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We consider a coarse-grained description of a collection of self-propelled particles given by hydrodynamic
equations for the density and polarization fields. We find that the ordered moving or flocking state of the
system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual
units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating
stripes of flocking particles interspersed with low-density disordered regions. Further, we find that even in the
regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density
and orientational order. We study the hydrodynamic equations analytically and numerically to characterize both
regimes.
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I. INTRODUCTION

Large collections of living organisms exhibit a highly co-
herent collective dynamics at large scales �1�. This behavior,
often referred to as “flocking,” spans an enormous range of
length scales and is seen in diverse systems, including mam-
malian herds �2�, crowds of pedestrians �3,4�, bird flocks �5�,
fish schools �6�, insect swarms �7�, bacterial suspensions �8�,
extracts of cytoskeletal filaments and molecular motor pro-
teins �9,10�, and motility assays �11�. Many of these systems
can be unified under the theoretical paradigm of collections
of self-propelled particles. Their intriguing collective behav-
ior has received considerable attention in recent years.

A number of different theoretical approaches have proved
fruitful in understanding the dynamics of collections of self-
propelled units. Starting with the seminal work of Vicsek
�12�, rule-based models have been investigated numerically
and have been shown to exhibit nonequilibrium transitions
between disordered and ordered �flocking or moving� states.
Subsequent work has focused on characterizing the nature of
the order-disorder transition, its dependence on the noise,
and pattern formation in the ordered state, both in the context
of rule-based Vicsek-type models �12–14� and of models of
bacterial swarming �15–17�. Continuum hydrodynamic theo-
ries have been used to describe the behavior of the system at
large scales �1,18–20�. Self-propelled particles are typically
elongated and move along one direction of their long body
axis. They can exhibit orientational order at high concentra-
tion. The ordered state is characterized by a vector order
parameter, the polarization, which is also proportional to the
mean velocity of the system. Hence the ordered state is a
macroscopically moving state. The continuum theory has
been developed phenomenologically on the basis of general
symmetry arguments by drawing on analogies with magnetic
systems and with liquid crystals �1�. In fact active or self-
propelled systems have been likened to “living liquid crys-
tals” �21�. This work has yielded several important results,
including the possibility of long-range order in two dimen-
sions �2D� �18� and the prediction and observation of giant
number fluctuations in the ordered state �22,28�. The con-

tinuum theory has also been derived by systematic coarse
graining of specific microscopic models, including rule-
based �23,24� and physically motivated �25,26� models.
These derivations yields �model-dependent� estimates for the
parameters in the hydrodynamic equations and have pro-
vided insight into the microscopic origin of the large-scale
collective physics.

In a recent paper we derived the hydrodynamic equations
for a collections of self-propelled hard rods moving on a
frictional substrate and interacting through excluded volume
interactions �25�. Although self-propulsion and steric effects
alone are not sufficient to yield a homogeneous polarized
moving state in bulk, the hydrodynamic equations are easily
modified to incorporate a mean-field continuous transition
from an isotropic state at low concentration of rods to a polar
state at high density. In the present paper we examine ana-
lytically and numerically the coupled nonlinear hydrody-
namic equations for density and polarization to characterize
the large-scale structures that replace the linearly unstable
homogeneous ordered state. The main results of our work are
summarized in Fig. 1 that represents a “phase diagram” in
terms of the density � of rods and their self-propulsion speed,
v0. In the absence of self-propulsion �v0=0� the model con-
sidered exhibits a mean-field continuous transition at the
critical density �c from an isotropic state of zero polarization
for �0��c to an ordered moving state, with uniform density
and macroscopic polarization P�0. In a uniform ordered
state at finite v0, all rods would move with uniform mean
velocity �v0P. We find, however, that the moving state for
�0��c exhibits more complex behavior. For v0 below a criti-
cal value vc��0�, the steady state of the system is still mac-
roscopically polarized on average, but exhibits anomalous
density and polarization fluctuations. We refer to this state as
the “fluctuating flocking state.” The anomalous density fluc-
tuations are the giant number fluctuations predicted by Toner
and co-workers �27� and observed experimentally in active
nematics �28�. An additional feature of this regime is a very
slow temporal approach to this noisy steady state, with some
features of a coarsening process. For v0�vc��0� the system
orders in a robust striped phase, consisting of traveling high-
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and low-density stripes. The high-density stripes are ordered
with polarization transverse to the long direction of the
stripes, which is also the direction of the stripes’ motion.
Both of these phases have been identified in numerical stud-
ies of the Vicsek model �13,29�. Here we characterize them
in terms of their origins in the hydrodynamic equations using
both analytical and numerical tools. This allows us to derive
an understanding that transcends any specific microscopic
model and is generically applicable to a large number of
self-propelled systems.

The coupling of density and polarization fluctuations em-
bodied in the convective terms in the hydrodynamic equa-
tions of self-propelled systems plays a crucial role in control-
ling pattern formation. Some of these convective terms
reflect the dual role played by the polarization field as vector
order parameter and as the mean velocity, resulting in com-
petition between diffusion and convection along the direction
of mean local order. There is a qualitative analogy here with
sedimentation problems �30,31�, where the interplay of local

alignment along the sedimenting direction and diffusion can
destabilize the system resulting in convective patterns, al-
though hydrodynamic interactions, not incorporated here, of-
ten also play an important role in sedimenting systems.

The layout of the paper is as follows. First we introduce
the hydrodynamic equations that are the starting point of our
analysis. Then, we carry out a linear stability analysis about
the ordered state and characterize the region of linear stabil-
ity of the bulk-ordered phase or homogeneous flock. Next,
we report the results of numerical solution of the nonlinear
hydrodynamic equations and identify and characterize both
the fluctuating flocking state and the striped phase, as well as
the coarseninglike behavior leading to these phases.

II. MODEL

We consider a collection of polar rods of length � moving
on an inert substrate characterized by a friction constant � in
two dimensions. Each rod is driven by an internal force F
acting along one direction of its long axis, called its head.
This force, together with the frictional interaction with the
medium, results in a self-propulsion speed v0=F /� of con-
stant magnitude. On length scales long compared to � and on
time scales long compared to the microscopic interaction
times, the dynamics of the system can be described in terms
of hydrodynamic fields, namely, the conserved densities
�here the density ��r , t� of rods� and the variables associated
with possible broken symmetries. A collection of self-
propelled polar rod can order in a polarized state, character-
ized by a finite value of a vector order parameter, P�r , t�,
describing the mean polarization of the rods. The ordered
state is also a moving state, with mean velocity �v0P. The
dynamics of the system is described by coupled equations for
density and polarization given by

�t� = − � · ��v0P − D � �� �1�

and

�t�P + �1�P · ��P = − Dr�a2��� + P2a4�����P −
v0

2
� �

+ �3�Pi � �Pi + �2�P � · �P

+ �Ds − Db� � �� · �P� + Db�2�P .

