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Dynamic modes of red blood cells in oscillatory shear flow
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The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of
three variables: a shape parameter, the inclination angle 6, and phase angle ¢ of the membrane rotation. In
steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-
treading (TT): ¢ rotates while the shape and 6 oscillate. (ii) tumbling (TB): 6 rotates while the shape and ¢
oscillate. (iii) intermediate motion: both ¢ and 6 rotate synchronously or intermittently. In oscillatory shear
flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean
shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude,
respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs
show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes
delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The
thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean
shear rate with small shear oscillation, the shape and 6 oscillate in the TT motion but only one attractor exists
even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying
the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.
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I. INTRODUCTION

Soft deformable objects, such as liquid droplets, vesicles,
cells, and synthetic capsules exhibit various behaviors under
flows. Among these objects, red blood cells (RBCs) have
received a great deal of attention, since they are important
for both fundamental research and medical applications. The
rheological property of RBCs is one of the main factors for
the flow resistance of blood, since the volume fraction of
RBCs in normal human blood is around 45% [1,2]. In pa-
tients with diseases such as diabetes mellitus and sickle cell
anemia, the deformability of RBCs is reduced, and RBCs
often block the microvascular flow [1-5].

In a steady shear flow with flow velocity v=yye,, fluid
vesicles exhibit (i) a tank-treading (TT) mode with a constant
inclination angle 6 at low viscosity of the internal fluid 7, or
low membrane viscosity 7., (i) a tumbling (TB) mode ap-
pears at high 7, or 7., with low shear rate ¥, and (iii) a
swinging (SW) motion (also called trembling or vacillating-
breathing) at middle 7, or 7,,, with high ¥ [6-22]. In all of
the above three phases, a membrane (TT) rotation occurs
expect in the limit 7, — % or 7., — %. The TT-TB transition
at low 7y is described well by the theory of Keller and Skalak
(KS) [6], which assumes a fixed ellipsoidal vesicle shape. At
high v, the shape deformation is not negligible and induces
shape transitions [10—12] and the SW phase [14-22].

RBCs [23,24] and synthetic capsules [25-32] also transit
from TB to TT with increasing , and the TT mode is ac-
companied by (swinging) oscillation of their lengths and 6.
Recently, this behavior was explained by the extended KS
theory, where the membrane shear elasticity is taken into
account as an energy barrier for the membrane rotation of a
phase angle ¢ [33]. The angles 0 and ¢ are depicted in Fig.

*noguchi @issp.u-tokyo.ac.jp

1539-3755/2010/81(6)/061920(9)

061920-1

PACS number(s): 87.16.D—, 83.50.Ha, 82.70.Uv

1(a). More recently, we extended this theory [33] to include
the shape deformation of RBCs [34]. In TT, the RBC shape
and 6 oscillate with the TT rotation frequency. Most of the
phase behaviors are not qualitatively different between fixed-
shape and deformable RBCs. Synchronized phases of the 6
and ¢ rotations with integer ratios of the rotation frequencies
as well as intermittent rotations in the middle ranges of shear
rate 7y for both fixed-shape and deformable RBCs were found
to exist [34]. For microcapsules with low bending rigidity,
which have no saddle point in the free-energy potential, these
coexistence regions of € and ¢ rotations vanish [35]. Our
results show good agreement with recent experiments [24]
and simulations [29-32].

