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Using multiple nonlinear techniques, we revealed the existence of chaos in the spontaneous activity of
neuronal networks in vitro. The spatial-temporal dynamics of these networks indicated that emergent transition
between chaotic behavior and superburst occurred periodically in low-frequency oscillations. An analysis of
network-wide activity indicated that chaos was synchronized among different sites. Moreover, we found that
the degree of chaos increased as the number of active sites in the network increased during long-term devel-
opment �over three months in vitro�. The chaotic behavior of the dissociated networks had similar spatial-
temporal characteristics �rapid transition, periodicity, and synchronization� as the intact brain; however, the
degree of chaos depended on the number of active sites at the mesoscopic level. This work could provide
insight into neural coding and neurocybernetics.
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I. INTRODUCTION

Understanding the coding and organization mechanisms
of nervous system presents a great challenge to investigators
in both neuroscience and information science �1,2�. Recent
developments in nonlinear science show that nonlinear tech-
niques are well-suited for studying the mechanism underly-
ing the irregular activity of neural networks �3–5�. As a fa-
mous nonlinear phenomenon, chaos is defined as highly
disordered dynamics governed by a deterministic system
causing unpredictability over a long time period �6�. There
are obvious benefits to using chaotic systems, rather than
stochastic systems, when describing the complicated charac-
teristics of brain function �7,8�. For instance, the brain’s agil-
ity when confronted with changing conditions could be ex-
plained by the initial sensitivity of chaos. It is widely
believed that chaos is critical to consciousness as well as
memory storage and retrieval �9,10�.

Previous studies have determined the existence of chaos
in both signals acquired from isolated or paired neurons and
electroencephalograms �EEGs� recorded from large-scale
cortical networks �11�. However, neural coding mechanisms
that underlie the generation and evolution of chaotic dynam-
ics remain unclear. Because the properties of complete neural
networks cannot be represented by simply multiplying single
cells, it is difficult to determine the dynamics of an intact
brain using only results at the microscopic level. Likewise,
neural activity at the macroscopic level is overwhelmingly
complex and with inevitable disturbances �e.g., the behav-
ioral drives of animals�.

Experiments focusing on different scales and hierarchies
of neural organization, such as the mesoscopic level �consist-
ing of hundreds to thousands of neurons�, are bridging the
gap between theoretical models and actual neural activity

�12,13�. Multielectrode array �MEA� allows long-term inves-
tigation of neural networks without notable invasion to cells
�14�. Neuronal networks cultured on MEA enable more de-
tailed observations and manipulations �15�, providing an ef-
ficient platform to study neural dynamics at the mesoscopic
level. A number of researchers have attempted to understand
the complex patterns exhibited by cultured networks during
development, including random spike, burst, superburst �also
called episode or avalanche�, and so on �16–18�. Nonlinear
analyses have also been attempted in recent years �19–22�,
but no chaotic behavior has been determined in the noisy
spontaneous activity. Further studies are needed to study the
complicated dynamics of neuronal networks in vitro.

This study incorporates several analyses of chaotic behav-
ior using the interspike interval �ISI� series from long-term
cultures. Within this series, we measure the correlation di-
mension, calculate the largest Lyapunov exponent, and apply
surrogate data techniques. After further analysis of the net-
work’s spatial-temporal characteristics, we demonstrate an
emergent change in chaotic firings and a correlation between
the degree of chaos and the number of active neurons.

II. MATERIALS AND METHODS

A. Neuronal cultures

Experiments were approved by the Regulations for the
Administration of Affairs Concerning Experimental Animals
in Hubei Province. Hippocampal cells were dissociated from
the brains of embryonic day 18 rats. After enzymatic diges-
tion, cells were separated by trituration. Fifty thousand cells
were planted in a 20 �l drop of culture medium on a MEA,
forming a dense monolayer. The dishes were flooded with 1
ml of medium after the cells had adhered to the substrate
�more than 30 min� and stored with FEP membrane lids in an
incubator at 37 °C and 5% CO2. The medium was half
changed twice per week. More details are provided in our
earlier publications �23,24�.

