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We present a methodology for quantifying biodiversity at the sequence level by developing the probability
theory on a set of strings. Further, we apply our methodology to the problem of quantifying the population
diversity of microorganisms in several extreme environments and digestive organs and reveal the relation
between microbial diversity and various environmental parameters.
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I. INTRODUCTION

The measurement of diversity or concentration within a
population is a relevant issue across many areas and has been
extensively studied since �1� �for example, see �2� for a clas-
sical bibliography on this subject�. Biodiversity is one of the
fundamental concepts in the study of ecology, and consider-
able research has been conducted on the methods for mea-
suring this quantity since the early studies on the
logarithmic-normal model �3,4�. The most widely used indi-
ces in the diversity analysis of animal and plant ecology are
the Shannon index �5,6� and Simpson index �7� �for example,
see �8,9� for a review on biodiversity indices�. Theoretical
and methodological studies on the Shannon index were con-
ducted by �10–13� and others. The theory of the Simpson
index was enriched by �14–19� and others. Historically,
biodiversity has been measured using the species as the fun-
damental unit of analysis. Consequently, the problem of de-
fining a biodiversity index is considered as the problem of
constructing a function with the desired properties defined on
the probability simplex U= �p= �p1 , . . . , pn� : pi�0, p1+ ¯

+pn=1� and taking values in the set of positive numbers
when a set of entities divided into n categories is given. It
has been pointed out that the above indices do not take into
account the differences among categories �20–23�.

Therefore, �21� defined a new diversity index called the
quadratic entropy �see also �24–26��. Although the quadratic
entropy is a diversity index developed under the framework
stated above, with this index, a matrix of dissimilarities
among categories can be chosen according to the objective of
the research �27,28�. This index has been used for ecological
analysis by �29,30� and others. Nucleotide diversity, which
has been used in the study of population genetics and mo-
lecular evolution �31–34�, is an index similar to quadratic
entropy. This index has been applied in marine biology and
microbial ecology by �35–38�, by using taxonomic distance
and sequence distance �the Hamming distance �39� in infor-
mation theory� as dissimilarity measures, respectively. Qua-
dratic entropy has several interesting properties and has led
to the development of analysis of diversity as a generaliza-
tion of analysis of variance. However, it is known that biodi-
versity is sometimes maximized when several species are
eliminated as the difficulty of this index in conservation bi-

ology, which is one of the important fields in which biodi-
versity analysis is applied �40–42�.

Moreover, because the Shannon and Simpson indices re-
quire clear definition of the species and unambiguous iden-
tification of each individual, it is difficult to apply these in-
dices to microbial communities �43,44�. The quantification
of microbial diversity is a basic requirement for biodiversity
assessment because microorganisms occupy a large part of
the total biomass on earth. However, the quantification of
microbial diversity is difficult because of the above reasons,
and several alternative methods have been explored
�23,45,46�. See �47� for a recent review on the measurement
of microbial diversity. Furthermore, �48� developed the phy-
logenetic diversity using a framework that was different from
that of construction of a function on a probability simplex
stated above. See �49–51� for theoretical studies on this in-
dex and �52–54� for the application of this index in conser-
vation biology and microbial ecology.

In this study, we propose a methodology for quantifying
biodiversity with sequence data, which have been rapidly
accumulated in recent years. Because it is physically impos-
sible to collect samples of all ribosomal RNA gene se-
quences in an environment, we have no option but to esti-
mate the population diversity on the basis of one sample.
Thus, we have two problems of the definition of the popula-
tion diversity and the estimation from a sample. Tradition-
ally, richness and evenness are the most important aspects
that a diversity index should reflect. However, when diver-
sity is measured by considering the divergence between all
pairs of sequences, the evenness of categories becomes less
important. Moreover, a sequence community is composed of
several subcommunities, as described below, and therefore
the diversity of a sequence community should be defined as
the hierarchical quantity that reflects both the diversity
within each subcommunity and the diversity between differ-
ent subcommunities. For example, in calculating the average
divergence between two randomly chosen sequences in a
population, the aspect of hierarchy formation within a se-
quence community is not considered. Therefore, we define
the population diversity of a sequence community as the
quantity that reflects richness and hierarchy. We then propose
a methodology for estimating population diversity and de-
scribe the theoretical foundation of this methodology.