It is very important to understand the dynamic response of
RBCs in time-dependent flows, since blood flows in vivo are
not steady. However, the dynamics of RBCs and vesicles in
time-dependent flows have been explored far less than in
steady flows. Recently for fluid vesicles, membrane wrin-
kling was found after inversion of an elongational flow
[36,37], and shape or orientational oscillation was observed
in structured channels [38]. For RBCs, a shape oscillation in
an oscillatory shear flow with ()=, sin(27f,f) was ob-
served experimentally [39]. However, the mechanism and
fundamental properties of this oscillation are not understood.
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FIG. 1. (Color online) Schematic of a red blood cell (RBC) in
oscillatory shear flow. (a) Inclination angle 6 and phase angle ¢. (b)
Tank-treading (TT) based oscillation (¢ rotates back and forth), and
tumbling (TB) based oscillation (6 rotates back and forth).
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Watanabe et al. investigated the oscillation only in a narrow
range of the shear amplitude 7y, and frequency f,,. We want to
address the following questions: does the angle 6 or ¢ rotate
in the experimental condition? How does the oscillation de-
pend on 7, and f,? Can intermittency and synchronization of
6 and ¢ rotations exist in oscillatory flow? Do RBCs ap-
proach a single orbit independent of initial states? In this
paper, we applied our phenomenological theoretical model to
oscillatory shear flow and found that the oscillation in Ref.
[39] is a TT-based oscillation, and several other dynamic
modes appear depending on the shear amplitude and fre-
quency. Understanding this frequency dependence is a basic
step to reveal the RBC dynamics in more complicated time-
dependent flows such as blood flows in vivo. The amplitude
of shape oscillations is a useful quantity for evaluating RBC
deformability [39,40]. Very recently, we studied the dynam-
ics of fluid vesicles in oscillatory flows using a similar the-
oretical model with two variables [41]. The effects of RBC
shear elasticity can be understood by the comparison with
the results of fluid vesicles.

Under physiological conditions, an RBC has a constant
volume V=94 um?, surface area S=135 um?, 7,
=0.01 Pas, 7]mb~10‘7—10‘6 Ns/m, membrane shear
elasticity u=6X10"° N/m, and bending rigidity x=2
X 10719 J [1,12,42—-44). Hereafter, the model and results are
presented with dimensionless quantities (denoted by a super-
script *). The lengths and energies are normalized by R,
=\S/47m=3.3 um and soz,uR(z)=6.5 X 1077 J, respectively.
The relative viscosities are 7;,= 7,/ 70 and 7, = 7w/ 70Ro»
where 7, is the viscosity of the outside fluid. The reduced
volume of RBCs is V*=V/(4mR}/3)=0.64. In this paper, a
typical viscosity of the surrounding fluid in the experiments,
7=0.02 Pas is chosen: 7,,=0.5 and 7,,=1.55. There are
three or four intrinsic time units for zero and finite mean
shear rate, respectively: the shape relaxation time 7
=1nyRy/ n by the shear elasticity u; and the times of shear
flows 1/%y, 1/%y, and 1/f,. The reduced shear amplitude
%= Y7, mean shear rate ¥, =¥,7, and shear frequency f,
=f,/ o are used. In typical experimental conditions, the Rey-
nolds number is low, Re <1; hence, the effects of the inertia
are negligible.

The generalized KS model for RBCs and the dynamics in
steady shear flow are briefly described in Sec. II and in Sec.
III, respectively. The dynamics for zero and finite mean shear
rate are presented in Sec. IV and in Sec. V, respectively. The
effects of thermal fluctuations at very low shear rates are
described in Sec. IV D. The summary and discussion are
given in Sec. VL.

II. THEORETICAL MODEL

In our phenomenological theoretical model [34], the
shape parameter a3=(L;—Ls3)/(L;+L3) is employed to de-
scribe the shape deformation of RBCs, where L, > L, and L
are the principal lengths of the RBC on the vorticity (xy)
plane and in the vorticity (z) direction, respectively. Here, it
is assumed that one of the principal axes is in the z direction
and the symmetric axis of RBCs with the thermal-
equilibrium discoidal shape is on the xy plane. In the absence
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of flow, RBCs have a biconcave discoidal shape with a3
=0. The dynamics of a model RBC is described by three
differential equations for a3, the inclination angle 6, and
phase angle ¢,

d 2 Ay OF"
'0113: 1_(%) -2 +A; sin(20) ¢, (1)
Vdt a3 V' dans

4 1, _fodd
e leaneea - o
d¢ (o y'V) IF/d¢p+ cos(26) 3)