B. Data collection and preprocess

Electrical activity was recorded with a multielectrode ar-
ray system �MEA1060 System, MCS GmbH, Germany� con-
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sisting of multielectrode array dishes, an amplifier
�MEA1060�, a temperature controller and a data acquisition
card controlled by MC_RACK software. The multielectrode
array dish had 60 substrate-embedded titanium nitride elec-
trodes in an 8�8 layout grid with electrode diameters of
30 �m and interelectrode distances of 200 �m. After
1200�amplification, signals were sampled at 25 kHz. For
each channel, the threshold for spike detection was set at five
standard deviations �SDs� from the average noise amplitude
during the first 500 ms of each measurement. Spike sorting
was not used in this experiment because there is no consen-
sus on the accuracy of this technique and its employment
would have critically influenced all subsequent analyses
�25,26�. Raster plots and burst detection were implemented
using Neuroexplorer �Nex Technologies, Littleton, MA,
USA�. A maximum interval algorithm was performed to
identify burst, which was defined as three or more consecu-
tive spikes with interspike intervals of less than 10 ms �27�.

C. Data analysis

1. Chaotic time series analysis

Based on the reconstruction theory �6�, phase space could
be reconstructed from the scalar time series �Xn�:

Xi = �xixi+1 ¯ xi+�m−1�t� i = 1,2,N − �m − 1� , �1�

where N was the length of the time series, t was the delay
time, and m was the embedding dimension. For discrete time
series, the delay time was set as 1 �6�. The correlation inte-
gral of the embedded time series was defined as �8�

C�r� =
2

M�M − 1� �
1�i�j�M

n

��r − �Xi − Xj��

M = N − �m − 1� , �2�

where � was the Heaviside function. The correlation dimen-
sion quantifying the self-similarity of attractor was given by
the slope of ln C�r� versus ln r. If the correlation dimension
became saturated with increasing m, the system represented
by the time series should possess a chaotic attractor �28�.

The largest Lyapunov exponent ��� is another widely used
measure to quantify the degree of chaos. According to the
method proposed by Rosenstein et al. �29�, it can be calcu-
lated by tracking the exponential divergence dj�i� of the near-
est neighbors:

dj�i� = dj�0�e��i	t�. �3�

A positive � is usually taken as a strong signature of
chaos �3,30�.

The significance of � was tested with surrogate data gen-
erated by two standard techniques �31�: �i� random shuffling
of the data and �ii� phase randomization of the Fourier spec-
trum. U-test was chosen to determine whether the irregular-
ity of the ISI series was due to nonlinear determinism or
random noise of the neuronal networks �32�:

S =
	q0 − E�qsurr�	


surr
, �4�

where q0 was the statistical value of the original data, while
E�qsurr� and 
surr represented the averaged value and stan-
dard error of the mean �SEM� of the surrogate data, respec-
tively. The experimental data could be distinguished from
random noise if S was larger than 1.96.

To increase the credibility of the observed chaos in the
experimental time series, three other statistical measurements
of nonlinearity were applied to the surrogate data.

�1� Time reversibility �6�

Tr =
E�xn − xn−��3

�E�xn − xn−��2�3/2 . �5�

Tr was a measure of efficiency introduced to quantify the
asymmetry of the time series under conditions of time rever-
sal, as the linear stochastic process was always symmetrical
under these conditions.

�2� High-order moment �31,33�

Tc =
E�xnxn−�xn−2��
	E�xnxn−��3/2	

. �6�

Tc denoted the degree of time asymmetry, a strong signature
of nonlinearity.

�3� Local variation �5,34�

Lv =
3

N − 1 � �xn − xn+��2

�xn + xn+��2 . �7�

Lv extracted intrinsic irregularity in the spike trains.
The variable x and � in the above equations represented

the normalized ISI series and time delay, respectively. To
perform chaotic time series analysis, the TSTOOL1.2 software
package was used �http://www.physik3.gwdg.de/tstool/�.