In this paper, we deal with the problem of measuring
biodiversity in the following framework. Letting A� be the

set of all strings on the set Ā composed of four letters a, g, c,*h-koyano@zc4.so-net.ne.jp
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and t and the empty letter e, we construct a distance space
�A� ,dL� for the Levenshtein distance dL �55�. The Levensh-
tein distance between two strings s and t is the minimal
number of deletions, insertions, or substitutions required to
transform s into t. Because A� forms a noncommutative
monoid by concatenation but is not a vector space, a mean
for s1 , . . . ,sn�A� cannot be defined. Therefore, taking the
consensus sequence �denoted by m�s1 , . . . ,sn�� as a measure
of location, we can define a naive measure of dispersion as,
for example,

1

n
�
i=1

n

dL„si,m�s1, . . . ,sn�… or
1

n
�
i=1

n

dL„si,m�s1, . . . ,sn�…2.

In this study, we approach the problem of quantifying biodi-
versity with ribosomal RNA gene sequences by developing a
probability theory on A�. We apply our methodology to
quantify the diversity of all microorganisms in an environ-
ment, which has so far been difficult because of their enor-
mous numbers. We then investigate the relationship between
environmental parameters and diversity.

II. GRAPHICAL VISUALIZATION
OF A SEQUENCE COMMUNITY

Figures 1 and 2 are the graphical visualizations of an en-
vironmental sample of microbial ribosomal RNA gene se-
quences collected from hot springs in Yellowstone National
Park in the United States �56,57�. These figures were con-
structed in the following manner: �1� A distance matrix was
computed for all the sequences in an environmental sample.
The Levenshtein distance was chosen as the distance be-
tween two sequences. �2� Multidimensional scaling �MDS�
�58� was applied to set the sequences in a plane �Fig. 1�. �3�
The plane was divided into several classes of rectangles, and

the number of sequences belonging to each class was
counted. A histogram of this information was then con-
structed. The number of classes was determined with
Sturges’ formula �Fig. 2�. From these figures, we can observe
that the distribution of the sequence community is not uni-
form but uneven, and not unimodal but multimodal. Figure 3
is the unrooted tree constructed from the same environmental
sample. This figure indicates that the sequence community is
classified into several subcommunities. On the basis of these
observations, we model a sequence community in an envi-
ronment as the mixture of several sequence groups having
different unimodal distributions.

III. FRAMEWORK OF THE DIVERSITY
ESTIMATION PROBLEM

Given n observations x1 , . . . ,xn�R, their dispersion is of-
ten measured by the mean deviation or the variance
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FIG. 1. �Color online� Graphical visualization of a sequence
distribution 1. MDS for the environmental sample from the hot
springs in Yellowstone National Park. �1 and �2 are the greatest and
the second greatest eigenvalues of the matrix A= �aij�, respectively,
and x1 and x2 are the eigenvectors for �1 and �2, respective-
ly, where aij =−�dL�si ,sj�2−� j=1

1068dL�si ,sj�2 /1068−�i=1
1068dL�si ,sj�2 /

1068+�i=1
1068� j=1

1068dL�si ,sj�2 /10682� /2 for the sequences s1 , . . . ,s1068

in the environmental sample �the sample size=1068�.
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FIG. 2. �Color online� Graphical visualization of a sequence
distribution 2. Histogram for the environmental sample from the hot
springs in Yellowstone National Park. The labels of the first and
the second coordinate axes �1x1 and �2x2 are the same as those in
Fig. 1.

