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Different fitnesses for in vivo and in vitro evolutions due to the finite generation-time effect
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We consider the finite generation-time effect in virus evolution models, introducing differential equations
with delay. The suggested approach more adequately describes the evolution in case of growing populations
than the popular models of population genetics, especially for the viruses with large number of offspring during
one life cycle. Now the mean fitness, as a coefficient for exponential population growth, could not be defined
via instant characteristics of the model. For the constant population size the finite generation-time does not
affect mean fitness in the steady state. The growing virus population is characterized by different fitness than

the population with a constant size.
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I. INTRODUCTION

The modeling of evolving population via mathematical
models has a rich history. While from the early days of popu-
lation genetics there has been investigated the evolution
problem of age structured populations, see [1-5], the most of
results in population genetics are derived in simpler models,
considering the discrete time models with Wrightian fitness
or continuum time differential equation models with Malthu-
sian fitnesses [6,7]. The finite generation time influences, for
example, the molecular clock phenomenon [8]. We will solve
the simplest virus evolution model with finite generation-
time effect and check that the evolution characteristics of
growing virus population are substantially effected by intro-
duction of finite generation time.

While investigating the viruses, one can investigate nu-
merically a realistic model of virus evolution with several
stages of virus reproduction cycle [9]. As an alternative ap-
proach, one considers a simplified description of the dynam-
ics, considering different evolution processes together, via
simple mapping to the discrete time Wright-Fisher [10] and
Moran [11] models or considering differential equation mod-
els [6,12-16]. The popular evolution models are just those
[6,12,13], written as systems of ordinary differential equa-
tions. Such differential equations predict an exponential
growth of population, well observed in experiment [17-19].
The differential equations, describing the exponential
growth, give the main practical tools to define the fitness
from experimental data [18,19]. In this paper we will revise
the virus evolution model, considering the finite generation
time. As a result we get differential equations with delay as
evolution models. We will derive the mean fitness using the
Hamilton-Jacobi equation (HJE) method [20-22]. When the
random evolution factors such as mutation or recombination
change their rates it is impossible to work only with a single
Malhusian fitness and miss the generation time as an irrel-
evant parameter. Moreover, according to our results, there
are different fitnesses or selection coefficients for the grow-
ing populations and fixed size populations.
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How does the exponential growth arise in simple models?
Consider the virus that gives new K offsprings after any 7
period of time. While this parameter fluctuates from one vi-
rus to another, it could be defined experimentally. The con-
centration p(r) of the viruses grows according the following
law:

plt+ 1) =p()(K+1). (1)

The latter equation is a typical form of discrete time ap-
proach to evolution processes, and K+1 can be identified
with the Wrightian fitness.

When we observe the system for time period > 7, we can
find an exponential growth:

p()=p(t=0)e", (2)
where the growth rate is defined as [16]
r=In(1+K)/7. (3)

The exponential growth could be described via simple
differential equation:

It rp(). (4)

For the experimental schemes of fitness definition see [19].
A simple generalization of Eq. (4) is the Crow-Kimura
model. In case of Crow-Kimura model we consider the fol-
lowing system of nonlinear ordinary differential equation
(ODE):
dP;

EZP,I‘Z+EW1UPJ—PZEPJFI. (5)
J J

Here m;; is the rate of mutation from configuration j to a new
configuration i, and r; is the fitness. We consider the simpli-
fied version of the model, where at any loci there are two
alleles. P; is the probability of type i, therefore >;P;=1. The
Hamming distance d;; between two sequences is the number

of different alleles in the same positions of genome, and
m;=—pM. When dijzl then mljz,u,/N and m,]=0 for dl]>l
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[7]. The nonlinear term describes the dilution of the system
to hold constant population size. After relaxation we have the
mean fitness at the steady state P;:

R=2Pjrj. (6)
J

From the other hand we can consider the linear version of
Eq. (5):
dp; . .
E=piri+zmijpj’ (7)
J

and define the mean fitness as

i 3 500
R= lime]f. (8)
p; in Eq. (7) are relative probabilities. Two systems [Egs. (5)
and (7)] give exactly the same dynamic, after transformation
[23,24]:
p= (9)
E Pj
J
Two definitions of mean fitness, by Egs. (6) and (8), are
equivalent, while Eq. (7) describes the evolution of growing
population. For the symmetric fitness landscape (any se-
quence at the Hamming distance from the reference sequence
[ has the same fitness r;), we write the equation for the rela-
tive probabilities p; of the whole Hamming class (collection
of sequences with the same Hamming distance),

dp, (N=1+1) (I+1)
E=P1[rl—ﬂ]+ﬂ~ N P11t N Pis1»
21
r,=f<l—ﬁ). (10)

Equation (10) is the equivalent form of Eq. (7) for the con-
sidered case of symmetric fitness landscape.

II. EVOLUTION MODEL WITH DELAY

While the fitness is defined just as r, actually it depends
on two processes: the number of offsprings K and the period
T.

We can get the same exponential growth as in Eq. (4)
considering the differential equation with delay:

dp(t)/dt=rp(t— 1), (11)
where
F=re'” (12)
or
In(1 +K
Fo (14 0K (13)
T

In Eq. (11) we hold the memory about the period 7 of the
virus, while in Eq. (4) it has been missed. We can derive Eq.
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(11) considering different L groups which start to divide at
different moments of time t=n7/L [4]. In our case p(¢) is a
piecewise constant function that have jumps at any moment
t=m. Different L groups start to divide at different moments
of time, starting at t=7*n/L, n is an integers, n < L. Actually
these subsequences p(7) [r=7(n/L+k), k is any positive inte-
ger| are independent series for different n in case of free
growth. For our case of free growth, we can construct a
continuous exponential growth after interval 7/L, taking
proper initial conditions. For the free growth there is no dif-
ference between two schemes by Egs. (4) and (11), the dif-
ference could arose if we take into account other evolution
factors: the nonlinear interaction due to dilution to hold con-
stant population size and random processes such as mutation
or recombination.
We can express r via

r=F[f7)/T, (14)
where we used an implicit function F(y):
ye'=F[yl. (15)

We derive Eq. (3) for a fixed number of branching K+1. In
principle could be a distribution of branching number. When
can the effect of delay be ignored? Equations (3) and (13)
give the following criteria:

In(1+(K)) < 1. (16)

A. Crow-Kimura model with cdelay

Let us consider a system of equations like to the one by
Eq. (10), only with the time delay in the term with fitness:

21 —I+1
dpd_ll(t) =pit— T)f(l - N) — up(t) + M%pl—l(l‘)
I+1
+ M%Pm(f)- (17)

Without mutation we have Eq. (11) with 7F=r, which
describes the exponential growth p;=c exp[Nkt], where
k=F(r;7)/ 7 is smaller than r;. In Eq. (17) it is assumed that
the mutation process is independent of selection and acts in
parallel.

There is another important issue as well. When 7=0, the
equations in Crow-Kimura model are invariant under the
transformation f(m)— f(m)+c. Now this invariance is bro-
ken, and we need therefore in absolute values of fitness.

B. Solution of the delay model with HJE method

Let us consider a solution of Eq. (17) in the form

pKt):exp{Nu(l—%,t)]. (18)

We assume that u(x,?) is a smooth function of 7. Perhaps the
latter property is possible for special initial conditions for the
system: Eq. (17). Now Eq. (17) transforms into the following
Hamilton-Jacobi equation for u(x,?):
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e +

(1+x souax | L=
2 2

X
e—2ﬁu/(9x _ l) ,

(19)
2 a

where x=1-7%.Let us denote g=N7/, p= g—z and consider
the following function:

du
NE =f(x)e—NTr7u/(7t +u

q=H(x,q.p),
H(x,q.p) = f(x)exp[— mq] + hy(x.p),

+x62p+ 1-x
2 )

1
ho(x.p) = e —p, (20)

and the implicit function Hy(x,p) defined from the following
equation:

Hy(x,p) = H(x,Hy(x,p),p). (21)
Having H,, we can rewrite Eq. (20) in an equivalent form
q=Ho(x,p). (22)

Thus we can use the methods of [20], while H,, is defined
implicitly via Eq. (21).