�2�

The hydrodynamic Eqs. �1� and �2� have the same form as
those first proposed on a phenomenological basis by Toner
and Tu �1,18,27� to describe the physics of flocking. The
parameter a2 is chosen to change sign at a characteristic den-
sity �c, while a4�0. This guarantees a mean-field continuous
transition from an isotropic state with �=�0 and P=0 when
a2�0 to a homogeneous polarized state with �=�0 and

�P0�=�−a2

a4
when a2�0. These equations have also been de-

rived from specific microscopic models of self-propelled par-
ticles on a substrate by some of us �25,32,33� and by Bertin
and collaborators �23�. Bertin et al. obtained hydrodynamic
equations by coarse-graining a Vicsek-type model of self-
propelled point particles with a specific aligning rule for the
pair interaction. In contrast, Baskaran and Marchetti, consid-

FIG. 1. �Color online� Phase diagram in the �v0 ,�0� plane. At
v0=0 the system exhibits a continuous mean-field transition at �0

=�c from an isotropic �i� to a homogeneous polarized �HP� state.
The isotropic phase survives at finite v0 in the region ���c

bounded by the vertical dotted line �blue online�. For �0��c there
is a critical vc��0� separating a polarized moving state with large
anomalous fluctuations, named the fluctuating flocking state, at low
self-propulsion speed from a high-speed phase of traveling stripes.
The circles denote the values of vc��0� obtained numerically with
the error bars indicating the step size used in the computation. The
dashed-dotted line �purple online� is the longitudinal instability
boundary vc1

L ��0� obtained in Sec. III. The dashed line �red online�
is the splay instability boundary vc

S��0�, given by Eq. �A11�. The top
right panel is a real space snapshot of the density profile in the
striped phase. The stripes travel in the direction of the white arrow
that also denotes the direction of mean polarization in the high-
density regions. The bottom right panel shows a real space snapshot
of the density profile in the coarsening transient leading to the fluc-
tuating flocking state at v0�vc. Density values from low �dark in
grey-scale/blue online� to high �light in grey-scale/yellow online�
are indicated in the side bar. The value of the density in the blue
stripes is well below the critical value �c=0.5, while the red stripes
are well into the polarized phase.
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ered a model of self-propelled hard rods of finite size with
excluded volume interaction and analyzed in detail the modi-
fications induced by self-propulsion on the linear and angular
momentum exchanged in a binary collision. The equations
obtained by Bertin et al. have precisely the form given in
Eqs. �1� and �2�, with parameters a2 and a4 determined by
the aligning interaction between particles. In contrast, it was
demonstrated in Ref. �25� that steric effects alone are not
sufficient to yield a homogeneous bulk polarized state. As a
result, the equations derived in �25� for a purely physical
model have a4=0. We note that it was also demonstrated
recently in a model of swimmers in a fluid that hydrody-
namic interactions among swimmers are equally insufficient
to yield a homogeneous polarized state in bulk �34�. These
results suggest that genetically and biochemically regulated
signaling or external symmetry-breaking effects, such as
chemotaxis, may be needed to obtain a polar state. Non-
physical or external mechanisms of this type are embodied in
Bertin et al. in an alignment rule but are absent in the work
by Baskaran and Marchetti that aimed at identifying the role
of purely physical interactions in controlling the large scale
behavior of self-propelled systems. The goal of the present
paper is to study the stability of the homogeneous polar state.
For this reason we have added phenomenologically the term
proportional to a4 to the equations derived in �25�. Both a2
and a4 will then treated as phenomenological parameters.

The density satisfies a conservation law, with a flux con-
trolled by two terms: �v0P describing convection along the
mean self-propulsion velocity, v0P, and a diffusive current
−D�� that drives the system to a homogeneous state. The
anisotropy of the diffusion coefficient relative to the direc-
tion of mean motion is neglected here for simplicity. The
various terms in Eq. �2� �other than the one proportional to
a4� are obtained from the microscopic hard rod model and
have a simple physical interpretation. The polarization field
P plays a dual role in self-propelled systems. On one hand, it
represents the vector order parameter associated with the
spontaneous breaking of rotational symmetry in the polarized
state. Its dynamics is then in the class of that of equilibrium
polar liquid crystals and X-Y spin systems. On the other
hand, v0P is also the mean velocity of the flock with which
particles are convected. The interplay between these two
physical roles of the polarization field gives rise to the vari-
ous terms in Eq. �2� and underlies most of the phenomena
discussed in this paper. The three terms proportional to �i in
Eq. �2� play a crucial role in controlling the pattern formation
phenomena described below. If we think of v0P as a velocity,
then all three terms have the structure of convective nonlin-
earities. Galilean invariance would require �1=

v0

� and �2
=�3=0. The self-propelled overdamped system considered
here is, however, moving relative to a fixed substrate and
does not satisfy Galilean invariance. As a result, the values
of �i are unconstrained and in general model dependent.
There is an additional important difference between these
three terms. The term proportional to �1 is a truly nonequi-
librium term that can be understood only as a convective
nonlinearity. In contrast, the terms proportional to �2 and �3
have an equilibriumlike interpretation associated with the
role of P as the polar order parameter. These two terms
would arise in equilibrium from a term of the form ��P�2� ·P

in the free energy, which effectively accounts for a depen-
dence of the elastic constant associated with splay deforma-
tions on the amount of orientational order in the system. In
this case one would obtain �2=−�3. Finally, Ds and Db are
diffusion constants that characterize the relaxation of splay
and bend fluctuations, respectively, and Dr is a rotational
diffusion rate.

Before proceeding to analyze the hydrodynamic equa-
tions, it is useful to introduce dimensionless variables. We
measure time in units of the inverse rotational diffusion rate,
Dr

−1, and lengths in units of the length � of the self-propelled
particles. The various dimensionless fields and parameters
are then given by

�̃ = ��2,

ṽ0 = v0/��Dr� ,

�̃i = �i/�Dr�
3� ,

D̃ = D/�Dr�
2� .

In the following all quantities are dimensionless and we drop
the tilde for simplicity of notation.