FIG. 3. �Color online� Graphical visualization of a sequence
distribution 3. Unrooted tree for the environmental sample from the
hot springs in Yellowstone National Park. The scale bar represents
0.1 substitution per site.
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1

n
�
i=1

n

�xi − x̄�,
1

n
�
i=1

n

�xi − x̄�2,

where x̄ is the mean of x1 , . . . ,xn. The basic idea for quanti-
fying biodiversity with ribosomal RNA gene sequences in
this study is to introduce an analogy of the above measures
of dispersion for sequences s1 , . . . ,sn�A� by substituting the
consensus sequence and the Levenshtein distance for the
mean and the Euclidean distance, respectively. However, be-
cause an environmental sample of ribosomal RNA gene se-
quences is multimodal as shown in Fig. 2, the naive counter-
part of the mean deviation or the variance defined in the
manner stated above is defective as a measure of dispersion.
Consequently, the layering of variances which are described
below is required. Further, because it is impossible to collect
all ribosomal RNA gene sequences present in a particular
environment, an environmental sample of ribosomal RNA
gene sequences can be regarded as a random sample drawn
from the population of ribosomal RNA gene sequences in
this environment. To represent this probabilistic structure of
the problem of quantifying biodiversity, the concept of a ran-
dom string is introduced in the following paragraphs and in
the supplementary material �59�.

In this section, we state our framework of the problem
of estimating biodiversity and the theoretical results on the
accuracy of our estimator. Precise definitions and rigorous
proofs of the concepts and propositions stated here are pre-
sented in Sec. II of the supplementary material �59�.
Roughly, the setting of the estimation problem is as follows:
�i� We observe n sequences s1 , . . . ,sn in an environment. �ii�
si belongs to one of k groups for each i=1, . . . ,n, and all the
sequences in the jth group are generated from an identical
distribution for each j=1, . . . ,k. �iii� The distribution of each
group as well as the number k of groups and the group to
which each si belongs are unknown. �iv� In this situation, we
estimate the diversity of all the sequences in the environ-
ment.

First, we introduce the following statistics. In this study,
the mean of the Levenshtein distances from s1 , . . . ,sn�A� to
their consensus sequence,

v�s1, . . . ,sn� =
1

n
�
i=1

n

dL„si,m�s1, . . . ,sn�… , �1�

is termed the variance of s1 , . . . ,sn, although it is an analogy
of the mean deviation. The normalized variance is defined as

w�s1, . . . ,sn� =
1

n
�
i=1

n
dL„si,m�s1, . . . ,sn�…

max��si�, �m�s1, . . . ,sn���
.

We have 0�w�s1 , . . . ,sn��1 from dL�s , t��max��s� , �t��. Be-
cause the sequences in an environmental sample are divided
into a number of groups, as shown in Fig. 3, the consensus
sequence of all the sequences in a sample is not an appropri-
ate measure of the center of the sample. Consequently, we
cannot apply these statistics to estimate the diversity of the
population of a sequence community in an environment.

We, therefore, consider the following statistics, which are
generalizations of the above. Let us suppose that a sample is
divided into k groups C1 , . . . ,Ck. Let ni stand for the size of
the ith group Ci for each i=1, . . . ,k and sij be the jth se-
quence in Ci for each j=1, . . . ,ni. Then, Ci= �si1 , . . . ,sini

�.
The consensus sequence and variance of the sequences in
Ci are denoted by m�Ci� and v�Ci�, respectively. The
distance via m�Ci� between the consensus sequence
m�m�C1� , . . . ,m�Ck�� of the consensus sequences of k groups
and the jth sequence sij in the ith group is given by
dL(m�m�C1� , . . . ,m�Ck�� ,m�Ci�)+dL(m�Ci� ,sij). Averaging
the above quantities with respect to i and j, we get

