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In view of the important role helix-sheet transitions play in protein aggregation, we introduce a simple model
to study secondary structural transitions of helix-coil-sheet systems using a Potts model starting with an
effective Hamiltonian. This energy function depends on four parameters that approximately describe entropic
and enthalpic contributions to the stability of a polypeptide in helical and sheet conformations. The sheet
structures involve long-range interactions between residues which are far in sequence, but are in contact in real
space. Such contacts are included in the Hamiltonian. Using standard statistical mechanical techniques, the
partition function is solved exactly using transfer matrices. Based on this model, we study thermodynamic
properties of polypeptides, including phase transitions between helix, sheet, and coil structures.
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In the late 1950s and early 1960s, Zimm and Bragg �ZB�
and Lifson-Roig �LR� studied helix-coil transitions of simple
models of homopolypeptides by employing rigorous statisti-
cal methods based on partition functions and transfer matri-
ces �1�. In the 1970s and 1980s, these models were extended
to include copolymers and medium-ranged interactions, and
were used to characterize the experimental results of all
amino acids and many proteins �2�. Because of the close
coupling between the theoretical and experimental studies,
ZB, LR, and related models have stimulated much interest in
helix-coil transitions �3�, which is still an active field of re-
search up to the present time �4,5�. For reviews, see Ref. �2�.
However, conformation changes of polypeptides involving
sheet structures, such as helix-sheet transitions, are not as
well characterized as for helix-coil transitions. In the late
1970s, using a multistate model, Tanaka and Scheraga �6�
considered extended and chain-reversal states in addition to
helix-coil transitions. In Ref. �7�, medium-range interactions
were taken into account to study helices, extended structures,
and coils. More recently, Mattice and Scheraga �8�, Sun and
Doig �9�, Hong and Lei �10�, and others have included sheet
structures in statistical models for homopolypeptides. The
difficulties in constructing models for sheets lie primarily in
the interactions between residues that are long-range in se-
quence but are close in physical space, and in the rich variety
of structures associated with sheets, turns, and loops, thus a
large number of parameters required for their description. In
this paper, we introduce a simple statistical mechanical
model for helix-coil-sheet transitions of homopolypeptides,
starting with an effective Hamiltonian. Instead of an Ising-
like model, the treatment is built on a multistate Potts model,
which is capable of explicitly describing some of the long-
range interactions exhibited by sheet structures. One of the
objectives is that this simple model extends the helix-coil
treatments to protein systems with three or more secondary
structures.

An important step in a statistical mechanical approach
such as ZB, LR, Ising, and Potts models is to construct the

partition function for the system, based on which all thermo-
dynamic properties are obtainable. As in ZB and LR models,
partition functions factorize in terms of transfer matrices.
However, ZB or LR theories start with a combinatorial par-
tition function without defining an effective Hamiltonian.
More generally, if an energy function H�i� is defined, where
i= �i1 , . . . , in� and in is the microstate of the nth residue which
could occupy one of q possible states �conformations� la-
beled as �1,2 , . . . ,q�, the partition function for a system of N
residues with periodic boundary conditions reduces to

ZN = �
i1=1

q

�
i2=1

q

¯�
iN=1

q

e−�H�i� = Tr�TN� , �1�

where �= �kBT�−1, kB is Boltzmann’s constant, and Tr is the
matrix trace operation. The dimension of a transfer matrix in
a one-dimensional �1D� Ising model is 2�2 and for a q-state
Potts model, the dimension of a transfer matrix is q�q. For
Potts models with long-range interactions of range L along a
1D chain, as Glumac and Uzelac �11� showed in their for-
mulation, the dimension of a transfer matrix becomes qL

�qL. Equation �1� may be further simplified by diagonaliz-
ing the transfer matrix T.