II1. MEAN FITNESS

First of all let us calculate the mean fitness. We assume
the following asymptotic for p(¢):

pi(t) = exp[Rt + Nug(x)], (23)

where the coefficient of exponential growth is just identified
as a mean fitness. The existence of an asymptotic regime is
nontrivial issue. For example, in case of free growth its ex-
istence depends on initial conditions. For the model with
both selection and mutation the asymptotic exists, as has
been checked by our numerics.

Following to [20,22], we define first potential U(x) as

U(.X) = min[HO(x’p)] P> (24)
and the mean fitness as
RzmaX[U(x)]Lls;(sl' (25)

From the other hand H(x,p) is a monotonic function of p at
fixed value of x. Equation (22) is equivalent to the equation

q— e "f(x) = ho(x,p), (26)

where g=H(x,p). The left-hand side of Eq. (26) is a mono-
tonic function of g, thus the minimum of H(x,p) is at the
minimum of Ay(x,p) or

U(x) - e ™Of(x) = p1 - x% = . (27)

Then we get the mean fitness as the maximum of U(x), ac-
cording to Eq. (25). Equations (25) and (27) are the main
results of our work.

A. Mean fitness for the single-peak fitness case

Consider the fitness ro=(/+c)N and r;=N, i=1 (Table
I). For this case we have the following equation for the mean
fitness in the selective phase:
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TABLE 1. Mean fitness for the single peak model with delay by
Eq. (17), ¢=0, wp=1.

N 100 100 100 100 100

T 0 0.3 1 1 1

J 2 2 2 3 4

Rureor 1005 0647 0375 0617  0.799

Ryum 1005 0649 0377 0619  0.800
R=(J+c)e ™ - p. (28)

For a large J R decreases exponentially with the 7. In the
nonselective phase we have

R—ceR=0. (29)

The error threshold is the value of J where two fitnesses by
Egs. (28) and (29) coincide. While in case of 7=0 the error
threshold was ¢ independent, now it depends on absolute
value of fitness.

We should be accurate while defining the mean fitness in
our case. It is the coefficient of exponential growth of popu-
lation, see Eq. (8). Such choice of mean fitness is already
realized in age-structured evolution models [25,26]. In the
evolution models without time delay R could be calculated as

s . . .
2P Now the mean fitness is defined via the distribution in

Zip
the past:
> it =1
l
R)=——F. (30)
2 pi(t)
I
The surplus at the moment of time ¢ is defined as
R(t)=fls(t—1)]. (1)
B. Finite generation-time models
for the constant population size
Consider now the modification of Eq. (5):
dPl N-[+1
— =pt=7r;— upt) + u——p._, (¢
dt pit=1r; = pp (1) + p N Pi-1(t)
(I+1)
PO =2 =7, (32)
n

Choosing 2p,(t=0)=1, we have t Z,p,(r)=1 for any r>1.
While Eq. (32) gives the same steady state and, therefore, the
same mean fitness as the Crow-Kimura model with 7=0, it
has completely different dynamics, see Fig. 1. The condition
by Eq. (9) is broken. Thus for the nonzero generation time,
the growing population and fixed population describe differ-
ent systems with different evolution characteristics.

C. Different generation times for different strains

In previous sections we considered the model with fixed
generation time. Consider now the case when the generation
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FIG. 1. (Color online) The dynamics of s(r)=[2(1
=21/L)pJ/[Zp;] for x9=0.3, f(x)=x> The upper line is for the
standard Crow-Kimura model by the Eq. (10), the middle line is for
the nonzero generation time model with constant population size by

Eq. (32) with 7=1, the lower line is for the growing population
model by Eq. (17) with 7=1.

time depends on the sequence (Hamming class). There is a
distribution of 7 via a function p(x,7), therefore there is a
constraint [p(x, 7)d7=1. Equation (17) is modified,

d 21 21
%(t) = f dTP(l - NJ-)I’I(I_ T)f(l - ﬁ) — up(t)

(N=1+1) (I+1)