ydi 2 {1+ (= 1) + fafs )

where Ay=45/27(32+237;,+167,,)V* and A;=60/(32
+237; +167.,). Factors fy, f1, f2, f3, and ¢, are the func-
tions of the length ratios (L,/L,, L;/L,). A detailed descrip-
tion of this model is given in Ref. [34]. Equation (1) is de-
rived on the basis of the perturbation theory [7,14,18,19] of
quasispherical vesicles [15,34]. The first and second terms in
the last parentheses in Eqgs. (1) or (3) represent the RBC
elastic forces to recover the thermal-equilibrium state and the
external shear stress, respectively. Equations (2) and (3) are
given by the extended KS theory in Ref. [33]. The first and
second terms in Eq. (2) are given by Jeffery’s theory [45] for
the dynamics of solid objects. The third term represents the
effects of the membrane ¢ rotation to the dynamics of the
angle 6.

The free energy F(a;3,¢) of RBCs is estimated by the
simulation of the RBC elongation by mechanical forces:
F*(ay3, ) =F\(a;3)+Fy(ap3)sin®(¢)  with  Fi(aj3)=5a7;
+(40/3)a;,+(230/4)a}; and  Fj(a;3)=0.2+0.8a;5. The
RBC membrane is modeled as a triangular network with a
bond potential  Upyng=(k;/2)(r—ro)X1+(ky/2)(r/rog—1)%
and bending potential Upenq=(k/2)J(C,+C,)?dS, where C,
and C, are the principal curvatures at each point of the mem-
brane. Our simulation with u=(y3/4)k;=6X107% N/m, «
=2X%107" J, and k,=1 reproduces the force-length curves
of the optical-tweezers experiment and previous simulations
[43,44] very well [12].

When the free energy F is independent of ¢, the equations
describe the dynamics of fluid vesicles. Here, we only inves-
tigate the dynamics of RBCs but the model itself can be
applied to other elastic capsules by the modification of F.
Note that the equation of # in the perturbation theory should
not be applied to the dynamics of vesicles at V*=<0.8, includ-
ing RBCs (V*=0.6) [41]. Tt gives too low critical viscosity
7, of TT-TB transition (TB motion occurs for fluid vesicles
even at ;=1 and 7,,=0).

To investigate the effects of thermal fluctuations in
Sec. IV D, Gaussian white noises g,(t), gq(t), and g4(7)
are added to Egs. (1)—(3), respectively, where (g,(1))=0
and (g,(t)g;(t'))=2D;5; ;8(t—1t") with i,je{a,0,¢}. The
fluctuation-dissipation theorem gives the diffusion coef-
ficients D;=kgT/ {;, where {; are friction coefficients and kgT
is the thermal energy: (,=eom/Ao{l-(ay3/a5)?}, &y
=/ foo and £y=2f {1+ f2(75,— 1)+ fof 37}V €07/ . Equa-
tions without thermal noises are numerically integrated using
the fourth-order Runge-Kutta method with a time step
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FIG. 2. (Color online) RBC dynamics in oscillatory shear flow
with zero mean shear rate. (a) Dynamic phase diagram. (b)—(d)
Domain boundary of limit-cycle oscillations at various ;. Each
domain consists of the initial positions (a3, 6,$)=(0,6;,0) at ¢
=0 approaching the same attractor. For low shear frequency f TT-
or TB-based oscillation occurs at low or high shear amphtude Yor
respectively. In the middle regions, intermittent or synchronized
oscillations appear. For high f7, multiple attractors exist. Solid lines
in (a) represent two (red), three (blue), and four (green) attractors
obtained from the domains in (b)—(d). Dashed lines are visual
guides.

Ar=0.0005/y, or Ar=0.0005/7,, for oscillatory flow with
zero (Sec. IV) or finite (Sec. V) mean shear rate, respec-
tively. Equations with thermal noises are numerically inte-
grated using the second-order Runge-Kutta method with a
time step Az=0.0002/ 7y, (Sec. IV D).