More recently, Hamiltonians of polypeptide chains have
been described using a variety of Ising-like models �4,12,13�
and Potts models �14,15�, and also using an ab initio model
�5�. In particular, the WSME model �12,13� uses two terms
to construct an effective Hamiltonian and partition function:
�1� the free energy term associated with the entropic cost of
forming a pair of native residue conformations with re-
stricted dihedral angles and �2� an enthalpic term associated
with solvent-mediated contact energies between residues.
Thus, residues may be either native or denatured, but not
specific enough to distinguish sheets from helices. Our ap-
proach to polypeptides is based on a Potts model, where
residues could assume many conformations including sheet,
helix, coil, and turn. Before discussing the full helix-coil-
sheet system, let us consider the simpler case of helix-coil
transitions where an effective �q=2� Potts Hamiltonian �free
energy in reality� can be written for a protein consisting of N
residues as
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− �Hhc = h1�
n=1

N

��1,in� + �J1 �
n=k+1

N

��in−k,in��
j=0

k−1

��1,in−j� ,

�2�

where we assign in=1 to a residue in helix conformation and
in=2 to a residue in coil conformation. The subscript “hc” in
−�Hhc means “helix-coil” and “1” in h1 and J1 refers to
helix. The meanings of these parameters are similar to those
described in the WSME model, where h1�0 refers to an
entropic cost from converting a coil to a helical residue, and
J1�0 refers to a contact energy between residues. In the
present article, contact energies Ji are free-energies associ-
ated with solvent-mediated interactions, including hydrogen
bonds, van der Waals, polar interactions, etc. The Kronecker
delta ��1, in� yields one if the nth residue is helical, and zero
otherwise. In the second term of Eq. �2�, ��in−k , in� yields one
when residues at positions n−k and k have the same confor-
mation and are in contact, and zero otherwise. Contacts only
contribute to the energy function when the participating resi-
dues are helical. Additionally, residues between two contact-
ing residues must also all be helical. Thus, the range k deter-
mines the range of interaction. In �-helices, where k equals
4, residues at positions n−4,n−3, . . . ,n are all helical when
an H-bond forms between the �n−4�th and nth residues.
When k=1, the effective Hamiltonian becomes −�Hhc
=h1�n=1

N ��1, in�+�J1�n=2
N ��1, in���in−1 , in�. The second term

in Eq. �2� is also similar to the Hamiltonian of the GMPC

model, which is a microscopic theory for helix-coil transi-
tions based on a q-state Potts model �14,16�.

To write down an effective Hamiltonian suitable for
�-sheets, we need to include in it interactions up to length L
along the polypeptide chain. Such a Hamiltonian can be con-
structed by adapting the long-range spin model of Glumac
and Uzelac �11�. For a chain of N spins, their Hamiltonian
can be written as

− �H = �
l=1

L

�
n=1

N

�Kl��in,in+l� �3�

where Kl is distance-dependent. Figure 1�a� illustrates a
graphical representation of the L=3 case and facilitates the
construction of transfer matrices for long-range Potts sys-
tems. For Potts systems on a 1D lattice, Glumac and Uzelac
grouped the spins along a chain into columns of height L, the
longest interaction length, transforming a long-range prob-
lem of spin interactions into a short range one relating
nearest-neighbor columns of height L �11,17�, illustrated in
Fig. 1�b�. Each column of spins represents a vector that can
take on one of qL possible states. The transfer matrix thus has
dimension qL�qL. The various lines in Fig. 1 represent in-
teractions K1 ,K2 , . . . ,KL in Eq. �3�, and contribute to the
partition function when the arguments in the Kronecker del-
ta’s are equal.

