

tive at time 7, respectively. The last term in Eq. (14) is the
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probability that the input at neuron n is at least the local
threshold V,,(n) at time ¢. These equations describe a neural
network with a given adjacency matrix a,,, arbitrary synap-
tic efficacies J,,,, and arbitrary local thresholds V,,(n). In the
case of the classical random graph in the infinite-size limit,
for the uniform case |/,,|]=1 and V,(n)=V,, the set of N
coupled nonlinear rate equations (14) can be reduced to two
coupled equations for the averaged activities p, and p;. Sum-
ming over n in Eq. (14) and averaging over the network
ensemble, we arrive at Egs. (7) and (11). We believe that the
mean-field equation (7) is exact for sparse uncorrelated di-
rected networks in the limit N—oc. Our simulations of the
model on classical random graphs support this. Similar rate
equations were derived for disease spreading and contact
processes on complex networks [29,30].

Neural networks can also be activated by pacemakers
(neurons that permanently fire). Let excitatory and inhibitory
pacemakers be chosen with given probabilities F, and F;
from excitatory and inhibitory neurons, respectively. The sto-
chastic dynamics of remaining neurons [activities p,() and
pi(1)] are governed by rules (ii)—(iv). In the same way as for
Eq. (8), we obtain

pa/vazFa_pa-"(l_Fa)(l_Qa)q,a(pwpi)’ (15)

where we define p,=F,+(1-F,)p,(t), the total activity of
the neural population a, with a=e,i. Equations (8) and (15)
differ only by the first term on the right-hand side. Thus,
activation by a stimulus or randomly chosen pacemakers
produces similar effects. A similar equation at Q,=0 was
derived using another approach in [26].

In our model one can also take into account synaptic de-
lays. Introduce time T, for the transmission of a nerve signal
from a neuron of type a to a nearest-neighbor neuron of type
b, where a,b=e,i. Then, in Eq. (8), replace W (p,(1),p;(2))
with W [p,(t-T,,),pi(t=T;,)]. Various sources of delays in
the nervous system and their role in dynamics of neural net-
works were recently discussed by Ermentrout and Ko [31].

The rate equations (7) look similar to the rate equations
derived in the pioneer works of Wilson and Cowan [32,33]
who considered the dynamics of neural populations with ex-
citatory and inhibitory interactions. However, there are im-
portant differences between our model and the Wilson-
Cowan model. Our model of interacting excitatory and
inhibitory neurons is based on the stochastic rules of activa-
tion and inactivation of individual neurons [these are rules
(i)—(iv) in Sec. II] in contrast to the deterministic phenom-
enological model in [32,33]. Using these rules, we derived
the self-consistent rate equations (7). Furthermore, Wilson
and Cowan used as relevant variables the fractions of exci-
tatory and inhibitory neurons which become active per unit
time. Within our notations these are g.p, and g,p,, respec-
tively. In our approach in the case of classical random
graphs, the fractions of active excitatory and inhibitory neu-
rons, i.e., g,p, and g,;p;, are the relevant variables. Also, on
the base of experimental studies, Wilson and Cowan postu-
lated that the subpopulation response functions have a sig-
moid form. They used the standard mean-field theory which
neglects the spatial heterogeneity, and assumed that all neu-
rons are subjected to the same average excitation of excita-
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FIG. 2. Function ¥ (p,,p;) [Eq. (11)] versus g,p, at g;p;=0, 0.3,
0.6, and 0.8. Other parameters are ¢=100 and )=20.

tory and inhibitory populations. In our model, the functions
v, (p,,p;) and V,(p,,p;) in Eq. (7) play the role of the re-
sponse functions. We calculated these functions exactly, tak-
ing into account the heterogeneity of the classical random
graph. According to Eq. (11), these functions have a sigmoid
form with one inflection point as a function of the parameter
g.p, in a wide range of g,p; (see Fig. 2). One can expect a
multimodal functional dependence with several inflection
points if there are several neural populations with different
thresholds V. Finally, in our stochastic approach, the set of
equations (14) permits the study of the dynamics of indi-
vidual neurons while Eq. (7) describes the global activity of
the neural populations. The Wilson-Cowan model only de-
scribes the global activity of the neural populations. Below
we will show that the stochastic model as well as the Wilson-
Cowan model reveals hysteresis phenomena, decaying, and
stable oscillations in neural activity.