III. LINEAR STABILITY

The hydrodynamic Eqs. �1� and �2� admit two homoge-
neous solutions: an isotropic state �I� with �=�0 and P=0 for
���c and a homogeneous polarized �HP� state with �=�0
and P� P0p̂0 for �0��c, where p̂0 is the direction of broken
symmetry and P0=�−a2 /a4. The critical value �c is defined
by a2��c�=0 and is chosen here as �c=0.5. It was shown in
Ref. �25� that the isotropic state is always linearly stable. In
this section we examine the linear stability of the HP state at
finite v0. To do this we linearize the hydrodynamic equations
by letting

� = �0 + �� , �3�

P = p̂0�P0 + �P� + P0�p�, �4�

where p̂0 ·�p�=0. Inserting this ansatz in Eqs. �1� and �2�,
we obtain three coupled equations for the fluctuations in the
density, ��, the magnitude �P of the polar order parameter
and the director, �p�. Combining the fluctuations into a vec-
tor,

�y	�r,t� → 	���r,t�/�0

�P�r,t�
�p��r,t�


 , �5�

and introducing the Fourier components, �ỹ�k , t�
=�re

ik·r�y�r , t�, the coupled linear equations can be written
in matrix form as

�ỹ	�k,t� = A	
�k��ỹ
�k,t� , �6�

where
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A�k� =	
ik�v0P0 − Dk2 ik�v0 ik�v0P0

− 2	a20P0 + ik�
v0

2
+ �̄�0

2P0
2�

− Dsk�
2 − Dbk�

2

2a20 − ik��̄�0P0

− Dbk�
2 − Dsk�

2
− ik��2�0P0

2 − �Ds − Db�k�k�

ik�
 v0

2P0
− �0P0�3� − �Ds − Db�k�k� − ik��3�0 −

�Ds − Db�
P0

k�k� ik��1�0P0 − Dsk�
2 − Dbk�

2 
 , �7�

with k= p̂0k� +k�, k�=k�k̂�, �ỹ3�k , t�= k̂� ·�p̃��k , t�, and

	 =
�0

2a20

 �a2

��
�

�=�0

−
�0

2a40

 �a4

��
�

�=�0

, �8�

where a20=a2��0��0, a40=a4��0��0, and

�̄ = �1 − �2 − �3. �9�

The coefficients a2 and a4 are chosen of the simplest form
that guarantees a continuous transition at �c and P0�1 for
�0��c, i.e.,

a2 = 1 − �/�c, �10a�

a4 = 1 + �/�c. �10b�

With this choice 	=
�0�c

�0
2−�c

2 is always positive.
We look for solutions of the form �ỹ�k , t��es	�k�t, where

the rates s	�k� are the hydrodynamic modes of the system.
These are defined as those with decay rates (here propor-
tional to Re�s	�k�� ) that vanishes in the long wavelength
limit k→0. Modes with Re�s	�k���0 decay at long times,
while modes with Re�s	�k���0 grow, rendering the homo-
geneous state linearly unstable. We discuss the hydrody-
namic modes by considering some simplified cases. Further
details are given in Appendix A.

First, we consider the behavior of the system for �0��c,
i.e., deep in the ordered state. The rate of decay of long
wavelength fluctuations of the magnitude �P of the order
parameter is controlled by A22�2a20, which is always finite
for ���c, away from the mean-field continuous transition.
In other words �P is a nonhydrodynamic variable that decays
on microscopic time scales. In this regime we can then ne-
glect fluctuations �P and simply consider the dynamics of
density and director fluctuations governed by the two
coupled equations

�t��̃ = �ik�v0P0 − Dk2���̃ + ik�v0�0P0�p̃�, �11�

�t�p̃� = �i
 v0

2P0
− �0P0�3� − k��Ds − Db��k�

��̃

�0

+ �ik��1�0P0 − �Dsk�
2 + Dbk�

2���p̃�. �12�

The general form of the dispersion relation of the hydrody-
namic modes is readily obtained by solving a quadratic equa-
tion and is given in Appendix A. Here we discuss some
limiting cases. For wave vectors k along the direction p̂0 of

broken symmetry, i.e., k=k� and k�=0, density and orienta-
tion fluctuations decouple and decay with rates

s�
L�k� = ikv0P0 − Dk2, �13a�

sp
L = ik�1�0P0 − Dbk2. �13b�

Both modes are stable and propagating, albeit with different
speeds. Deep in the ordered region, P0�1. The propagation
speed of density fluctuations is then simply v0, while the
propagation speed of director fluctuations is �1�0�v0

2�0. A
Galilean invariant system would have �1=v0 /�0 and the two
modes would have the same propagation speed, v0. The dif-
ference in the propagation speed of the two modes can then
be considered a signature of the violation of Galilean invari-
ance.

Next, we consider wave vectors k transverse to the direc-
tion p̂0 of broken symmetry, i.e., k=k� and k� =0. In this case
the equations for density and director fluctuations are
coupled and the two hydrodynamic modes are given by

s�
T = −

1

2
�D + Ds�k2 �

1

2
��D − Ds�2k4 − 2k2v0�0�v0

− 2�0P0
2�3��1/2. �14�

The mode s+
T can become positive, yielding an instability, for

k�kc, with

kc = �v0�2�0P0
2�3 − v0�/�DDs� , �15�

provided

2�0P0�3 � v0. �16�

The parameter �3 has been estimated for a few microscopic
models and found to be of order v0

2 �23,25�. Equation �16�
then identifies a value vc

S��0� of the self-propulsion speed
above which the homogeneous polarized state becomes un-
stable, with kc��v0−vc

S�1/2. The instability boundary vc
S��0�

depends on microscopic parameters and is therefore model
dependent. Using the parameter values obtained for the
model of self-propelled hard rods discussed in �25�, where
the nonlinear terms in the polarization equation arise from
momentum-conserving collisions between the self-propelled
rods, and summarized in Table I, we obtain

vc
S = �2
�0P0

2�−1. �17�

This instability is associated with splay deformations of the
director and with spatial gradients normal to the direction of
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mean order, suggesting that it may bear no relevance to the
stripe formation observed in the numerics due to the fact that
the particles in the stripes are always aligned along the short
direction thereby retaining the long-wavelength nature of the
splay mode. However, as shown in Fig. 1, the splay instabil-
ity line agrees remarkably well with the numerically ob-
served onset of stripe formation at high density. This result,
discussed further below, suggests that nonlinear pattern se-
lection mechanisms may play an important role in stripe for-
mation. Finally, Eq. �17� shows that vc

S� 1
�0

for �0��c and
appears to diverge as we approach the phase transition. This
apparent divergence is regularized when the effect of over-
damped fluctuations of the magnitude of the polar order is
incorporated in the mode analysis. This is done in Appendix

A, where rather than just neglecting �P̃ entirely, we approxi-
mate its behavior by assuming that on the time scales of

interest ��t�P̃�� �2a20�P̃� in Eqs. �6� and �7�. We then neglect

the time derivative of �P̃, solve for the overdamped �P̃, and
use this result to eliminate it from the equations for density
and director fluctuations. We find that the resulting modes
still exhibit a splay instability as described above, but the
critical speed monotonically approaches the constant value
vc

S��c�= � 

2 �c�−1 as �0→�c. The renormalized boundary

vc
S��0� of this splay instability given in Eq. �A11� is plotted in

Fig. 1 as a red dashed line. In addition, fluctuations in the
magnitude of the polarization renormalize of the diffusion
constant associated with the decay of density fluctuations.