2. Network activity analysis

Only spike trains recorded from active electrodes �elec-
trodes with a mean firing rate greater than 1 Hz� were used to
calculate the network-wide firing rate and the coefficient of
variation,

Cv =

ISI

EISI
. �8�

A transition state was considered to have occurred when
the rate of change �Rc� of both the firing rate and the Cv were
larger than 30%. The minimum duration of each state was set
at 20 s;

Rc =
	xn+1 − xn	

xn
� 100%. �9�

Nonlinear linkage between different electrodes was mea-
sured by mutual information �35�, which was calculated us-
ing the CRP toolbox �http://tocsy.pik-potsdam.de/�:
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M�x,y� = �
i

pi�x�ln pi�x� + �
j

pj�y�ln pj�y�

− �
i,j

pi,j�x,y�ln pi,j�x,y� . �10�

Spike trains with significant peaks were considered to be
related �35� when the peak value was larger than an ap-
pointed threshold �3�SD�.

As an effective measure of neural synchronization at the
network level, network burst �NB� was detected using the
following criterion �36�. First, the total spike counts of active
sites in consecutive time bins �25 ms� were calculated; a
network burst was considered to have occurred when this
value exceeded an appointed threshold �3�mean firing rate
per bin�. Then the time at the exact center and boundary of
each network burst were identified before averaging. Finally,
we used statistical parameters of network burst �mean rate,
peak value, duration, and spike in network burst� to charac-
terize neural synchronization.

III. RESULTS

The hippocampal neurons began neurite outgrowth within
several hours and organized into a network after a few days
in vitro �DIV�. The spontaneous activity of the cultured net-
works was recorded from the first week until at least the
twentieth week in vitro. The firing patterns took on various
transitions during development. As shown in Fig. 1, neural
signals were measured simultaneously from 60 electrodes
surrounded by one or more neurons for 21 DIV. The tempo-
ral patterns varied greatly between different sites in the net-
works. For example, there were random spikes with small
amplitudes at some sites, while other sites alternated spikes
and bursts.

Superburst was observed after two weeks in vitro and
dominated the network activity during the next two weeks.
In later stages �about 4–9 weeks in vitro�, a unique phenom-
enon was found in more than ten cultures �the details are
shown in Table I�. As an example of this phenomenon, the
waveforms of the spike train recorded from one electrode are
shown in Fig. 2�a�. Two distinct layers are clearly shown in
the scatter plot of ISIs �Fig. 2�b��, indicating a period when
the neural networks displayed a cluster of bursts with an
increasing interburst interval. This activity resembles the in-
teresting nonlinear phenomenon of bifurcation, which is an
important criterion for assessing chaos in theoretical results
�8�. For this reason, we used first return map to analyze the
irregular firings that appeared after the superburst. There was
no deterministic structure, such as a one-hump shape, in the

20 µm
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FIG. 1. �Color online� Neuronal networks cultured on multielec-
trode array. �a� Hippocampal neurons cultured on multielectrode
array �21 DIV�. The black solid circles are electrodes separated by
200 �m with diameters of 30 �m. Scale bar, 20 �m. �b� Sponta-
neous activity of the entire cultured network.

TABLE I. Characteristics of the spontaneous activity including
superburst and chaotic behavior.

MEA No. Days in vitro
Firing rate

�Hz/s�
NB frequency

�Hz/s�

6200a 27 142.35�3.67 1.36

n1240a 57 1101.78�27.66 1.63

n1253a 49 797.32�24.92 1.25

n1029a 32 311.79�10.03 1.34

n1271 36 941.61�15.32 1.37

6195 26 83.60�2.88 0.53

n1262 55 250.45�7.82 0.73

n1273 41 92.70�4.98 0.67

n1270 32 334.99�10.07 1.60

n1258 34 544.80�20.38 1.13

aThe cultures were recorded in long term �117, 129, 156, and 218
days in vitro, respectively�.
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FIG. 2. �Color online� Bifurcation in the spontaneous ISI series.
�a� The spontaneous spike train of 500 s recorded from a single site
�DIV=32�. Each line in the raster plot represents a spike detected
from background noise. �b� Irregular ISIs emerged from an obvi-
ously bifurcated background.
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first return map of ISI �37�. However, a recognizable “Y”
structure was clearly shown in the interspike interval differ-
ence �ISID, ISID�n�=ISI�n+1�−ISI�n�� return map �Fig.
3�a��, a structure quite different from the triangle structure
without any preferred subpatterns in random firing �38�. The
irregular firings after the superburst could thus not be sto-
chastic; instead, they suggest deterministic chaos.