IV. STEADY STATES AND AVALANCHES

The steady states of the model are determined by Eq. (8)
at p,=0. The steady solutions of Eq. (8) generalize the stan-
dard bootstrap percolation to a directed random graph with
two types of vertices. A particular case with g;,=0, F,=F},
and Q,=Q;=0 was studied in Ref. [12]. Activation processes
are shown in Fig. 3 at F=F,=F;, 0,=0;=0 when p,=p;.
One can see that by increasing the activation parameter F,
the activity p, (and p;) undergoes a jump at a critical point
F.. A similar jump was observed in living neural networks in
vitro [12]. If F approaches F. from below, then

pa=py —A(F.~F)'"?, (16)

where A is a coefficient. This singular behavior evidences the
existence of long-range correlations between neurons and the
emergence of neural avalanches: the activation or deactiva-
tion of one neuron triggers the activation or deactivation of a
large cluster of neurons. This phenomenon is similar to the
one that was found near the point of emergence of a giant
k-core [34]. Thus, the transition at F, is a hybrid phase tran-
sition (one which combines a jump and a singularity). At F
=F. the probability G(s) that an avalanche has a size s, in-
cluding the activating neuron, is
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FIG. 3. Activity p, of excitatory neurons versus the activation
parameter F' at different fractions of inhibitory neurons g; from
numerical solution of Eq. (8) at =20, =3. The jump and hyster-
esis disappear if g;>g"=0.43. Arrows show increasing and de-
creasing F. The inset shows results at ¢=1000, {1=30. Our simula-
tions confirm these results.

G(s) o 5732, (17)

Similar neuronal avalanches were observed in the cortex
[35,36]. Using the approach from [34], we calculated G(s)
exactly at g;=0 and F=F,,

s—1
()™ s

G(s) =
s!

(18)

where n.. is the average number of inactive subcritical
postsynaptic neurons of an inactive presynaptic excitatory
neuron. By definition, a subcritical neuron has exactly ()
—1 active presynaptic excitatory neurons. Successive activa-
tion of these subcritical neurons forming finite clusters leads
to avalanches. We found that n.,.=(1-F)d¥,(p,,0)/dp, =1,
where p, is the neural activity in the steady state at a given F.
At the critical point F=F, we have n.=1. This leads to Eq.
(17) which we believe to be also valid for g;# 0.

With increasing g; the size of the jump decreases. There is
a special critical point g* at which the jump is zero and the
phase transition is continuous. There is no phase transition if
g;>g" or if ) is larger than a critical threshold (see Fig. 3).
In Fig. 3 we display numerical results for large mean degree
¢=1000 and large =30, and for small mean degree c¢=20
and small Q=3. Qualitatively the behavior is the same.
There is a range of g; in which the system demonstrates
bistability while the upper metastable state has activity p, not
close to 1 (see small hysteresis loops in Fig. 3). However,
this region becomes smaller in the case of large c¢. This in-
dicates that with increasing ¢ and (), this bistability region
decreases rapidly. Thus, the hysteresis behavior crucially de-
pends on having finite values of ¢ and (). In biological sys-
tems the efficacy of inhibitory synapses is larger than that of
the excitatory ones. In our analysis we assumed that they are
equal. Our calculations show that an increase in magnitude
of the inhibitory efficacy moves the fraction g; of inhibitory
neurons at which the interesting bistability region takes place
into a region of biologically plausible values, namely, about
0.2.
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FIG. 4. There are three regions on the a-F plane: (I) with ex-
ponential relaxation; (II) with decaying oscillations; (IIT) with stable
oscillations. The boundaries «,; and «,,, given by equations Im y
=0 and Re y=0, are shown at g;<g" (solid lines) and g;,>g"
(dashed lines). (a) ¢=20, Q=3, g;=0.4, and 0.47. (b) c=1000, Q
=30, g;=0.475, and 0.478.

V. RELAXATION AND OSCILLATIONS

Let us consider the relaxation of neural networks to a
steady state. We represent p,(f) as p,+3Jp,(t), where
8p,(1)/ p,<1 and p,, is the equilibrium activity of population
a. Linearization of Eq. (8) with respect to Sp,(f) gives two
coupled linear equations:

dop,(1)

v, dt
where D, ,=(1-F,)(1-0,) ¥ (p.,p;)/dp, for a,b=e,i.
We look for a solution in the form &8p,(f)=A ™" with un-

known A, and 7. The solution exists if the determinant of
this set of equations is zero. This condition gives

Y= Ve{Bl +BZ * [(Bl _82)2+4aDeiDie]1/2}/2a (20)