Two modifications are made to apply the Glumac-Uzelac
method of constructing transfer matrices to a protein system.
Figure 2�a� illustrates a segment of an antiparallel �-sheet,
where interactions can occur between residues which are re-
mote in relative chain position, but are nearby in space. This
is what is meant by ‘long-range’ in protein systems. Thus,
the long-range nature of a protein system comes from label-
ing the residues according to the sequence order and does not
come from the spatial distance between two residues. Even
with the difference in the definition of long-range-ness, the
Glumac-Uzelac method can be used in solving the protein
problem. The strengths of interactions between each residue-
residue pair are similar and not dependent on the relative
chain position l. This is a main difference between our
Hamiltonian �see Eq. �5� below� and Eq. �3�. For simplicity,
in this article we shall consider all contacts between
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FIG. 1. �Color online� �a� Graphical representation of the parti-
tion function for the case L=3. The black dots mark the locations of
particles along the chain. The dotted �blue� lines, K1, are nearest-
neighbor interactions. The dashed �green� lines, K2, are next
nearest-neighbor interactions. Solid �red� lines, K3, are the L=3
interactions. �b� Graphical representation of the transfer matrix T.
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FIG. 2. �Color online� �a� A segment of an L=11 antiparallel �-sheet chain. The sequence position of a residue is labeled and H-bonds
are referenced by the dashed lines. �b� A simple pattern illustrating repeating L=3 and nearest-neighbor contact interactions, denoted by
dashed �red� lines. The solid �black� lines represent peptide bonds. In �c�, a diagram representing the partition function for the structure in
�b�. The first column in �c� are residues i1 , i2 , i3, the second column are residues i4 , i5 , i6, etc. Contacts are represented by dashed lines. The
color of residues comprising the columns alternate in color from white to black, which corresponds to the residue pattern in �b�. Repeated
multiplication of matrices U and V generates the partition function for the whole chain.
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�-strands are of the same strength. In making this modifica-
tion, Eq. �3� is recast as −�H=�K�l=1

L �n=1
N ��in , in+l�, which

drops the l-dependence of K, but maintains the long-range
nature of the Kronecker interactions.

Second, according to Fig. 2�a�, two hydrogen bonds form
between residue-residue pairs, which occur for every other
residue along a strand terminating at the turn. On the other
hand, the residues along the �-strand that are not involved in
hydrogen bonds with the opposite �-strand, could be in-
volved in hydrophobic interactions with the opposite strand.
To simplify the model, we assume that every residue-residue
pair along neighboring strands forms contacts of the same
strength, as stated above. The following pattern then repre-
sents H-bonding or hydrophobic interactions between two
residues along neighboring strands, which we identify as
contacts: i1→ i1+L , i2→ i1+L−1 , ¯ , i�L+1�/2→ i�L+1�/2+1. In the
present work, the turn conformation is also counted as a
sheet conformation, but, in principle, the model can be ex-
tended to include specifically turn conformations if q�3.
The Kronecker delta’s given in Eq. �3� are then modified to
represent the aforementioned sheet-pattern. Additionally, for
protein systems where the neighboring strands have the same
interaction length L, the number of strands M, and the total
number of residues N are related by

N = MR, R = �L + 1�/2. �4�

We can write the two-state effective Hamiltonian for a pat-
tern such as the one in Fig. 2�a� extended for any L, while
taking into account the two modifications made to Eq. �3�, as

− �Hsc = h3�
n=1

N

��3,in�

+ �J3�
k=1

R

�
m=1

M−1

b�ik,m���ik+R�m−1�,i1−k+R�m+1�� , �5�

where we denote in=2 �coil�, or 3 �sheet�, b�ik,m�
	��3, i1−k+R�m+1�� and only allows J3 terms to accumulate
when the residues at position k+R�m−1� and 1−k+R�m
+1� are locked in a sheet conformation and are in contact.
The term J3�0 now represents contacts between sheet resi-
dues, h3�0 is the reduced entropic cost for coil to sheet
conversions. The subscript “sc” in −�Hsc refers to “sheet-
coil” and subscript “3” in h3 and J3 refers to sheet. Unlike in
Eq. �2�, we do not require all residues between two residues
in contact to be locked into the sheet state.