As the continuous order-disorder transition is approached
from above, a20→0 and the separation of time scales be-
tween the decay of speed or magnitude fluctuations �P and
the true hydrodynamic variables �� and �p� no longer holds.
To capture the physics of the system in the vicinity of the
order disorder transition, we need to retain the dynamics of
the “nonhydrodynamic” variable �P and examine the three
coupled Eqs. �6�. One can show that the splay instability
described above for k normal to the direction of mean order
survives and is qualitatively unchanged. On the other hand,
for k along the direction of broken symmetry, director fluc-
tuations �p� decouple from density and speed fluctuations
and decay at the rate �Eq. �13b��. The coupled modes for the
dynamics of density and speed fluctuations are then given by

s�
L =

1

2
�A11 + A22� �

1

2
��A11 − A22�2 + 4A21A12, �18�

where Aij are the elements of the matrix A�k , t� given in Eq.
�7� for k=k�p̂0. It is easy to see that one of the two dispersion
relations describes a nonhydrodynamic mode, s+

L�0�=2a20,
but with a decay rate that becomes vanishingly small for

�0→�c. The other mode vanishes at k=0. At small wave
vectors the dispersion relation of the hydrodynamic mode s−

L

takes the form

s−
L�k� = ikv0P0�	 + 1� − Def fk

2 + O�k3� , �19�

with

Def f = D +
v0

2

4�a20�
−

v0
2�	 + 1�2

2a40
+


v0
3�0�	 + 1�

2a40
, �20�

where we have used the microscopic parameters given in
Table I. When Def f �0, density fluctuations grow in time and
the ordered state is unstable. At the phase transition, i.e., for
�0=�c, The condition Def f �0 is satisfied for all values of v0
and the ordered state is always unstable. Away from the tran-
sition, by considering the exact modes in Eq. �18� we find
that for densities in a range �c��0��c

L there exists a range
of self-propulsion speeds vc1

L �v0�vc2
L where the propagat-

ing density fluctuations are unstable. The lower instability
boundary vc1

L ��0� is shown in Fig. 1 as a purple dashed-
dotted line.

The results of the linear stability analysis are summarized
in Fig. 2. The linear stability analysis predicts that near the
mean-field order-disorder transition the homogeneous or-
dered state is destabilized at small v0 by the growth of
coupled density and polarization fluctuations. The instability
occurs for spatial gradients along the direction of mean or-
der, signaling the onset of spatial structures that are inhomo-
geneous in this direction, like the stripes found numerically.
The wave vector kc of the fastest growing mode for this
instability scales as kc��v0−vc�−1/2 at fixed density �0 and
as ��0−�c�1/2 at fixed self-propulsion speed. The boundary of
stability vc1

L ��0� obtained from the linear theory vanishes at
�c, in agreement with the onset of the striped phase obtained
by numerical solution of the nonlinear equations, as shown
in Fig. 1, but grows faster with v0 than obtained numerically.
This discrepancy is likely to stem from the fact that the full
nonlinear dynamics of amplitude fluctuations must be incor-
porated to account for the behavior in these regions. In ad-
dition, the linear stability analysis predicts that the homoge-
neous ordered state is again stable at large self-propulsion
speed for v0�vc2

L ��0�. This second line is shown in Fig. 2.
The numerics, however, yield a striped phase in this region.
Finally, the longitudinal instability only exists for �0��c

L

�1.1, while numerically stripes are observed at all densities
above a critical velocity. Deep in the ordered state, the linear
stability analysis predicts that the homogeneous flocking
state is destabilized by splay fluctuations of the order param-
eter. In this case the instability is associated with spatial gra-
dients in the direction normal to that the mean order. The

TABLE I. Diffusion constants and convective parameters for the model of self-propelled hard rods with
excluded volume interactions discussed in Ref. �25�. All diffusion constants are in units of �2Dr and all
convective parameters are in units of �3Dr. The diffusion coefficients have been expressed in terms of the
longitudinal diffusion constant D0 of a long thin rod. Below we use the low-density value, D0=1 /4.

D /D0 Db /D0 Ds /D0 �1 �2 �3

�3+2v0
2� /2 �7+6v0

2� /8 �9+10v0
2� /8 3
v0

2 
v0
2 
v0

2
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wave vector of the fastest growing mode also scales as kc
��v0−vc�1/2 at fixed density �0 and as ��0−�c�1/2 at fixed
self-propulsion speed, but it is clear that nonlinear pattern
selection mechanisms must be involved to yield the forma-
tion of the observed transverse stripes �associated with spa-
tial gradients in the longitudinal direction� in this region. On
the other hand, the instability line obtained from the linear
theory agrees remarkably well with the numerical onset of
stripes in this high-density region �Fig. 1�. More work is
needed to understand stripe formation at high density and the
origin of the associated length scale.

IV. NONLINEAR REGIME

To go beyond the linear stability analysis and investigate
the nature of the flocking state above vc, we have solved
numerically the full nonlinear hydrodynamic equations. The
numerical analysis has been carried out using the specific
parameter values obtained for the self-propelled hard rod
model of Ref. �25�, summarized in Table I. All diffusion
coefficients are enhanced by self-propulsion of an additive
contribution proportional to v0

2 that arises from the persistent
nature of the random walk performed by Brownian self-
propelled rods. In the following we discuss the properties of

the system in terms of two dimensionless parameters, the
self-propulsion speed, v0, and the density of particles, �0. In
the numerics the coefficients a2 and a4 that control the con-
tinuous mean-field phase transition from an isotropic to a
polar state have been taken to be of the simple form given in
Eqs. �10b� with �c=0.5 in units of the rod length. This form
yields P0���−�c�1/2 for �→�c and P0→1 for ���c.

For generality we include fluctuations beyond the mean-
field level in the numerical analysis by adding Gaussian
white noise terms in both the density and polarization equa-
tions of the forms � · f��r , t� and fP�r , t�, respectively. The
random forces are chosen to have zero mean and correlations

�f i��r,t�f j��r�,t��� = �ij����r,t���r − r����t − t�� , �21�

�f iP�r,t�f jP�r�,t��� = �ij
�P

��r,t�
��r − r����t − t�� , �22�

where �� and �P are dimensionless noise strengths. The
noise in the density equation scales as ���r , t��1/2, while the
polarization noise scales as ���r , t��−1/2 �24,35�. This differ-
ence arises because the fields � and P are extensive and
intensive quantities, respectively. The numerical results de-
scribed below are all for fixed values of the noise amplitudes,
�p=��=0.3. We have solved the nonlinear equations using
the Euler method for numerical differentiation on a grid with
�x=1.0 and �t=0.1 �we have verified that the numerical
scheme is convergent and stable for �t / ��x�2�0.5�. We
consider a square system of size L�L with both periodic and
shifted boundary conditions and a range of system sizes.