== 5pa(t) + Dae(spe(t) + Dai(spi(t)v (19)

where a=v;/v,, Bj=1-D,,, and B,=a(1-D;;). Equation
(20) is valid in the general case W,# V,. For the classical
random graph, using Eq. (11), one can prove that D,,,D;,
>0 while D,;,D;;<0. Therefore, y in Eq. (20) may be a
complex number in certain ranges of parameters c, g, F, and
a. Where Im y=0, relaxation is exponentially fast with the
rate y. For example, at a=1, we have y=v,(1-D,,—D;;)
=(. In this case vy tends to zero if F— F, from below as at a
continuous phase transition. However, y is always finite
above the critical point F.. If Re y>0 and Im y# 0, then
relaxation is in the form of decaying oscillations. If Re y
<0 and Im y#0, then any small deviation from a steady
state leads to oscillations around the state with an increasing
amplitude. However, in this case the linear approximation
[Eq. (19)] is not valid, and it is necessary to solve Eq. (8).
These three regions are shown in Fig. 4. We solved Eq. (8)
numerically in the case F,=F;=F, Q,=0;=0. We found that
there is a region of g;, which includes the special point g%,
where Re y<0 and Im y#0 if 0<a<a,=(D,—1)/(1
—-D;;) <1, i.e., when inhibitory neurons have slower dynam-
ics compared to the dynamics of excitatory neurons. It turns
out that in this region the neural system displays stable os-
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cillations around the steady state. Figure 4 shows that the
larger are the mean degree ¢ and the threshold (), the broader
is the region with oscillations. We obtained similar results for
the model with synaptic delays. In particular, there is a re-
gion of g; where oscillations emerge at @=1 and T,,=T7,;
=0if 7;,=T;;>T, where T is a threshold. The firing rate u,
in human brains is typically in the range 1-400 Hz. In our
model the frequency of oscillations w, is several times
smaller than w;. This gives w, in the range of the waves
observed in brain, i.e., w,=< 100 Hz.

Replacing f, with f,(1)=f,+A, sin(wt) in Eq. (7), we
study the response of the model, p,+Ap, sin(wt+¢,), to a
small periodic stimulation, A,<f,. If F approaches the
boundary between regions IT and III (see Fig. 4) the response

(ApJA.)? < 1/[(w—Im y)* + (Re y)*] (21)

is enhanced because Re y=0 at the boundary. Therefore, the
transition from a state with incoherent neurons to a state with
global oscillations is a dynamical phase transition with a
sharp boundary (in the thermodynamic limit). In our model
the stochastic neural activity plays the role of noise while
interactions between neurons produce nonlinear effects.
Thus, the observed strong enhancement of the response is
actually stochastic resonance [11,37].

VI. SIMULATIONS

Our simulations supported the theoretical results. Random
networks with N neurons were constructed by establishing
directed links between any neuron i and neuron j, with prob-
ability ¢/N. In the initial configuration all neurons were in-
active. The state of each neuron is then updated every At
time units (parallel update) according to stochastic rules (i)—
(iv). (Any other initial configuration may be also used.) The
value of the time step At was chosen such that the probabili-
ties fAz, u;At, and w,Ar of the stochastic processes (i)—(iv)
in Sec. II for excitatory and inhibitory neurons were suffi-
ciently small. Reliable results were obtained when these
probabilities were about 0.1 or smaller. Figure 5 presents
typical numerical results obtained for systems of different
sizes. All parameters used in simulations are presented in the
caption to Fig. 5. For a given number of neurons N we con-
structed several realizations of networks, and then we simu-
lated their stochastic dynamics, using rules (i)—(iv) in Sec. IL
As one would expect, for the considered stochastic model,
different runs and different realizations of neural networks
differ slightly one from another. With increasing N these dif-
ferences become smaller and smaller, so these are standard
run-to-run and realization-to-realization variations.

Figure 5 shows a full set of regimes. One can see that in
regimes with exponential relaxation and decaying oscilla-
tions the irregular activity of neurons decreases with increas-
ing N. Already at N=1000, a stimulation with F>F,. acti-
vates a finite fraction of neurons in agreement with the
theory, although there are strong irregular fluctuations around
the steady state. In a small network of 50 neurons stochastic
effects are strong and suppress the global activation. In Fig. 5
we also compare oscillations predicted by Eq. (8) to our
simulations. Interestingly, these oscillations have a saw-tooth
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FIG. 5. (Color online) Fractions R,=p,g, and R;=p,g; of active
excitatory and inhibitory neurons versus time. (a)—(c) a=1 (region
). (d)—(f) @=0.4 (region II). (g)—(i) a@=0.05 (region III). Solid
(dashed) lines show theoretical R, (R;) from Eq. (8). Blue (red)
symbols refer to R, (R;) from simulations at N=10 000 (first row),
1000 (second row), and 50 (third row). F=0.05, g;=0.4, ¢=20, Q
=3, and u,=0.