III. STEADY FLOW

First, we briefly describe RBC dynamics in steady shear
flow. Detailed dynamics is described in Ref. [34]. At a low
shear rate ¥*< ¥,, RBCs show TB motion, where 6 rotates
while ¢ oscillates, since the energy barrier locks the phase
angle at ¢=0. At a high shear rate y*> ¥, the TT motion
occurs, where ¢ rotates while 6 oscillates. As 7" increases
from y*=7, to 7%, the rotation frequency ratio increases
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FIG. 3. (Color online) Limit-cycle oscillations for various shear
amplitude 7 at low shear frequency f* 0.005. Only one limit cycle
exists for each ;.

from £ /f% =0 to 1. The coupling of # and ¢ rotations
induces synchronization with integer ratios of ff;t and f7 .
Here, an angle change of 7 is counted as one rotation. Un-
synchronized (intermittent) rotations are obtained between
the regions of synchronizations. This type of synchronization
is called the Devil’s staircase [46]. In this model, the RBC
approaches one attractor from any initial configuration.

As 7;, increases, both ¥ and ¥ increases. At (7., 7,p)
=(0.5,1.55), the critical shear rates are (7&,, V)
=(0.016 15,0.018 31). The TT phase disappears at 7;,=0.9
and 7,/ 7.,,=3.1.

The RBC free-energy potential F has a saddle point at
¢=1/2: energy minimum for constant ¢=7/2 and energy
maximum in the ¢ rotation for constant a;3. This saddle
point is observed for RBCs by experiments [47] and simula-
tions [34]. It plays a significant role to the phase behavior of
RBCs and microcapsules. When the saddle point vanishes,
the coexistence phases of 6 and ¢ rotations disappear [35].
Kessler et al. contested that intermittent rotation is an artifact
of the theoretical model [29], since they did not observe it in
their simulations. However, it would be caused by the low
bending rigidity of their quasispherical capsule model.

IV. OSCILLATORY FLOW WITH ZERO
MEAN SHEAR RATE

In the oscillatory shear flow with ¥(1)=1%, sm(277fyt)
much more complicated dynamics occurs depending on 7,
and f; than in the steady flow. The phase diagram is shown
in Fig. 2. The RBC approaches either one or multiple attrac-
tors in the limit #— % depending on the initial positions in
the phase space (a3, 6, ¢).

A. Low shear frequency

For a low shear frequency (fj/s 0.1), the RBC can
achieve the dynamics in the steady shear flow with y~ v, for
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FIG. 4. (Color online) RBC dynamics for the low shear frequen-
cies f; and middle shear amplitude y;=0.02. Top panel: average
number (1,,) of rotations per shear-oscillation period 1/f,. Bottom
panels: time evolution of # and ¢ in intermittent or twofold limit-
cycle oscillation at f;= 0.02 or 0.0203, respectively. The inset of the
top panel shows the log-log plot with the critical frequency f.
=0.021 115 84. The error bars are smaller than the line thickness.

a half period 1/2f,. Therefore, at most of the parameter
ranges, it approaches one limit-cycle oscillation from any
initial position. At the shear amplitude 5> ¥, or ¥5< ¥, ¢
or 6 rotates in the negative direction at n<<f t<n+1/2, re-
spectively, and rotates back to the original position at n
+1/2<f<n+1 (see Figs. 1 and 3). The shape parameter
a3 and 6 oscillate (swing) with the ¢ rotation frequency at
Y>> ¥, This swinging amplitude decreases with increasing
.k