A. Chaotic behavior in the spontaneous
activity of hippocampal networks

To determine whether the irregularity of neural activity
was governed by a deterministic mechanism, both direct
metrical quantities �correlation dimension and the largest
Lyapunov exponent� and an indirect tool �surrogate data� of
chaotic time series analysis were applied to the irregular ISIs.
The analysis of correlation dimension is shown in Fig. 3�b�.
The correlation integral curves on a log-log scale were con-
vergent with the embedding dimension as it increased to 13,
but the linear zone was difficult to distinguish. The result
seemed to be affected by noise or the limited length of neural
signals �11�, both of which were inevitable in our experi-
ments.

The largest Lyapunov exponent of the irregular ISI series
was then calculated. Even if the result ��=0.0807� suggested
the existence of chaos, we hesitated to draw conclusions be-
cause of noise. Therefore, surrogate data techniques were
applied to test the significance of �. As shown in Fig. 3�c�,

the � was significantly larger of the original ISI series than of
the surrogate data which was generated by shuffling ISI se-
ries �S=10.90�. Similar result was observed when randomiz-
ing the phase of the Fourier spectrum �S=25.24�.

To reduce the influence of our selection of variables in the
surrogate data test, three other nonlinear statistic tests, in-
cluding time reversibility, higher-order moment, and local
variation, were calculated by cross-linking the two surrogate
data techniques. The bar charts show that the original data
were remarkably different from the surrogate sets �Fig. 3�d��.
Consequently, we demonstrated chaotic behavior in the spon-
taneous activity of hippocampal networks in vitro.

B. Temporal evolution of chaotic behavior

The above-mentioned results indicating chaos seemed to
be related to superburst, but how did the transition between
these two firing patterns emerge? To answer that question,
we explored the evolution of the mean firing rate and Cv of
the entire network. Figure 4 shows an emergent jump in both
firing rate �Rc=252.60%� and Cv �Rc=69.63%� from chaos
to bifurcation. At the later transition from bifurcation to
chaos, an emergent decrease in both rate �Rc=79.51%� and
Cv �Rc=31.84%� occurred. The results showed an emergent
transition between superburst and irregular chaotic firing
without external input.

Using continuous recording, we found that the transition
state seemed to be reversible in all the samples we observed
�Fig. 5�. By analyzing the network activity for 1000 s, a
regular steplike increment in the cumulative burst number
curve was observed �Fig. 5�b��, implying that the transition
was periodic. A comparison of different chaotic stages indi-
cated no significant differences in either mean firing rate or
nonlinear characteristics �P0.05, paired t test, �=0.05�.
These results demonstrated that superburst and chaotic firing
recurred alternately throughout the spontaneous activity of
the entire culture.

C. Spatial distribution of chaotic behavior in the network

To analyze the spatial characteristic of the chaotic behav-
ior in the neural network, mutual information was applied to
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FIG. 3. �Color online� Chaotic time series analysis of the irregu-
lar ISI series. �a� The first return map of ISID. The color bar on the
right corresponds to the number of points that fell into each cell.
The size of each cell was 50 ms�50 ms. �b� The correlation inte-
gral curves at a log-log scale were convergent with increasing em-
bedding dimension m �1, 2, 3, …, 13 from top to bottom�. �c�
Histogram of the largest Lyapunov exponents, bin=0.001. 40 sur-
rogate data sets �black line� were generated by shuffling the original
ISI series �gray line with circle�. �d� Hypothesis test of four nonlin-
ear statistics, including the largest Lyapunov exponent ���, time
reversibility �Tr�, high-order moment �Tc�, and local variation �Lv�.
Two different surrogate data techniques �Surr1 for shuffling
samples and Surr2 for permuting Fourier� were applied, and 40
groups of surrogate data sets were generated in each test.
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FIG. 4. �Color online� Sudden transition between superburst and
chaotic firing. �a� Mean firing rate �circle��SEM �gray line� of all
active sites, bin=1 s. �b� Partial enlarged view of the left figure
indicating sudden changes in the spontaneous firing rate between
bifurcation and chaos. �c� and �d� display the curves of correlation
variation with an overlapping sliding window �window width
=5 s, sliding window=1 s�; these curves show sudden transitions
between different stages.
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quantify the degree of nonlinear correlation between spike
trains recorded from different electrodes �ch35 and ch65
were chosen as an example in Fig. 6�c��. Significant peaks
that indicated dependence between different electrodes were
observed during both bifurcation and chaos stages. However,
the peak value of mutual information in the chaos stage
�M =0.1289� was much lower than the bifurcation stage �M
=0.2531�, a result in accordance with the results from net-
work burst analysis �Fig. 6�d��. Except for duration, other
network burst parameters �peak value, rate, and spikes in
network burst� fell rapidly from the bifurcation to the chaos
stage �P�0.05, paired t-test, �=0.05�. The synchronous ac-
tivity of the network underwent an apparent change in its
spontaneous state without external disturbance.