+ MTPI—](I) + ,UvTPln(f), (33)

and we derive instead of Eq. (20)

q=H(x,q.p),
H(x,q.p) = f(x) f drp(x,7)exp[— 7q] + ho(x,p),

1+x 1-x

2

ho(x.p) = p——€” + u——e " — . (34)

Let us consider the asymptotic solution, using Egs.
(23)-(25). Now Eq. (27) is modified to

Ux) - J p(x, Ddre ™V If(x) = u\1 - x> — . (35)

We can use the last equation to define the mean fitness. Ac-
tually the evolution potential defines also the qualitative fea-
tures of the dynamics. If at any Hamming class there is a
fixed generation time, i.e., 7=7(x), we have the following
equation for the evolution potential

Ux) — e ™V9If(x) = uVl = x* =, (36)

then we can analyze the situation analytically, considering
the maximum of Eq. (36) as a function of x.

The models, similar to Eq. (33) without mutation terms,
have been considered in evolution research [5,27], mainly
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with host-parasite interactions. We can solve the case exactly
because large genome length limit.

We derived equations for the mean fitness. The HJE ap-
proach allows to construct the steady-state solution as well
[20]. We should just put R=g in Eq. (20) and solve it as
ODE:

R=H(x,R,du/dx). (37)

For the steady-state analysis in structured population models,
see [28].

IV. CONCLUSION

The evolution of structured populations [4,5] is a rather
large and active topics in evolution research with the main
focus on a demographic structure of (sexual) population and
the matrix method [3] as the main tool. The case of many
mutations accompanied with selection was not investigated
yet, while the mutation-selection with two alleles has been
considered in [4] for diploid evolution case.

In this paper we focused on viruses and investigated the
generation time effect in virus evolution, considering a mini-
mal generalization of existing virus evolution models to in-
corporate the generation time effect. For us it is important to
define the mean fitness and distribution of population via
genotypes. Because the phenomenon is a rather complicated,
it is better to work with exact solutions. The fitness, one of
central subjects of evolution research, is a complex param-
eter, with many traits contributing to the final value. Some of
them are the replicative ability, the capacity of the virus to
get out of the cell, the genomic robustness, etc. All these
traits can be affected by different types of delays. For ex-
ample, there can be a time interval between the production of
the offspring at a generation and the infection of new cells to
produce the next generation viruses. Is it possible to use in
evolution models an effective fitness as have been assumed
in the vast majority of papers about evolution, or we have to
use several parameters to describe adequately the evolution
process? In this paper we suggested delay differential equa-
tions as evolution models with both replication parameters
and finite generation time and solved these models exactly
(the delay differential equation models has been considered
in evolution research before in [27]). When there are many
offsprings during one life cycle of virus, we cannot describe
the evolution solely by fitness, we have to introduce the gen-
eration time as an additional parameter as well. We should
use model with finite generation time for nonstationary evo-
lution phenomena as well time, and consequently we should
use two different definitions of fitness: 7 in Eq. (12) for
growing virus populations and r in Eq. (12) for the constant
population size. Thus viruses with different sequences com-
pete in growing populations via 7 and in constant size popu-
lations (similar to in vivo case) via r. While the finite gen-
eration time has no influence on evolution characteristics for
the constant population size and steady-state distribution, see
Fig. 1, (the upper and middle lines coincide after long period
of relaxation) the finite generation time drastically changes
the evolution characteristics in case of growing populations
or out of equilibrium dynamics. The delay model holds an
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information about finite generation-time period, and more
adequately describes the real virus evolution of growing
populations than the simple evolution models [6,12,13]. We
checked that the effect of delay is proportional to the number
of offsprings in one life cycle of virus. We calculated the
mean fitness Egs. (25), (27), and (28). There have been as-
sumed two different mechanisms regarding to the virus ex-
tinction: via error threshold [29] and via decrease in a mean
fitness to some minimal value [30]. We see that for the grow-
ing populations, prolonging the virus generation time period
could suppress the viral growth even more than the pushing
of the virus population to the error threshold point due to
increase in mutation rate [29].

PHYSICAL REVIEW E 81, 061913 (2010)

Another interesting extension of our approach could be an
application of delay models to phylogeny, where the role of
finite generation-time effect is recognized [8].
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