1

k
�
i=1

k
1

ni
�
j=1

ni

�dL„m�m�C1�, . . . ,m�Ck��,m�Ci�… + dL„m�Ci�,sij…�

= v„m�C1�, . . . ,m�Ck�… +
1

k
�
i=1

k

v�Ci� . �2�

This is denoted by v2�s1 , . . . ,sn� and is termed the two-layer
variance. The variance �1� is equal to Eq. �2� with k=1,
where the sample consists of only one group. Then,

w2�s1, . . . ,sn� = w„m�C1�, . . . ,m�Ck�… +
1

k
�
i=1

k

w�Ci� �3�

is termed the normalized two-layer variance. We have 0
�w2�s1 , . . . ,sn��2. Although we can define an l-layer vari-
ance for any l�1, repeating the division of each group into
several subgroups, in this study, we use the two-layer vari-
ance. A method for grouping sequences will be considered
later.

We next formulate the problem of statistically estimating
the diversity of a sequence community and state an
asymptotic property of the estimator given in Eq. �2�.

�1� Random letters. We construct a measurable space

�Ā ,2Ā� for the power set 2Ā of Ā and define a random letter
as a random variable defined on a probability space �� ,F , P�
and taking values in �Ā ,2Ā�. The distribution and probability
function of a random letter � are defined as

Q�B� = P„�� � �:���� � B�…, B � 2Ā,

q�x� = Q��x��, x � Ā ,

respectively. A letter x�� Ā satisfying q�x��q�x�� for any

x� Ā is called a consensus letter of � and is denoted by
m����. Hereafter, we consider only a random letter for which
there exists a unique consensus letter.

�2� Random strings. Let us denote a set of finite sequences
of the elements of A to which the infinite sequence �e , . . .� of
the empty letter is appended by A�. We construct a measur-
able space �A� ,2A�

� for the power set 2A�
of A� and define a

random string as a sequence �= ��n :n�Z+� �Z+ is the set of
all positive integers� of random letters, which satisfies the
following conditions:

�i� for any ���, there exists k�Z+ such that �k���=e,
and

�ii� �l���=e for ��� implies �l+1���=e.
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Because, in general, the length of a string �����A� de-
pends on ���, we treat a random string as a stochastic
process with a discrete time parameter and not a random
vector with each element A valued. A consensus sequence of
a random string �= ��n :n�Z+� is defined as m����
= �m���n� :n�Z+�. We set

v���� = �
s�A�

dL„s,m����…q1,. . .,�s�+1�x1, . . . ,x�s�,e� ,

s = �x1, . . . ,x�s�,e, . . .� ,

for a probability function q1,. . .,�s�+1 of a finite-dimensional
distribution of �= ��n :n�Z+� at sites 1 , . . . , �s�+1 for each
s�A� and call v���� a variance of �.

�3� Estimation problem. Let us suppose that we observe n
sequences in an environment, and they are divided into k
groups,

C1 = �s11, . . . ,s1n1
�, . . . ,Ck = �sk1, . . . ,sknk

�, �
i=1

k

ni = n .

We suppose that sij �1� i�k , 1� j�ni� is a realization of a
random string defined on a probability space �� ,F , P� and
taking values in �A� ,2A�

� and si1 , . . . ,sini
�1� i�k� are real-

izations of random strings �i1 , . . . ,�ini
, which are indepen-

dent and have identical finite-dimensional distributions. Let
mi� and vi� be the consensus sequence and variance of �i1,
respectively, for each i=1, . . . ,k. We introduce a quantity

v�m1�, . . . ,mk�� +
1

k
�
i=1

k

vi�, �4�

combining the dispersion between communities and the vari-
ance within each community and formulate the problem of
estimating biodiversity as the problem of estimating Eq. �4�.
The diversity �4� is a known function of unknown parameters
mi� and vi� �1� i�k�. We estimate these parameters by m�Ci�
and v�Ci� �1� i�k�, respectively, which is equivalent to es-
timating Eq. �4� by the two-layer variance �2�. Under certain
regular conditions, m�Ci� and v�Ci�, which depend on ni,
almost surely converge to mi� and vi�, respectively, as ni
→� for each i=1, . . . ,k. Hence, Eq. �4� is consistently esti-
mated by Eq. �2�. These asymptotic results are demonstrated
in Theorems 2 and 3 in Sec. II of the supplementary material
�59�.