Finally, we focused on the spatial distribution of chaotic
behavior that presented network-wide synchronization. Be-
cause the chaotic time series analysis of several ISIs was not
credible, the nonlinear statistics from several electrodes with
less than 500 spikes produced values quite different from
other electrodes �e.g., �=0�. Well agreement between the
mean firing rate and the largest Lyapunov exponent was
found at most of the active sites �Figs. 7�a� and 7�b��.

Further analysis of chaotic behavior in four long-term cul-
tures �with 117, 129, 156, and 218 DIV, respectively� are
shown in Fig. 7�c�. In each example, the number of chaotic
electrodes and the largest Lyapunov exponent �mean�SEM�
were calculated. Interestingly, there was a significant positive
correlation between the size and the degree of chaos of the
entire network �R2=0.6392 using the linear least-squares

method�. In summary, our results suggested that the topology
of cultured neural networks may influence the degree of cha-
otic behavior.

IV. DISCUSSION

In the present study, we investigated the spatial-temporal
dynamics of chaotic behavior in the spontaneous activity of
cultured hippocampal networks. In previous studies, chaos
has been observed by either using the activity of a single
neuron after stimulation or pharmacological exposure or ex-
amining a neural network in vivo under learning and sleep
states �3–5,39�. The theory underlying these neural mecha-
nisms remains far from complete �13� because of the enor-
mous gap between the local behavior of neurons and the
global state of neural networks in vivo �e.g., the rat cerebral
cortex, which consists of about 21�10−6 neurons� �40�.

Cultured neuronal networks at the intermediate mesos-
copic level not only expressed more diverse dynamics than
single neurons �9,10,12� but also had simpler neural connec-
tions than the intact brain and slice �41�. With high accessi-
bility to observation and manipulation, such in vitro models
may shed light on the role of nonlinear behavior in brain
function.

A few pioneers have already used nonlinear measure-
ments to analyze the electrical activity of cultured neuronal
networks �19–22�. However, the existence of chaotic behav-
ior has not been previously reported because it is difficult to
determine “true” chaos in experimental data �6�. To over-

ch12
ch15
ch23
ch24
ch32
ch35
ch46
ch53
ch65
ch72

Chaos 2Chaos 1

50 s

(a)

1

20

0

2000

4000

6000

0 200 400 600 800 1000

Su
m
bu
rs
tn
um
be
r

Time(s)

(b)

0

0.5

1

%
C
ha
os
1

Chaos 1 Chaos 2

P=0.96 P=0.70 P=0.80 P=0.71 P=0.28

(c)

Rate λTrTc Lv

FIG. 5. �Color� Periodic chaos recurred with a series of bursts. �a� Raster plots of spontaneous activity in 1000 s. The site index is
indicated at the left of each trace. �b� Cumulative burst number versus time demonstrating a steplike trend. �c� Comparison of network-wide
nonlinear statistics at different chaotic stages. The data were presented as the mean�SEM of active sites in the network and normalized by
the value of the first chaotic stage. The t-test results indicated that there was no significant difference between two chaotic stages.
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come such difficulties, we applied more sophisticated and
rigorous quantification procedures �determining correlation
dimension, calculating the largest Lyapunov exponent, and
using surrogate data� to determine chaotic behavior. The
original ISI series was significantly different from random
signals �Fig. 3�. In addition, our previous studies showed that
the spontaneous activity of hippocampal networks on MEA
can be recorded from 60 electrodes simultaneously in a long
term �more than 20 weeks in vitro� �23�. This finding
prompted us to observe more diverse dynamics using a large
and detailed collection of neuroscientific data. In this work,
we demonstrated an activity pattern �deterministic chaos� in
cultured networks, a result that may assist in developing
models of neural networks.