The behavior of the system as a function of the self-
propulsion velocity v0 and the density of particles � is sum-
marized in the phase diagram shown in Fig. 1 discussed in
the introduction. The isotropic state is stable for all v0 and
���c. For ���c and v0�vc��0� the system is in the fluctu-
ating flocking state, characterized by finite polarization and
large spatial and temporal fluctuations of both density and
order parameter. For v�vc��0� we find a striped phase, with
alternating ordered high-density bands and disordered low-
density bands, propagating in the direction of order. In the
numerics the value of vc is identified as the self-propulsion
velocity where the density histograms shown in Fig. 9
change from unimodal to bimodal. The histograms are con-
structed by recording the local density at each spatial grid
point for fixed mean density �0 averaged over many initial
conditions. We have also verified that histogram of local po-
larization magnitude change from unimodal to bimodal as
the same value of v0. The numerical boundary for the onset
of the stripe regime vanishes with v0 for �0→�c and is in
qualitative agreement with the boundary calculated in section
for the onset of the longitudinal instability. The theoretical
curve, however, grows much faster with v0 than the numeri-
cal boundary. Surprisingly, at high density the theoretical
boundary for the linear instability of splay fluctuations
agrees very well with the numerical onset of stripes.

A. Fluctuating flocking state

In this subsection we characterize the fluctuating flocking
state that exists in the region ���c and v0�vc of the phase
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FIG. 2. �Color online� The figure displays the linear stability
boundaries in the �v0 ,�0� plane. All lines have been calculated us-
ing the microscopic parameter values of Table I. The vertical dotted
line �blue online� is the mean-field continuous transition from the
isotropic �i� to the HP state. The dashed-dotted lines �purple online�
are the boundaries �calculated by numerical solution of
Def f�v0 ,�0�=0, with Def f given by Eq. �20�� that define the region
vc1

L �v0�vc2
L where the homogeneous polarized state is unstable

due to the growth of coupled density and polarization fluctuation
associated with spatial gradients along the direction of mean order
�longitudinal instability�. The linear theory predicts that the homo-
geneous polar state is unstable in the ruled region to the right of the
vertical mean-field transition and bounded by these two lines. The
dashed line �red online� is the splay instability boundary given in
Eq. �A11�. It terminates at a finite value at �0=�c. The linear theory
predicts that splay fluctuations destabilize the polar state in the en-
tire ruled region above the dashed �red� line. The region where the
system exhibits both the longitudinal and splay instabilities is cross-
hatched. The longitudinal instability boundary vc1

L ��0� vanishes for
v0→0 and �0→�c

+, in agreement with the numerics.
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diagram in Fig. 1. As noted earlier, this state is characterized
by large fluctuations in the density. These fluctuations do not,
however, destroy the underlying orientational order of the
system. This is displayed in Figs. 3 and 4. Figure 3 shows the
time evolution of the magnitude squared of the order param-
eter, �P2�t��= �Px

2�t�+ Py
2�t��, where here and below the brack-

ets denote a spatial average over the system and an average
over different realizations of initial conditions, for both an
initial ordered ��P2�t=0��=1� and an initial disordered
��P2�t=0��=0� state. Both states reach the same ordered state
at long times, although on very different time scales. The
asymptotic state is ordered �i.e., �P2��0� and this does not
appear to be an artifact of the finite system size, as shown in
Fig. 4 where the magnitude of the order parameter is dis-
played as function of system size for various values of v0 and
different initial states. The numerics suggest that �P� is finite

and close to unity �note the narrow range of �P� on the ver-
tical axis of Fig. 4� in the fluctuating flocking state. The large
difference in the relaxation time from an initial disordered or
ordered state to the asymptotic ordered state seen in Fig. 3 is
not unexpected. When starting in a disordered state, the sys-
tem locally finds different degenerate ordered states, which
subsequently coarsen toward the homogeneous ordered state.
Below we characterize both the coarsening behavior as the
system seeks out its asymptotic steady state and the proper-
ties of the asymptotic fluctuating flocking state.

To quantify the coarsening behavior we have measured
the two-point correlation function of both the density and the
order parameter, defined as

C��r,t� = ����r0 + r,t����r0,t�� , �23�

CP�r,t� = �P�r0 + r,t� · P�r0,t�� . �24�

Before discussing the behavior of these correlation functions,
it is useful to recall the dynamics of phase ordering devel-
oped in the context of equilibrium second-order phase tran-
sitions �36�. Phase ordering theories consider a system in an
initially disordered state that is rapidly quenched below the
order-disorder transition point and describe the time evolu-
tion following the quench. Immediately after the quench the
system consists of finite-size ordered regions, each in one of
the continuum of degenerate ground states that correspond to
one choice of the spontaneously broken continuous symme-
try. The system then evolves in time and “coarsens” with
some of the ordered regions growing at the expense of others
and eventually taking over the entire system. The coarsening
process is typically controlled by a single energy scale,
namely the energy cost of the domain walls between differ-
ent ordered regions. This implies that the time evolution of
the system occurs via the growth of a single length scale L�t�
that characterizes the size of a typical ordered region in the
system at a time t. The order-parameter correlation function
will then depend on time only through L�t�, i.e., CP�r , t�
=C� r

L�t� �. Scaling analysis indicates that the length scale L�t�
grows with the dynamical critical exponent z, L�t�� t1/z. For
a vector order parameter in two dimensions in equilibrium
one expects z�2 �36�.

In the case of self-propelled particles, the orientational
fluctuations that drive the coarsening of the ordered state also
induce mass fluxes and hence couple to density fluctuations.
As a result, density correlations are essentially slaved to the
order-parameter correlations and both C� and CP are ex-
pected to exhibit coarsening behavior �37�. This is indeed the
behavior that has been observed in active nematic liquid
crystals, where both density and orientational correlations
have been shown to coarsen on a characteristic length scale
that grows like t1/z, with z�2 �38�.

The behavior of polar active system appears to be some-
what different. Figure 5 shows the two-point correlation
function for the density and the order parameter for our
flock. Both exhibit a growing correlation length as a function
of time, but they do not exhibit the simple scaling behavior
outlined above, indicating that the approach to the homoge-
neous state is no longer controlled by the single energy scale
associated with the cost of a domain wall. Convective fluxes
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FIG. 3. �Color online� The magnitude squared of the orienta-
tional order parameter �P2�t�� as a function of time for an isotropic
initial state ��P2�t=0��=0� and an ordered initial state ��P2�t=0��
=1�, for three system sizes and v0=0.1, �0=0.7, corresponding to
vc�0.42. The three curves obtained for an isotropic initial state
overlap and cannot be distinguished in the figure. Both initial states
approach the same macroscopically ordered state at long time al-
though the time scale required for the isotropic initial state to reach
the asymptotic steady value is much longer.
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induced by self-propulsion lead to correlations on longer
length scales and hence accelerate the coarsening dynamics.
This picture can be substantiated by extracting a length scale
L�t� from the correlation functions. This is shown in Fig. 6
where we see that the dynamical exponent z is smaller than
the equilibrium value, indicating that the coarsening dynam-
ics in polar active systems is faster than that of both equilib-
rium systems with vector order parameters and active nem-
atics. This may be due to the fact that, in a polar self-
propelled system, there is true long-range order in 2D
�18,27� and the associated suppression of the Goldstone
mode by the nonlinear couplings changes the dynamics of
the system as the orientational order builds up toward the
homogeneous ordered state.