IV. SEQUENCE CLASSIFICATION

Next, we consider the problem of classifying sequences.
We were unable to use the conventional nonhierarchical clus-
ter analysis or discriminant analysis because it was difficult
to determine the number of sequence subcommunities from
Fig. 1 or Fig. 3. Therefore, we classified the sequences ac-
cording to the following algorithm. In this algorithm, groups
of sequences are formed by collecting sequences for which
neighborhoods intersect.

Let S be a list of sequences. We define lists U	�s� and U	

as

U	�s� = 	t � S�dL�t,s� 
 	
, U	 = 	U	�s��s � S


for 	�0 and s�S, respectively. U	 is a nested list. We de-
note the number of elements and the ith element of a list L
by length �L� and L�i�, respectively, and use the symbols of
set operations for the lists,

for i←1 to length �U	�−1
do for j← i+1 to length �U	�

do if U	�i��U	�j���
then U	�i�←U	�i��U	�j�

U	←U	−U	�j�
j← i

By this procedure, U	 becomes the direct sum decompo-
sition of S. Although we can apply the algorithm correspond-
ing to the k means �60� by replacing the mean vectors with
consensus sequences, we mention the following as the char-
acteristics of our algorithm, especially in contrast to the k
means:

�1� For executing the algorithm, we must set the radius 	
of the neighborhood instead of the number of clusters. We set
the value of 	 by considering the following two points: �i�
sequences divided into a subcommunity are classified as an
identical category from the perspective of genomics, such as
homology search and �ii� after dividing, the sequences in a
subcommunity are distributed such that they center around
the consensus sequence.

�2� Our algorithm has the following two advantages: �i� it
is independent of an initial division and an order of se-
quences and �ii� the distance from any sequence to the near-
est in a subcommunity cannot be remarkably great.

There is no theoretical assurance that this algorithm clas-
sifies sequences correctly in some framework and, therefore,
we check the result of executing the algorithm in the follow-
ing two manners:

�1� After classification, we construct the consensus se-
quences for sequence subcommunities and compare the re-
sult of the MDS applied to their set with that applied to the
original environmental sample of sequences �Fig. 4�.

�2� We constructed a tree by combining the original envi-
ronmental sample and the set of consensus sequences, and
we check the distribution of the consensus sequences on the
tree �Fig. 5�.

By comparing Figs. 1 and 4, we find that the set of se-
quences is made equally sparse throughout the algorithm.
Further, the consensus sequences are distributed almost uni-
formly on the tree in Fig. 5. Although the above inspection is
not complete because the correspondence between the Lev-
enshtein distance on A� and the distance on R2 is not perfect,
and the Levenshtein distance between two sequences was
transformed into the Levenshtein distance per site in the con-
struction of the tree, from these observations, it seems that
our algorithm basically classified the sequences as expected.

V. ROBUSTNESS WITH RESPECT
TO THE SAMPLE SIZE

With respect to the accuracy of our diversity estimator,
besides the regular conditions on mathematical statistics and
the classification of sequences, we encounter an instability
problem because considering the enormous numbers of mi-
croorganisms in an environment, an environmental sample
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may not be collected from all over the subcommunities of
16S ribosomal RNA gene sequences in the environment.
Therefore, we randomly draw subsamples sized 200, 400,
600, and 800 from the environmental sample sized 1068 ob-
tained from the hot springs. We then plot the total branch
length and average branch length of the trees, and the two-
layer variance and the normalized two-layer variance for
these subsamples in Figs. 6 and 7, respectively. From these
figures, we can see that while the length of the tree increases
and the average branch length shortens with the increase in
the sample size, the hierarchical variances have a stable tran-
sition.