Yo
At ¥,~ ¥, both ¢ and 6 can rotate, so the RBC shows
complicated behaviors, which are sensitive to the parameters
¥, and f; It is found that intermittent and synchronized os-
cillations occur in the oscillatory flow (see Fig. 4). A typical
intermittent oscillation is shown in the bottom-left panel of
Fig. 4. The angles 6 and ¢ occasionally rotate % with the
shear frequency. Synchronization of rotation with an n-fold
shear-oscillation period is observed for a finite range of f;
Thus, the Devil’s staircase also appears in oscillatory shear
flow. The average number (n,,) of rotations increases as
(Mrop) % \fo~f,, near the critical frequency f;. This depen-
dence indicates the type I intermittency [33,46]. These inter-
mittency and synchronization are very similar to those in the
steady flow [33,34]. However, multiple attractors can coexist
in the oscillator flow, unlike in steady flow. When a trajec-
tory is asymmetric, as shown in the bottom-right panel of
Fig. 4, one more trajectory exists. The coexistence of four
limit-cycle oscillations is also found at %,=0.002 and f,
=0.014 (data not shown).
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FIG. 5. (Color online) RBC dynamics at high frequency f:/ at
f;:O.2. (a) Time evolution of two limit-cycle oscillations at
=10. (denoted as al and a2). (b), (c) Trajectories of the limit cycles
at 7,=0.1 and 10. (d), (¢) Domains of the attractors (initial positions
(a13.0,0)=(0, 6, ¢;) at t=0) at (d) %=0.1 and () 10. Symbols
represent the positions (6, ¢) at t=n/f,, in the limit n— .

B. High shear frequency

For a high shear frequency (f;z 0.1), it is found that mul-
tiple (2—4) limit cycles coexist, as shown in Figs. 2, 5, and 6.
Since the shear frequency is higher than TT and TB frequen-
cies, ¢ or 6 cannot fully rotate for 1/ 2fy; thus, multiple
orbits are stabilized. An approached limit cycle is chosen by
initial angles (6;, ¢;) but is almost independent of initial ;.
The shape parameter a3 relaxes much faster than 6 and ¢.
As 7, increases, it is less dependent on initial angle ¢;, and
becomes almost independent of ¢; at ¥,=10 [see Fig. 5(e)],
since the energy barrier of the TT rotation becomes negli-
gible at 7*> y,. At high or low ¥, two limit cycles can
coexist [see Fig. 2(b)]. With increasing f., the domain for a
new limit cycle appears at §=—0.27. At high ¥;, in the limit
cycle, which also exist in low f;, 6 oscillates between * 6,
where 6, is the angle in the steady flow with y=7,. In
the other limit cycle, 6 oscillates between 6, and 7— 6, [see
Fig. 5(a)].

At low j{; with f’;z 0.1, two limit cycles coexist like at
high 7,: 6 oscillates between =6, or between 6, and 7— 6,
(6y=0.11r). In the latter oscillation, € decreases (increases)
at 0<r<0.5/f, (0.5/f,<t<1/f,) like at high ¥, (see the
solid line for al in Fig. 5), while the former oscillation
around 6=0 is different from that at high ;. At 7,—0, 6
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FIG. 6. (Color online) RBC dynamics at high frequency f at
¥=0.2 and f 0.1. (a), (b) Trajectories of four limit-cycles. (c)
Domains of the attractors [initial positions (a3, 6, $)=(0, 6;, ¢;) at
t=0]. Symbols represent the positions (6, ¢) at t=n/f, in the limit

n— o,

decreases at 0<<r<<0.5/ f,/, and has maximum and minimum
at r=0 and r=0.5/f,, respectively, like for fluid vesicles [41].
As «y:; increases, the times ¢ for the maximum and minimum
of # increase and approach 0.5 and 1, respectively (see Fig.
7). Thus, 6 rotates in the opposite direction to the shear de-
spite of the TB phase. This opposite rotation is induced by
the temporal ¢ rotation in the shear direction. The maxima
and minima of a;3 and ¢ also increase with increasing ¥,.
The height of the free-energy barrier for ¢ rotation may be
estimated from this y;, dependence.