At long times, for v0�vc, the system reaches the fluctu-
ating flocking state, a steady state with finite mean polariza-
tion and anomalous fluctuations. To characterize the proper-
ties of this state we have evaluated the two-point correlation
function of fluctuations in the orientational order parameter,

C�P�r,t� = ��P�r0 + r,t� · �P�r0,t�� , �25�

with �P�r , t�=P�r , t�− P�t�. This is shown in the right frame
of Fig. 8 and it decays logarithmically as expected for vector
order in 2D. The correlation function shown in Fig. 8 has
been averaged over r0, hence it represents only the isotropic

�angular-averaged� part of the order-parameter correlations.
In general we expect the correlation function to be aniso-
tropic and its spatial decay to be described by different
length scales in the directions longitudinal and transverse to
the direction of mean motion, as described in Ref. �27�. We
have calculated the spatial decay of the order-parameter cor-
relation in each direction and find it indeed to be anisotropic,
as shown in Fig. 7. The theoretical analysis of Ref. �27�
predicts a power-law behavior with different exponents char-
acterizing the decay along and orthogonal to the direction of
broken symmetry. Given the large spatial and temporal fluc-
tuations in our system, the system sizes considered here are
too small to obtain reliable statistics to quantify this behavior
and extract scaling exponents.

In contrast to the order-parameter correlations, which de-
cay logarithmically, the two-point density correlation shown
in the in the left frame of Fig. 8 displays correlations over
longer length scales than expected in equilibrium. In fact the
density correlation functions exhibits cuspy behavior of the
form C��r , t�=1− � r

L�t� �
	 with 	�0.6 typically characteristic

of a state with growing domains. Furthermore, C��r , t� de-
pends very weakly on the self-propulsion speed. These large
correlations in the density arise because of the coupling of
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FIG. 5. �Color online� Early time, two-point density �top panel�
and order-parameter �bottom panel� correlation function for v0

=0.1�vc=0.42 mean density �0=0.7 and L=1024. The dashed
horizontal line indicates the value of the correlation function at
which we extract the coarsening length scale L�t�, shown in Fig. 6.
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relations for v0=0.1, �0=0.7, and L=1024. For this density vc

�0.42 and the system was started in a disordered state. The straight
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extracted for the two length scales L�t�, it is clear that the growth
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FIG. 8. �Color online� Late-time two-point correlation functions
of density, C��r�, and order parameter, C�P�r�, fluctuations. The
data are obtained from an initial ordered configuration for �0=0.7,
L=512, and various values of v0, in the region corresponding to the
fluctuating flocking state. Inset �top panel� shows �1−C��r /L�t��� vs
the scaled distance r /L�t�, for various values of v0. The dashed
straight line shows the cuspy nature of two-point correlation func-
tion with cusp exponent 	=0.6. Inset �bottom panel� shows the
scaled two-point order-parameter correlation function, C�P�r /L�t��,
vs the scaled distance r /L�t�, for several v0. The dashed straight line
shows the logarithmic decay of C�P�r /L�t��.
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this conserved field to the fluctuations in the underlying
order-parameter field that is an intensive variable. This leads
to what has been termed “giant number fluctuations” in these
active systems �22� and is the underlying mechanism for the
large fluctuations in the density in the flocking state of our
system.

B. Striped phase

The top inset of Fig. 1 shows a real space snapshot of the
density obtained for �0��c and v0�vc��0�. In this region
the systems consists of well-defined stripes of the high-
density ordered phase alternating with stripes of the low-
density disordered phase. In the ordered region the polariza-
tion is always normal to the long direction of the stripes and
the stripes travel at a fixed speed in the direction of polar
order. Panels �a� and �b� of Fig. 9 show histograms of the
density and magnitude of the order parameter for a fixed
density �0=0.7��c and different self-propulsion speeds, v0.
For small v0, the histograms are unimodal �fitted with a
Gaussian peaked at mean density �0=0.7�, signaling a uni-
form state. Above a characteristic value of v0 the histograms
acquire a bimodal structure �fitted with two overlapping
Gaussians peaked at low and high densities�, corresponding
to the striped phase. The boundary vc��0� corresponding to
the onset of the striped phase and shown in Fig. 1 is deter-
mined as the value of v0 corresponding to the onset of this
bimodal structure. The error bars on these data point are
simply the step size of our increments in v0. Within these
error bars, the same values of vc��0� are obtained from the
onset of a bimodal structure in both the density and polariza-

tion histograms. The points shown in the phase diagram are
obtained using the density histograms. As noted earlier, this
boundary closely tracks the threshold line for the onset of the
linear instability of splay fluctuations at large �0 �although
this instability arises from spatial gradients normal to those
of stripe formation� and vanishes with v0 as �0→�c

+, as pre-
dicted by the longitudinal linear instability discussed in Sec.
III. However, there is considerable discrepancy between the
linear theory and the numerics in the details of the behavior
at low density.

The bottom two panels of Fig. 9 show histograms of den-
sity and polarization for a fixed self-propulsion speed v0
�vc and three different values of density. These histograms
are used to infer the properties of this striped phase. The
difference in position of the two peaks in the bimodal histo-
grams indicates the contrast in density and order parameter
between the ordered and disordered stripes. The position of
the peaks is independent of the self-propulsion speed and
only weakly dependent on the density, suggesting that the
density contrast between the isotropic and ordered stripes is
entirely diffusion limited. The height of the high-density or
high order peaks in the bimodal histograms is a measure of
the width of the ordered stripe with respect to the disordered
one. We note from the figure that the height decreases with
both increasing v0 and �0. This indicates that the width of the
ordered stripe decreases with increasing values of these two
parameters. Further, we measure the speed of propagation of
the stripes, shown in Fig. 10. As naively expected, the propa-
gation speed of the stripes increases linearly with v0.

An alternative way of displaying the existence of the
stripes and quantifying their properties is provided by the
two-point density correlation function defined in Eq. �23�.
We have evolved the system starting form a uniform ordered
initial state and evaluated the two-point correlation function
as a function of r for three directions: 0°, 45°, and 90° to the
direction of initial orientational order. The result is shown in
Fig. 11. When the self-propulsion speed v0�vc �right
frame�, the correlation decays monotonically in all direc-
tions. On the other hand, when v0�vc �left frame�, we find
well defined oscillations in the correlation function in the
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directions normal and at 45° to the direction of motion show-
ing the emergence of the periodic structure associated with
the stripe pattern. Also, this clearly indicates that the spatial
inhomogeneity develops in the direction of initial orienta-
tional ordering even in the region where the linear instability
is along a wave vector orthogonal to the ordering direction.
Finally we have also investigated the dependence of stripe
formation on system size and boundary conditions. We find
that the width and speed of the stripes remain mostly invari-
ant as we go to larger system sizes. We have also solved our
equations with shifted boundary conditions �39� and have
found that the striped phase persists.