VI. APPLICATION TO MICROBIAL
DIVERSITY ESTIMATION

We estimate the diversity of the populations of microor-
ganisms by applying the methodology described above to the
environmental samples of microbial 16S ribosomal RNA
gene sequences collected from the following nine environ-
ments: hot springs, alkaline lakes, hypersaline lagoons, Ant-
arctica, deep-sea trenches, deep-sea vent fields, the human
mouth, the human stomach, and the cow’s rumen. For com-
parison, we also apply our methodology to the environmental
samples of microbial whole-genome shotgun sequences from
the following two environments: the Sargasso Sea and the
human intestine. The detailed information on these data is
given in Sec. I of the supplementary material �59�.

The length of sequences varies depending on the environ-
ment as shown in Table I, and it is unreasonable to assume
that its variation is derived from microbiota in each environ-
ment. Although an environmental sample is not a sample
obtained by collecting only the target sequences determined
before sampling, it is reasonable to assume that the environ-

mental samples we analyzed were independently drawn not
from the set of all 16S ribosomal RNA gene sequences in the
environment but from the set of sequences with the length in
a certain range depending on the environment. This shows
that the independence of sequences that is one of the regular
conditions for the strong consistency of the diversity estima-
tor is not completely satisfied �see Theorems 2 and 3 in Sec.
II of the supplementary material �59��. Consequently, we use
the normalized two-layer variance w2�s1 , . . . ,sn� �hereafter
N2LV� for comparing the diversity between the environ-
ments. This is an estimate for the normalized version,

w�m1�, . . . ,mk�� +
1

k
�
i=1

k

wi�,

of the diversity �4� in the interval �0,2�, where wi� is the
quantity defined by replacing the Levenshtein distance in vi�
with the Levenshtein distance per site and is therefore free
from the attribute of length.

The estimation results are shown in Table I. First, we
examine the results of the application of our methodology to
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FIG. 4. �Color online� Checking the performance of the se-
quence classification algorithm 1. MDS for the consensus se-
quences. �1 and �2 are the greatest and the second greatest
eigenvalues of the matrix B= �bij�, respectively, and y1 and y2

are the eigenvectors for �1 and �2, respectively, where bij

=−�dL(m�Ci� ,m�Cj�)2−� j=1
158dL(m�Ci� ,m�Cj�)2 /158−�i=1

158dL(m�Ci� ,

m�Cj�)2 /158+�i=1
158� j=1

158dL(m�Ci� ,m�Cj�)2 /1582� /2 for the consen-
sus sequences m�C1� , . . . ,m�C158� for 158 sequence subcommuni-
ties �the number of subcommunities=158�.

FIG. 5. �Color online� Checking the performance of the se-
quence classification algorithm 2. The distribution of the consensus
sequences on the tree. The red �light gray� branches of the tree stand
for the consensus sequences. The scale bar represents 0.1 substitu-
tion per site.
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the environmental samples of whole-genome shotgun se-
quences from the Sargasso Sea and the human intestine. An
environmental sample of whole-genome shotgun sequences
is composed of miscellaneous and incommensurable se-
quences and, therefore, the computation results of the two-
layer variance obtained by applying our methodology to this
sample cannot necessarily be the quantity that reflects biodi-
versity, unlike for an environmental sample of 16S ribosomal
RNA gene sequences. However, the point here is that judging
from the characteristics of the two kinds of samples, the
maximum of the two-layer variance for an environmental