At the middle shear amplitudes yy=1~3 with f;z 0.1,
the domains have a complicated shape. Figure 6 shows
four limit-cycle oscillations at (7, f )=(0.2,0.1). Two
limit cycles show similar trajectories of those at (%,.f,)
=(0.1,0.2); compare Figs. 5(b) and 5(c) and Figs. 6(a) and
6(b). In addition to four stable fixed points, an unstable fixed
point is seen at (6,¢)=(-0.037,-0.377) in Fig. 6(c).
Around this unstable point, the angles move away from the
unstable point with a spiral orbit and then approach one of
the stable points. As f increases, the domains of attractors
merge or split [see Fig. 2(d)] These multiple cycles may not
be desired for characterizing the mechanical properties in
experiments. However, one of the cycles is chosen when f,
is gradually increased from the TT- or TB-based oscillation,
since there is only one cycle at low f,. Note that the ap-
proach to limit cycles is very slow at f =0.1 and typically
takes f,#~10* (t=10 min to 1 h at 35~ 1).

C. Dependence of length ratio

In the experiments in Ref. [39], the length ratio ry,
=L,/L; of RBCs from the top view was measured at low
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FIG. 7. (Color online) RBC dynamics at high frequency fk
=0.2 with low 7. (a)—(c) Time evolution of limit-cycle oscﬂlatlons
around #=0. Solid, dashed, and dashed-dotted lines represent 70
=0.005, 0.01, and 0.02, respectively. (d) Shear amplitude ;, depen-
dence of times 7 at maximum or minimum of aq3, 6, and ¢. The
data for 0=¢=0.5/f, is only shown because ap(t+0.5/f,)=ap(1),
0(t+0.5/f,)==6(1), and p(1+0.5/f,)=—¢h(¢).

frequency f;< 1, where L, is the length in the x direction
projected on the xz plane. In TT-based oscillation, the ratio is
approximated as rmp—cos(G)Ll/L3 cos(O)(1+ay3)/(1-a;3),
since RBCs are aligned in the x direction with |6 < [see
the inset of Fig. 8(d)].

At high 7, the Fop curves have the same shape at n
<fp<n+1/2 and n+1/2<f r<n+1 [see Figs. 8(a) and
8(c)]. At ff/< 1, RBCs have minimum or maximum deforma-
tion at f,r=0 and 0.5 or at f,/t 0.25 and 0.75, where the
shear stress 7ydv,/dy=m7yy is minimum or maximum, re-
spectively. As f increases, the oscillation amplitude de-
creases, and the tlmes t for the maximum and minimum de-
formations become delayed, since the temporal change of the
shear rate becomes faster than the shape relaxation (see Fig.
8). At f;z 1, the times ¢ for the maximum deformation ap-
proach f,r=0.5 and 1. We cannot directly compare our re-
sults with the experiments [39], since the large shape defor-
mations 1, =6 (%~100 and f,=0.004) in those
experiments are beyond the range of the ellipsoidal-shape
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FIG. 8. (Color online) Dependence on shear frequency f; at
j{;= 10 with a gradual increase in f; (a) Time evolution of the
length ratio ri,,=L; cos(6)/Ls for various f.. The frequency £, de-
pendence is shown for (b) ry,, and (c) ¢ at maxima and minima of
the ry,p curves in (a). The maximum and minimum angles ¢ and
are shown in (d) and the inset of (d), respectively.

assumption r,,=5.3 of the KS theory. However, our r,
curve at f-=0.004 well reproduces those in Ref. [39], except
for the amplitude of ry,,. Thus, we conclude that the shape
oscillation observed in their experiments is TT-based shape
oscillation for a low frequency f;s 0.1. Furthermore, our
theoretical model predicts that TB-based or intermittent os-
cillations and multiple limit cycles would occur for lower 7,
and higher f7, respectively.

D. Thermal fluctuations

In this subsection, we describe the effects of thermal fluc-
tuations. A dimensionless quantity, the rotational Peclet num-
ber, x=vo/Dg=Yole/ kgT represents the shear amplitude rela-
tive to the thermal fluctuations. In typical experimental
conditions, RBCs have very large y and the thermal fluctua-
tions are negligible; =2 X 10°3; at 7,=0.02 Pas. At very
low shear amplitudes 'jf(’;< 1, however, the thermal fluctua-
tions can induce large fluctuations of trajectories and transi-
tions between attractors.