In summary, for values of v0�vc��� given by the �black�
solid line in Fig. 1, the system develops robust propagating
stripes of alternating ordered and disordered regions. The
numerically identified transition line follows closely the
threshold for the splay instability identified in Eq. �17�, goes
to zero at the phase transition in agreement with the longitu-
dinal instability identified using Eq. �20�, and shows a be-
havior unlike both of these linear instabilities in the interme-
diate region. Further, for systems initialized in a uniform
ordered state, these stripes form along the direction of initial
ordering even in the domain where the longitudinal instabil-
ity is absent. This suggests that the pattern selection arises
from a complex interplay between the unstable linear modes
�40�. Also, the width of the stripes exhibits a scaling behav-
ior consistent with the critical wave vectors kc of both insta-
bilities but is not quantitatively captured by either length
scale. A systematic study of the relationship between the lin-
ear modes and the patterns observed here will be the focus of
a future work.

We can show that the nonlinear equations admit a propa-
gating front solution that may correspond to the onset of the
stripe phase although the stability if this solution is yet to be
established. In our numerical study we have solved Eqs. �1�
and �2� by systematically dropping various nonlinear terms.
We have established that the terms that are critical for the
formation of the striped phase are the homogeneous nonlin-
earity in the coefficient a2 that induces the phase transition,
the couplings between density and polarization embodied by
the convective terms in the density and polarization equa-
tions �v0��P and v0���� /�, respectively� and the convec-
tive nonlinearity controlled by the parameter �3. The longi-
tudinal instability arises from the interplay of a2 and the

convective terms while the splay instability is controlled by
the term proportional to �3. It is useful then to consider a
simplified description of the nonlinear dynamics where dif-
fusion is neglected and only terms essential for the pattern
formation are retained, given by

�t� = − � · ��v0P� , �26�

�tP = − �a2��� + P2a4����P −
v0

2�
� � + �3Pi � �Pi.

�27�

Denoting by x the direction of broken symmetry of the pu-
tative HP state, we postulate a solution of these equations in
the form of a front uniform in y and propagating along x with
a yet undetermined constant speed U,

��x,y,t� = ��x − Ut� , �28�

P�x,y,t� = P�x − Ut�x̂ . �29�

Inserting this ansatz, Eqs. �26� and �27� become

�x ln � =
v0

�U − v0P�
�xP , �30�

�a2 + a4P2�P − 
�3P2 −
v0

2�
��x� − �U + �3�P��xP = 0.

�31�

The density equation can be formally integrated by postulat-
ing an isotropic state at x=��P�� , t�=0� and a polar state at
x=−��P�−� , t�=1�. This gives us the ratio of the density in
a polarized region to the density an isotropic region as

�pol

�iso
=

U

U − v0P
. �32�

The density contrast is infinitely sharp when the front propa-
gates at a speed v0P commensurate with the degree of order-
ing in the stripes. Diffusion, neglected here, will smooth the
density crossover between the two regions. This is in agree-
ment with our numerical results that indicated that the con-
trast between the two regions is insensitive to the parameters
and is indeed diffusion limited.

Writing the density from Eq. �30� as �=1 / �U−v0P� and
substituting in the order-parameter equation, we can formally
integrate Eq. �31� to obtain a solution of the form

x = −
�

�P − 1�
+

�a4

�R
ln�a4�P − 1�2�1 + P�� +

v0

2a2
ln�P� ,

�33�

where for simplicity we have assumed U�v0 and we have
introduced a dimensionless friction constant, �R= �a2+a4�,
and a dimensionless length scale, �=

�3

v0�R
. This formal solu-

tion cannot be inverted analytically. A plot is shown in Fig.
12 and clearly displays that the solution represents a propa-
gating domain boundary of effective thickness � between a
state with P=1 and a state with P=0. In physical units, the
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FIG. 11. �Color online� Steady-state two-point density correla-
tion function for three different directions with respect to the order-
ing direction, 90°, 45°, and 0° for v0�vc �top panel� and for v0

�vc �bottom panel�. For v0�vc, there is no directional dependence
in the correlation function. For v0�vc, correlations at 90° to the
ordering direction decay monotonically, while correlations at 0° and
45° to the ordering direction show oscillations.
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length scale controlling the crossover between isotropic and
polarized states, hence the sharpness of the stripes, is given
by �3
v0 /�Dr�. This length is essentially the distance trav-
eled by a self-propelled particle in a rotational diffusion time.
In other words, stripe formation is controlled by the forma-
tion of domain boundaries in the polarization, and the fact
that the density is slaved to the polarization and hence leads
to mass fluxes that delineate the two regions in the striped
phase. Finally, it is apparent from Eqs. �30� and �31� that
there is no propagating front solution if we turn off the cou-
plings between density and polarization.

V. SUMMARY

In this work we have considered a continuum description
of a collection of self-propelled particles moving in a passive
medium. Their dynamics on large length and time scales is
governed by hydrodynamic equations for the density and the
polarization field. The crucial physics in these systems that
distinguishes them from conventional liquid crystalline sys-
tems is the dual role of the polarization field as �i� a physical
velocity that leads to mass convection and hence couples
orientational fluctuation to density fluctuations and �ii� an
order parameter associated with a spontaneously broken con-
tinuous symmetry. This duality leads to the remarkable phe-
nomenon of long-range ordering identified in �18�. Here we
show that this same physics destabilizes the homogeneous
ordered state above a critical value of self-propulsion speed
and allows the nonlinear equations to admit a propagating
front solution that yields the striped phase identified numeri-
cally. Further, the coupling of orientational fluctuations to
density fluctuations gives rise to anomalous fluctuations even
in the regime where the ordered state is stable and leads to
nontrivial coarsening dynamics that is different from the dy-
namics of both the equilibrium 2D X-Y model and that of
active nematics.

The two phases observed here, namely, the striped phase
and the fluctuating flocking phase, have been identified ear-
lier in the context of numerical studies of the Vicsek model
�41,42�. Our work identifies the origin of these phenomena in
the model independent framework of the dynamics of con-
served quantities and broken symmetry variable. It has been
shown in different systems of this class that pattern forma-

tion phenomena might be crucially related to biological func-
tionality �43,44�. This work would facilitate the application
of theoretical tools, such as the amplitude equations and pat-
tern selection analysis that are well developed in the context
of chemical reacting systems to collections of self-propelled
particles.
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APPENDIX A: LINEARIZED EQUATIONS

Here we analyze in more detail the hydrodynamic equa-
tions linearized about the homogeneous polar state given in
Eq. �6� and �7� in the main text and present a better approxi-
mation for the discussion of the splay instability.