sample of 16S ribosomal RNA gene sequences cannot ex-
ceed that for an environmental sample of whole-genome
shotgun sequences. The N2LV of both environments is ap-
proximately 0.56, and we can infer that the saturation point
of the N2LV is around this level when an enormous number
of sequences are randomly collected in an environment, al-
though the N2LV lies in the interval �0,2�. The N2LV values
do not depend on the sample size. After trying 5%, 10%, and
20% of the average length of sequences in a sample as the
neighborhood radius for grouping sequences, we adopted the
value of 10%.
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FIG. 7. �Color online� Inspecting the robustness of the diversity
estimator to the sample size 2. Plotting of the two-layer variance
and the normalized two-layer variance on the basis of the sub-
samples sized 200, 400, 600, and 800.
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FIG. 6. �Color online� Inspecting the robustness of the diversity
estimator to the sample size 1. Plotting of the total and average
branch lengths of the trees on the basis of the subsamples sized 200,
400, 600, and 800.

TABLE I. Estimates of microbial diversity. Hot spring �HS�, alkaline lake �AL�, hypersaline lagoon �HL�,
Antarctica �AT�, deep-sea trench �DT�, deep-sea vent field �DV�, Sargasso Sea �SS�, human mouth �M�,
human stomach �S�, human intestine �I�, and cow’s rumen �CR�.

Environment HS AL HL AT DT DV

Sample size 1068 558 1655 1056 441 800

Max. length of sequence 1471 1551 1512 1563 1646 2031

Min. length of sequence 188 247 296 267 385 241

Average length of sequence 1212.79 769.47 1020.43 875.82 1199.52 1028.43

Number of subcommunities 158 286 580 183 214 333

Max. size of subcommunity 234 61 113 452 37 147

Two-layer variance 487.75 372.06 419.93 403.73 477.19 495.25

Normalized two-layer variance 0.4332 0.4180 0.3705 0.2843 0.3490 0.4156

Environment SS M S I CR

Sample size 1500 1186 111 1500 667

Max. length of sequence 4653 1627 1511 4976 1550

Min. length of sequence 103 206 434 97 577

Average length of sequence 1101.84 777.65 724.64 1436.37 883.29

Number of subcommunities 1447 258 34 989 144

Max. size of subcommunity 51 463 33 153 139

Two-layer variance 674.03 498.02 374.16 904.74 505.37

Normalized two-layer variance 0.5629 0.3525 0.3919 0.5661 0.3967
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First, we examine the results for the extreme environ-
ments. Although innumerable parameters are required for de-
scribing an environment, we consider five parameters,
namely, �i� temperature, �ii� hydrogen ion concentration, �iii�
salt concentration, �iv� pressure, and �v� partial pressure of
oxygen. We then study how the N2LV change with variations
in these five environmental parameters to identify the param-
eter that has the greatest influence on the diversity. The low-
temperature environments of Antarctica and the deep-sea
trenches had a smaller N2LV than the other environments.
Conversely, the N2LVs of the high-temperature environ-
ments of the hot springs and the deep-sea vent fields were
fairly large. The N2LVs of the alkaline lakes and the hyper-
saline lagoon were also comparatively large. These observa-
tions suggest that among the five environmental parameters,
temperature has the greatest influence on microbial diversity
and, specifically, low temperature markedly reduces the va-
riety of microbes.

With regard to the digestive organs, the intestine had a
large N2LV, which suggests the existence of very diverse
microbes. The N2LV for the mouth sample was relatively
small, from which we inferred that there were relatively less
diverse microbes in the mouth, despite the presence of a
large number of microorganisms. The N2LVs of the human
stomach and the cow’s rumen were very close, suggesting
that these two environments have a similar level of microbial
diversity, although they have very different microbiota.

Many metagenomic researches have been performed in
recent times, and large-scale environmental samples of
whole-genome shotgun sequences have been accumulated
�for example, see �61–63��. Although these samples are a
huge set of sequences collected quite randomly and no meth-
odology with a rigorous theoretical basis is available for
dealing with them, we wish to extend our methodology in
order to perform microbial diversity analysis using these
samples.
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