In contrast to the many studies that demonstrate chaos in
neural activity �8,11�, fewer studies have focused on the tem-
poral evolution of chaotic behavior in neural networks. The
present study showed emergent changes between chaotic fir-
ing and superburst that occurred periodically without exter-
nal disturbance �Fig. 4�. Following earlier studies, the tran-
sitory dynamics was regarded as chaotic itinerancy
�10,39,42�. Because chaotic itinerancy facilitates rapid re-

sponses to any stimulus, our work may be helpful in the field
of neurocybernetics, allowing the development of intelligent
artificial limbs that directly interface with the nervous sys-
tem. Moreover, neural activity in different stages had similar
characteristics �Fig. 5�. The cultured networks repeated these
transitory dynamics, a behavior different from the hippocam-
pal slice cultures �42�. This finding may benefit from suffi-
cient length of multielectrode recording. Because the peri-
odic alternation of chaotic attractor and other states �e.g.,
limit cycle� is believed to play an important role in episodic
memory �43�, our study could provide insight into plasticity
and learning at the network level.

Information processing in living organisms is often deter-
mined by the structure of neural networks �41,44�. How are
dissociated neurons efficiently constructed into a complex
network with nonlinear dynamics? Chaotic synchronization,
a crucial neural behavior that facilitates the transmission and
coordination of neural information among various brain ar-
eas �45�, was found in cultured hippocampal networks �e.g.,
significant peaks of mutual information in Fig. 6�. Because
chaos is excessively sensitive to initial conditions, chaotic
synchronization should be formed by coupled oscillators but
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FIG. 6. �Color online� Synchronization of chaos in neural network in vitro. �a� Raster plots of spontaneous activity in the bifurcation stage
recorded from four electrodes �ch35, ch53, ch65, and ch72 from top to bottom�. At the bottom of each raster, the time scale bar is shown.
�b� Raster plots of spontaneous activity in the chaos stage were recorded from the same electrodes shown in the graph �a�. �c� Mutual
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P-value was calculated using a paired t-test ��=0.05�.
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not spike coincidence. The network-wide synchronization of
chaos in the spontaneous activity implies that neurons are
intelligently connected even without external input.

Several studies have indicated that neurons have a well-
established system of highly nonlinear ionic currents and
synaptic dynamics �11�. However, a single neuron only ex-
hibits chaotic behavior when exposed to external stimuli, a
behavior quite different from the intact brain. According to
previous studies, goal-directed behaviors cannot be effec-
tively modeled without including the chaotic behavior that
occurs at the mesoscopic level �9�. Our experiments indi-
cated that a cultured cell model did not always spontaneously
manifest chaotic behavior. In four long-term cultures �more

than three months in vitro�, chaotic behavior was only ob-
served after about 4–9 weeks in vitro. When there were few
active sites, random spiking appeared in the spontaneous ac-
tivity rather than chaotic firing. We inferred that the exis-
tence of chaos would indicate maturity, which was different
from the previous studies �15,18,46�. More importantly, we
found that the largest Lyapunov exponent of the entire net-
work depended on the number of active neurons �Fig. 7 dem-
onstrated positive correlation between them�. This finding
suggested that chaotic behavior emerged from the self-
organized interaction between cells in vitro, a fact critical to
understanding the emergence of intentional states from the
interactive dynamics of multiple neurons �9,10�.

Our results also provided experimental evidence for Lip-
sitz and Goldberger’s theory �47,48� that a change in the
complexity of a biological system results from a change in
either the number of individual structural components or the
coupling function between the components. The relation be-
tween chaotic dynamics and neural development will be in-
vestigated in a future study using more long-term MEA cul-
tures.

It has been suggested that chaos control may be useful in
the therapy of neurological diseases �7�. However, the appli-
cation of chaos within the human body has many limitations
and unknown dangers. Cultured networks on multielectrode
arrays have provided effective models that can be used with
electrical stimulation or pharmacological experiments �49�.
The present study could shed light into chaos control. To
encourage further studies on chaotic behavior using cultured
networks, we wish to make our data available to researchers
around the world.
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