To see the general pattern described by the second term in
Eq. �5�, we start by considering the simplest L=3 case as
shown in Fig. 2�b�. In reality, the minimal structure in Fig.
2�b� may not even be considered as a sheet structure, but
nevertheless illustrates the general behavior that the transfer
matrix can be decomposed into a product of subtransfer ma-
trices. For L=3 case, the transfer matrix decomposes into a
product of two matrices U and V, as illustrated by Figs. 2�b�
and 2�c�. U and V are required to write out a general se-
quence of M strands and are explicitly written with the help
of Fig. 2�c� as


i�U�j� = x��i1,j1�+��i3,j3�+��j1,j2�,


i�V�j� = x��i2,j2�+��i3,j1�+��j2,j3�, �6�

where �i� and �j� are neighboring column vectors of length L,
where, for example, in Fig. 2�c�, they can be 
i�= 
i1i2i3� and
�j�= �i4i5i6�, and x=exp��J3�. Each transfer matrix U and V
has dimension qL�qL. This methodology works for any fi-
nite L, where the total number of transfer matrices needed to
generate a periodic pattern for general L is found to be equal
to the total number of interactions over the distance L+1,
which happens to equal the number R �18�. For example, for
the L=3 case illustrated in Fig. 2�c�, there are two interac-
tions, a nearest-neighbor �for example, i2 , i3, in Fig. 2�c�� and
one over the longest range of interaction �for example, i1 , i4,
in Fig. 2�c�� thus two matrices are sufficient. For illustrating
purposes, we explicitly consider a simple model of antipar-
allel sheet-helix-coil systems, which starts with a three-state
�q=3� effective Hamiltonian with four parameters that can
describe transitions between sheet, helix, and coil structures.
Helical conformations are assumed to form contacts between
nearest neighbors only, that is, the k=1 case of Eq. �2�. The
total effective Hamiltonian can be written as

− �Hhcs = − �Hhc − �Hsc, �7�

where now in=1, 2, or 3, refers to helix, coil, and sheet,
respectively, and the subscript “hcs” in −�Hhcs refers to
“helix-coil-sheet.” The partition function can be written in
the form of Eq. �1�, when periodic boundary conditions are
imposed, and calculated using transfer matrices, similar to
the L=3 case as illustrated in Figs. 2�b� and 2�c�.

The parameters hi and Ji are chosen so that the helix state
is the most stable conformation at the lowest temperature in
the interested temperature range. The coil dominates at high
temperatures, where contact energies become relatively weak
compared to thermal fluctuations. The sheet is thus an inter-
mediary state �19�. For some proteins, the sheet is seen as the
most stable conformation at low temperature, where the helix
conformation becomes an intermediary state �20�. Our model
can accommodate this case as well as a variety of others with
proper choices of parameters.

For systems with fixed numbers of residues, the partition
function facilitates calculation of numerous thermodynami-
cal quantities, such as the average energy, 
E�, the heat ca-
pacity, C, and the order parameters, �i, which are the aver-
age fractional content of ith state among q conformations at
a particular temperature. To calculate the partition function,
we choose a multistranded �-barrel system, which serves as
an example of a protein system satisfying periodic boundary
conditions. Inserting Eq. �7� into Eq. �1� and differentiating,
we have for such a system

C =
�
E�
�T

=
�

�T

kBT2� ln ZN

�T
� and �i =

� ln�ZN�
�Ji

,

�8�

respectively. In Fig. 3�a�, the order parameters for helix, coil,
and sheet are presented for the case L=11, M =100, and in
Figs. 3�b� and 3�c�, we plot the temperature dependence of
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the heat capacity for various L cases. The heat capacity curve
show two peaks: the sharp, low-temperature peak signifies
the helix-sheet transition, and the broad, high-temperature
peak signifies the sheet-coil transition. These peak positions
are approximately given by the crossing points of �i, shown
in Fig. 3�a�, between the helix and sheet and between the
sheet and coil curves.

In conclusion, we have shown that, for a simple pattern
associated with antiparallel �-sheet structures, an effective
Hamiltonian using a minimal number of parameters and its
corresponding partition function can be constructed to study
its helix-coil-sheet transitions. The partition function can be

exactly computed by means of transfer matrices, which are
used to calculate thermodynamical properties of the system,
including the order parameters for helices and sheets and the
heat capacity, which show that increasing strand length, L,
plays a stabilizing role in the protein.
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