shape. Their period and shape depend on the parameters of
the model such as F, a, ¢, (), and g;. The theory and simu-
lations are in very good agreement at N=10 000. Actually
we found good agreement with only N=1000. Surprisingly,
the predicted oscillations emerge even in small groups of 50
neurons where strong stochastic effects and non-negligible
clustering could be expected. For c=20 and N=50 the mean
clustering coefficient is C=c¢/N=0.4 [2,5], which is close to
the value C=0.53 found in the macaque visual cortex [3].
This intrinsic property of small groups of neurons to oscillate
may be very important for understanding communication be-
tween neuronal groups in the brain [38].

VII. DISCUSSION

First let us discuss the assumptions and approximations
which are the basis of our stochastic approach to noisy neural
networks and explain the biological meaning of the model
parameters from the point of view of experimental and the-
oretical neuroscience. In our model, activation of neurons by
stimulus is a stochastic process with a characteristic time
which is equal to the reciprocal rate 1/u,. In the brain, sto-
chasticity in activation of neurons by stimulus may appear in
trial-to-trial variability of the first-spike latency of neurons.
The first-spike latency of a given neuron is defined as the
time from the onset of a stimulus to the time of appearance
of the first spike. The first-spike latency can depend on many
parameters. For example, for auditory neurons it depends on
the amplitude and frequency of stimulus [39]. We suppose
that the reciprocal rate 1/u; is on the order of the mean
first-spike latency of neurons. For simplicity, we assume that
1/ is constant and does not depend on the input. The first-
spike latency may be on the order of the period of tonic
spiking or much larger if the input is near the threshold. In
the mammalian cortex the latency of regular spiking neurons
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for a superthreshold input can be in the tens of milliseconds.
This gives u;~10-400 Hz.

In our approach it is assumed that each neuron may be
active spontaneously, that is, it may discharge without
experimenter-controlled stimulations. At the present time, the
mechanisms and functional significance of spontaneous neu-
ral activity are not well understood and it is a topical prob-
lem in experimental and theoretical neuroscience [8,9,28,40].
The typical spontaneous background activity observed in the
cortex is 1-5 spikes/s. Interactions between neurons play an
important role in this activity [28]. Spontaneous activity in
the brain may be mediated by intrinsic, intracellular, gener-
ated activity, and circuit feedback mechanisms. Neural activ-
ity in one region of the brain may propagate to other regions,
circulating in recurrent loops. For example, neurons in the
thalamus and the cerebral cortex form recurrent loops [41].
The study of spontaneous activity in neocortical slices [42]
gives evidence that supports both mechanisms. For our
model a mechanism of spontaneous activity is unimportant.
One can assume that spontaneous activity takes place by the
intrinsic mechanism. Alternatively one can consider the neu-
ral network as part of a large system from which neurons
receive random inputs. In real neural networks only a frac-
tion of neurons are spontaneously active [42]. In the present
paper we study the case in which all excitatory and inhibi-
tory neurons may be spontaneously active. One can show
that if only some fraction of neurons is spontaneously active,
the dynamics of the neural networks would be qualitatively
the same.

Furthermore, we considered the activation of neurons by
an external stimulus as a stochastic process. Experimental
work supports this assumption. For example, it was revealed
that a moving whisker can have only a 15% chance of gen-
erating spikes in a neuron in the mouse somatosensory cortex
[43]. Unfortunately, much less is known about stochastic
processes of spontaneous deactivation of neurons. In our
model, the reciprocal rate 1/u, is the characteristic time at
which neurons stop firing due to irregular fluctuations on the
input or due to random processes taking place inside the
cells. Recently it was shown that spontaneous activity of
single neurons may be driven by noise which cannot only
activate but can also inhibit spiking activity of neurons of
both types 1 and 2 [44-46].

The rates of the stochastic processes discussed above can
be found from statistical analysis of activation and inactiva-
tion events in neural networks. They can also be measured
by the use of the patch-clamp technique: one can stimulate
presynaptic excitatory and inhibitory neurons and then mea-
sure the probability of activation of a postsynaptic neuron
through the distribution of first-spike times.