The hydrodynamic modes deep in the ordered phase were
discussed in Sec. III by entirely neglecting magnitude fluc-
tuations �P that decay on microscopic time scales. A better
approximation consists of neglecting the rate of change of
�P in the corresponding term in Eq. �6� and solve for �P in
terms of fluctuations in density and director to lowest order
in gradients, with the result

�P̃ =
1

2a20
��2a20	P0 + ık�
v0

2
− �̃�0p0

2����̃

�0

+ ık��0�2P0
2�p̃�� . �A1�

We then use this expression to eliminate �P̃ from Eqs. �6� for
density and director fluctuations. The eigenvalues of the re-
sulting two coupled equations are given

s� =
1

2
�c11 + c22� �

1

2
��c11 − c22�2 + 4c12c21, �A2�

where

c11 = ik�v0P0�1 + 	� − k�
2�D −

1

2a20

v0

2

2
− �̃v0�0P0

2�� ,

�A3�

c12 = ik�v0�0P0 − k�k��0
2v0

2P0
2 �2

2a20
, �A4�

c21 = ik�� v0

2P0
− �0�3P0�1 + 	��

− k�k���Ds − Db� −
�3�0

2a20

v0

2
− �̄�0P0

2�� , �A5�

c22 = − ik��1�0P0 − �Dbk�
2 + 
Ds −

�3�2�0
2

2a20
P0

2�k�
2 � .

�A6�

Again the modes decouple when k=k�p̂0 lies along the direc-
tion of broken symmetry. The two modes governing the dy-

-5 0 5
x
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Λ

FIG. 12. Plot of polarization as a function of x as obtained by
inverting Eq. �33� for �0=0.7 and v0=1.0. The solution represents a
propagating domain boundary between a state with P=1 and a state
with P=0. For these parameters ��1.57.
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namics of density and director fluctuations are then given by

s�
L = ikv0P0�1 + 	� − �D −

1

4a20
�v0

2 + 2�̄v0�0P0
2��k2,

�A7a�

sp
L = − ik�1�0P0 − Dbk2. �A7b�

Director fluctuations are stable and their decay rate is con-
trolled by the bend diffusion constant. Since a20�0 in the
ordered state, one can define an effective diffusion constant

in Eq. �A7a� as Def f
L =D+ �v0

2+ �̄v0�0P0
2� / �4�a20��. The first

correction to D in this expression, proportional to v0
2, always

enhances diffusion and arises from the fact that self-
propelled particles perform a persistent random walk �25�.
The second correction can lead to an instability if �̄�0. The
parameters �i are microscopic quantities and their values are
model dependent. As discussed in the main text, if we think

of the polarization an equilibrium order parameter, then �̄
=0. If in contrast we think of the polarization as a physical

velocity in a Galilean invariant system, then �̄�0. In both
these cases the density fluctuations relax diffusively for all
values of the parameters. For the self-propelled hard rod

model discussed in Ref. �25� �̄�0 �see also Table I�. In this
case the convective terms proportional to �i further enhance
the effective diffusion constant and the homogeneous state is

stable. Note that a value �̄�0 is also obtained in the micro-
scopic Boltzmann equation model studied in �23�. If, how-
ever, the microscopic model allows for higher-order chemi-
cal and biological processes that can lead, for example, to a
reversal of the direction of motion of an individual unit due

to interactions with other units, then �̄ can be negative and
drive a longitudinal instability �45�.

Next, we consider wave vectors k transverse to the direc-
tion p̂0 of broken symmetry, i.e., k=k�. In this case the equa-
tions for density and director fluctuations are coupled and the
two hydrodynamic modes are given by

s�
T = −

1

2
�D + D̄s�k2 �

1

2
��D − D̄s�2k4 − 2k2v0�0�v0

− 2�0P0
2�3�1 + 	���1/2, �A8�

where D̄s=Ds+�0
2P0

2�2�3 / �2�a20��. The mode s+
T can become

positive, yielding an instability, for k�kc, with

kc = �v0�2�0P0
2�3�1 + 	� − v0�/�DD̄s� , �A9�

provided

2�0P0�3�1 + 	� � v0. �A10�

Using the parameter values obtained for the model of self-
propelled hard rods discussed in �25�, where the nonlinear
terms in the polarization equation arise from momentum-
conserving collisions between the self-propelled rods and
summarized in Table I, we obtain

vc
S = �2
�0P0

2�1 + 	��−1. �A11�

The critical line vc
S��0� given in Eq. �A11� is plotted in Fig. 1.

As obtained in the main text, the instability line vanishes as
vc

S�1 /�0 at large density. However, near the transition incor-
porating overdamped magnitude fluctuations regularizes the
behavior yielding a finite value for vc

S��c�. Finally, for a wave
vector k at an angle � to direction p̂0 of broken symmetry,
the splay instability occurs for a range of angles �m��
�
 /2, where �=
 /2 corresponds to k normal to p̂0. The
growth rate of the unstable mode is, however, always largest
for �=
 /2, when director deformations are pure splay.

APPENDIX B: WAVE VECTOR OF FASTEST GROWING
MODES

In this appendix we identify and characterize the fastest
growing mode associated with the two linear instabilities
identified in the main text. To identify the wave vector of the
fastest growing mode for the longitudinal instability dis-
cussed in Sec. III, we evaluate the real part of the dispersion
relation of this mode to order k4, with the result

Re�s−
L�k�� = − Def fk

2 − D4k4 + O�k6� , �B1�

where Def f is given in Eq. �20� and

D4 =
1

32�a20�3
A�A − 4	P0v0��D − Ds� +

1

32�a20�2
�
 1

8�a20�
�A − 4	P0v0�2 +

1

�a20�
v0

2�2

+ 4�D − Ds�
 1

8�a20�
�A − 4	P0v0�2

+
1

�a20�
v0

2�� +
3

16�8�a20�3�
A2
− 2�D − Ds� −

1

8�a20�
�A − 2	P0v0�2 −

1

�a20�
v0

2� −
5

128�2�a20��8A4, �B2�

where

A = 2�v0�1 − 2	� + �̄�0�P0. �B3�

The growth rate of the unstable mode is then maximum at
a wave vector kc given by

kc
L = �− Def f/2D4. �B4�

Figure 13 shows a plot of the maximum growth wave vector
as a function of the self-propulsion speed for various values
of the mean density �0. The critical length scale kc

−1 de-
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creases with increasing density �0, in agreement with what
observed numerically for the width of the stripes. On the
other hand, kc

−1 increases with increasing v0 decreases as the
self-propulsion speed increases, implying that the width of
the stripe should increase with increasing SP speed, while the
stripes width exhibits the opposite behavior. This indicates
that the length scale selected by the nonlinear pattern is not
simply related to the wave vector of the most unstable mode
associated with the linear instability.

Next, proceeding as above, we can find the fastest grow-
ing mode associated with the splay instability. This is of the
form

kc �
v0

�D̄s + D�
�2
v0

vc
− 1� . �B5�

This critical wave vector is shown as a function of self-
propulsion speed v0�vc

S��� for different values of �0 in Fig.
14. In this case kc is a nonmonotonic function of v0. But it
increases with both v0 and �0 for the range of densities and
self-propulsion speeds probed by the numerical analysis.
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