Figure 9 shows the dynamics with the thermal fluctuations
at ;< ¥, and high f7, where two limit cycle orbits coexist in
the absence of the thermal fluctuations. Two peaks around
0=0 and #=m/2 in Fig. 9(a) indicate that these two orbits
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FIG. 9. (Color online) Dynamics with thermal fluctuations at
very low 7. (a)—(c) Probability distributions of the angle 6. (a)
Time evolution at ;=0.002 and Iy fm=0.4: t=nlf,, (n+0.25)/f,,
(n+0.5)/f,, and (n+0.75)/f,. (b) Dependence on ¥, at r=n/f,, and
fy/ ¥m=0.4. (c) Dependence on f; at t=n/f, and 3,=0.002. (d)
Mean lifetime of orbits around #=0 (solid line) and around 6
=1/2 (dashed line) at f;=0.2 (A, <) and 0.4 (O,0). The error bars
are shown at (a)—(c) several and (d) all data points.

are still dominant with the thermal fluctuations. The transi-
tions between these orbits are obtained at very low ¥,. With
increasing ¥, the lifetime of each orbit exponentially in-
creases and the transition probability exponentially de-
creases. We calculate the lifetime as the duration from the
time to enter the region of one orbit to the time to enter the
region of the other orbit, where the regions of the orbits are
considered as —0.15< 6/ 7<0.2 and 0.4 < 6/ w<0.75. As f,
decreases, the domain of the orbit around 6=17/2 is reduced
[see Fig. 2(b)]. Also, its lifetime decreases and the other orbit
becomes dominant [see Figs. 9(c) and 9(d)]. Thus, attractors
with small domain can be smeared out by the thermal fluc-
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FIG. 10. (Color online) Time evolution of (a) a3, (b) 6, and (c)
¢ in the oscillatory flow with the mean shear rate ¥,,=10 and os-
cillatory amplitude 3, =5. (d) Stroboscopic map for r=n/f, at
£y #m=0.1. (¢) Return map sampled stroboscopically for r=n/f, at
fy/ Ym=0.1. Dashed line represent ¢, =¢,. The phase of the angle
¢ is not locked to the shear oscillation.

tuations. Since the lifetimes exhibit an exponential increase,
it would be very difficult to observe the transitions between
orbits in experiments.

V. OSCILLATORY FLOW WITH FINITE
MEAN SHEAR RATE

When oscillatory shear is applied with a finite mean shear
rate ¥, as ¥(£)= ¥+ ¥ sin(27f,#), a net rotation of @ or ¢ is
obtained. At high shear ¥,—7,> 7, RBCs always show
clockwise TT rotation accompanied by a5 and 6 oscillations
with shear frequency f,, (see Fig. 10). The coupling between
the shear oscillation and ¢ rotation is very weak, so that the
synchronization can occur only in negligibly narrow ranges
of f,. Thus, ¢ typically rotates with its own frequency (the
curves of ¢(t) and ¢,,,(¢,) in Figs. 10(c) and 10(e), respec-
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FIG. 11. (Color online) Dependence on shear frequency f,/
at ¥, =10. Maximum and minimum values of (a) a;3 and (b) 6. (c)
Time ¢ at maximum and minimum of a3 and €. Dashed and solid
lines represent ¥,/ ¥, =0.25 and 0.5, respectively.

tively, are close to straight lines), and &5 and 6 show swing-
ing oscillations with the frequency of the ¢ rotation in addi-
tion to the oscillations with f, [see Figs. 10(a) and 10(b)].