The proposed stochastic model is not restricted to regular
spiking neurons. One can also analytically study noisy neural
networks with neurons which generate random spike trains,
for example, Poisson spike trains as found in recordings
from neurons in vivo and in vitro [9]. The proposed stochas-
tic approach can also be generalized to study analytically
neural networks with neurons having the type 1 and 2 dy-
namical behavior shown in Fig. 1 for the case when correla-
tions between presynaptic neurons may be neglected. How-
ever, these generalizations are out of the scope of the present

paper.
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We found that even a small group of neurons reveals in-
trinsic oscillations which are robust against strong stochastic
fluctuations (see Fig. 5). It means that despite noise, neurons
in a small group can synchronize their dynamics. We believe
that this result opens interesting possibilities to study and
model communication between different groups of neurons
and the transmission of activity from one group of neurons to
another. In the recent review [38], “neuronal communication
between neuronal groups through neuronal coherence” was
considered as a mechanism for cognitive dynamics. On the
basis of neurophysiological data, Fries suggested that coher-
ently oscillating neuronal groups can interact effectively
[38]. This idea is based on an assumption that activated neu-
ronal groups have an intrinsic tendency to oscillate. Our
model supports this assumption, showing that oscillations in-
deed are an intrinsic property and robust against noise. In our
model one can model communication between neural popu-
lations or neural modules. Synchronization of neurons or
groups or modules of neurons in the regime with oscillations
can play an important role in this communication. Indeed,
our preliminary simulation of interacting neural communities
reveals complex patterns of neural activities. On the basis of
our stochastic model one could study the computational role
of network oscillations and how oscillations contribute to the
representation of information [47].

Real neural networks have a scale-free degree distribution
[3] rather than a simple Poisson distribution. A preliminary
study of neural networks with a scale-free degree distribution
showed that these networks demonstrate dynamical proper-
ties qualitatively similar to properties of the networks studied
above.

Let us discuss possible experiments to test the proposed
model. First, it would be interesting to observe hysteresis and
neural avalanches like those found in Sec. IV near the dis-
continuous phase transition. A similar discontinuous phase
transition was revealed in activations of living neural net-
works by a stimulus in recent works [12]. Neural avalanches
in these biological systems can be found by the use of mi-
croelectrode arrays as described in [35,36]. Second, the
theory predicts that the emergence of global oscillations is a
dynamical phase transition. A strong enhancement of the re-
sponse of a neural network to a periodic stimulus in the
range of frequencies of these oscillations manifests this tran-
sition. These oscillations can be driven by an external stimu-
lus, neural pacemakers, or noise. Although we demonstrated
this behavior for ideal neurons, we believe that it is a uni-
versal critical phenomenon if a sufficiently large group of
neurons is involved in these oscillations. It would be inter-
esting to observe experimentally this enhancement which in
fact is stochastic resonance. This enhancement may be
found, for example, in experiments similar to the experi-
ments carried out by Fries er al. [48] who observed that
neurons of macaque monkeys activated by the attendant
stimulus show increased gamma-frequency (35-90 Hz) os-
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cillations. One can expect that a response of the neurons to
periodic stimulus in the gamma-band frequency will be en-
hanced near critical attention above which gamma-frequency
oscillations emerge.

VIII. CONCLUSION

In conclusion, based on experiments and ideas of cellular
automata we developed a model of noisy neural networks
with excitatory and inhibitory neurons and a complex net-
work architecture. We considered neurons which are either
inactive or fire a regular train of spikes with a given fre-
quency (neurons with type 2 dynamical behavior). In this
model we took into account spontaneous neural activity,
which plays the role of noise, the activation of neurons by a
stimulus, neural pacemakers, and interactions between neu-
rons. We derived rate equations describing the evolution of
the global neuronal activity. These equations are exact for
infinite uncorrelated complex networks with arbitrary degree
distributions, although for brevity we presented results only
for classical random graphs. This model has a complex phase
diagram with self-organized active neural states, hybrid
phase transitions, hysteresis phenomena, and a rich array of
behaviors including decaying and stable oscillations, sto-
chastic resonance, and neural avalanches. We showed that
global oscillations and stochastic resonance are intrinsic
properties of this nonlinear dynamical system. The oscilla-
tions emerge when noise, i.e., the spontaneous neural activ-
ity, reaches a threshold level while stochastic resonance is a
precursor of global oscillations. We also found that the net-
work structure is important. The larger is the connectivity,
the broader is the region with global oscillations. Our simu-
lations revealed that even small groups of 50-1000 neurons
display oscillations similar to large networks.

Further development of the model can be done by taking
into account the real structure of neural networks (clustering,
degree-degree correlations, modular structure, and other
structural properties), a dependence of firing rate on input,
variability of synapses, evolution of network structure, for
example, considering growing networks, or variable strength
of synapses, and so on. Apart from the perspectives dis-
cussed above, one can also apply this stochastic model to
study communication between different groups of neurons
and the transmission of activity from one group or module of
neurons to another, taking into account noise and complex
network architecture.
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