As fy increases, the times ¢ for the maximum and mini-
mum deformations become delayed with respect to the times
of the minimum and maximum shear stresses, while multiple
limit cycles do not appear (see Fig. 11). A similar time delay
of the shape deformation is experimentally observed in Ref.
[48]. These time delays are determined by f,/ %, instead of
fyl ¥o- When 7, is varied, the oscillation amplitudes are
changed, while the times for the minimum and maximum
oscillations are almost independent of ,. In the low fre-
quency limit, the maximum and minimum of a3 appear ac-
companied by minimum and maximum of 6 at 1=0.25/f,
and r=0.75/f,, respectively. With increasing f,, the maxi-
mum and minimum of a3 approach r=0.5/f, and r=1/f,,
respectively, where ¥(t)=%,,. A similar dependence is ob-
tained for fluid vesicles [41]. The angle 6 shows greater de-
lays than a3, since stable 6 is varied not directly by " but
by the shape evolution. Thus, the shape deformation is es-
sential for the response to time-dependent flows.

VI. SUMMARY AND DISCUSSION

We have investigated RBC dynamic modes in oscillatory
shear flow for a wide range of the shear conditions. For a low
shear frequency (f“;s 0.1) with zero mean shear rate, RBCs
exhibit TT- or TB-based oscillation at high or low shear am-
plitude 7, respectively. In the middle amplitude ¥, intermit-
tent or synchronized oscillations appear. For a high fre-
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quency (f;z 0.1), multiple limit-cycle oscillations appear.
Two limit cycles coexist for low and high ;, and two to four
limit cycles coexist for middle ;. For a finite mean shear
rate with small oscillation amplitudes, a3 and 6 oscillate in
addition to the swinging oscillation, and there is only one
attractor even at high f,.

In this paper, the symmetric axis of the RBC discoidal
shape is assumed on the vorticity (xy) plane. This assump-
tion is valid in most of the parameter range (including the
parameters in the present study). However, a few studies
were reported on a spinning motion (a principal axis rotates
out of the vorticity plane) in steady shear flow. Lebedev er al.
predicted that fluid vesicles exhibit the spinning motion at
very large ¥ and large 7, using the perturbation theory for
quasispherical vesicles [19]. Bitbol observed that the sym-
metric axis of the RBC discoidal shape is oriented in the
vorticity (z) direction at low 3" and large internal viscosity
7;,=1~10 [49]. In the oscillatory flow, RBCs may exhibit
spinning dynamics at large 7, but it is beyond the scope of
our present study.

For fluid vesicles in the oscillatory shear flow with zero
mean share rate, the bifurcation frequency f; to start coex-
istence of two limit cycles decreases with increasing 7;, in
the TT phase, since the average angular velocity 6 to relax to
stable angle becomes slower [41]. A similar dependence on
75, is expected in RBC dynamics. Since the membrane and
internal fluid become more viscous on aging of RBCs
[42,50], the bifurcation frequency can be shifted on aging.

Recently, the relation of the dynamic modes of RBCs or
vesicles to the viscosity of a dilute suspension was studied

PHYSICAL REVIEW E 81, 061920 (2010)

[51,52]. The dependence of storage and loss moduli of the
dilute suspension [53] on the dynamic modes in the oscilla-
tory shear flow is also an interesting problem for further
studies. In high frequencies f’;,, the collisions between RBCs
may induce a transition between coexisted limit-cycle orbits
as the thermal fluctuations at very low ;.

Watanabe et al. [39,40] proposed that the response curve
of ry, at low f:/ is a good quantity for evaluating RBC de-
formability. Experimental measurement of the dynamic re-
sponse for a wide range of ¥, and f; would be a significant
help in establishing a quantitative understanding of the me-
chanical properties of RBCs, in particular the viscoelasticity
of RBC membrane. Changes of RBC deformability in differ-
ent diseases may be able to separated by their dynamic re-
sponse. We applied the model to RBCs, but the resulting
dynamics would also occur for other elastic capsules by the
modification of the free-energy potential F. The oscillatory
shear flow is a very useful setup for measuring the viscoelas-
ticity of RBCs and other soft deformable objects such as
synthetic capsules and lipid vesicles.
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