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We develop an interacting particle model to simulate the life cycle of myxobacteria, which consists of two
main stages—the swarming stage and the development �fruiting body formation� stage. As experiments have
shown that the phase transition from swarming to development stage is triggered by starvation, we incorporate
into the simulation a system of ordinary differential equations �ODEs� called the dynamic energy budget,
which controls the uptake and use of energy by individuals. This inclusion successfully automates the phase
transition in our simulation. Only one parameter, namely, the food density, controls the entire simulation of the
life cycle.
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I. INTRODUCTION

Myxobacteria �Myxococcus xanthus� change their life
cycle according to food availability in their environment. In
an ideal condition, myxobacteria grow as swarms that spread
away from the center of a colony to search for nutrients from
the medium and oxygen from above. However, when nutri-
ents are depleted, myxobacteria undergo a phase transition in
which they stop growing individually, but instead they merge
and build a complex structure, called the fruiting body. The
stage of fruiting body development is thus initiated by star-
vation and built by cell movements and interactions. The
substages of fruiting body development that are observed in
the experiments consist of the formation of traffic jams and
initial aggregates, streaming, formation of three-dimensional
hemispherical mounds, formation of toroidal mounds, and
sporulation within the fruiting body �1�.

In addition to starvation condition, there are other two
crucial factors required for the cells to proceed through the
stages in their life cycle. The first one is the cell motility.
Experiments have shown that there are two motility engines
in myxobacteria, namely, the social �S� motility and the ad-
venturous �A� motility. Nonmotile cells, which lack both of
these motility systems, are unable to form fruiting bodies �2�.
S motility is driven by type IV pili that are found on the
cell’s leading pole �3,4�. The cell can shoot its pili and attach
them to other cell or group of cells nearby. When the pili
retract, the cell body gets pulled forward toward the group. A
motility is driven by slime secretion from the cell’s lagging
pole. This slime secretion generates thrust that pushes the
cell forward �5�. Cells have the tendency to turn at acute
angle and follow the slime trails secreted by other cells �6�.
A wild-type �A+S+� cell possesses both A and S motility
engines. The A+S− strain has only the A motility, while the
A−S+ strain has only the S motility. These three strains exist
and can be studied in a laboratory environment �3�.

The other factor that is important in fruiting body devel-
opment is the cell signaling. Among many types of cell sig-
naling that occur during the development, C-signaling is the

one that controls the initial aggregation and also the transi-
tion between the substages during the fruiting body forma-
tion. C-signal is a 17-kDa cell-surface protein that is trans-
mitted by end-to-end contact between two cells �2,7�. Once
C-signal molecule is inserted onto the cell surface, the ex-
pression of the csgA gene increases and this in return creates
a positive feedback loop that increases the number of
C-signal molecules on the signaling cells at an exponential
rate. As increasing C-signal reaches different levels, it pro-
vides the thresholds that trigger the cell to proceed through
the substages of the fruiting body development in a proper
temporal order �7,8�. The cells within the fruiting body con-
tinue to C-signal until their individual C-signal level has
reached the final threshold for differentiation into spores.

Several models have been proposed to explain myxobac-
terial swarming and fruiting body formation. Two continuous
models analyze the spreading rates of myxobacteria swarms
on both short and long time scales �9�. Alber’s group devel-
oped two types of discrete models: lattice and off-lattice.
Both discrete models are based on nonchemotactic cell-cell
interactions. Their early lattice gas cellular automaton
�LGCA� model succeeds in modeling the initial aggregation
and stream formation and 3D stochastic LGCA model simu-
lates the two stages of cell aggregation �10�. Later on, their
unified 3D LGCA model successfully produces all stages of
the fruiting body formation �11�. They next developed an
off-lattice model to minimize the geometric constraint inher-
ited in the lattice model. Their off-lattice model simulates
myxobacterial swarming and quantifies the contributions of
A and S motilities to swarming �12,13�.

In this paper we extend Alber’s off-lattice model by add-
ing cell growth and cell division mechanism and further de-
velop an algorithm to simulate the entire life cycle of myxo-
bacteria, which includes the swarming and the fruiting body
development. Our model consists of four main components,
namely, the off-lattice cell representation, the motility algo-
rithm, a logistic equation, and a dynamic energy budget
�DEB� equations. The off-lattice cell representation and mo-
tility algorithm are described in Secs. II and VII, respec-
tively. A logistic equation is an ODE that we use to describe
the behavior of C-signal level during the development. DEB
is a system of ODEs that describes the acquisition and use of*mhendra@calstatela.edu
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energy by individuals. The source for this energy is the nu-
trient uptake and thus it reflects the cell’s internal dynamics
when nutrient availability is depleted. The DEB and logistic
equation are explained in details in Secs. III and IV, respec-
tively. Our simulation shows that the interplay between the
logistic equation and the DEB model can automate the phase
transition from the swarming to the fruiting body develop-
ment stage. The internal energy level solved from the DEB
equations triggers the phase transition, and the cell’s C-signal
level solved from the logistic equation controls the switching
of the substages of the development. As a result, the simula-
tion of the entire life cycle can be done with only one control
parameter, namely, the food �nutrient� density, that is reduced
to simulate starvation.

II. OFF-LATTICE MODEL

Similar to the off-lattice model initially introduced in
�12,13�, a cell is represented by a string of nodes. Even
though a myxobacteria cell does not have a physical head
and tail, we refer to the leading pole as the head node and the
lagging pole as the tail node �Fig. 1�. A vector pointing from
tail to head node defines the cell orientation.

Experiments have also shown that cells undergo periodic
polarity reversal �14�, and this has previously been modeled
by Alber’s group �15�. We model this polarity reversal by
simply reversing the cell orientation and regard the head
node as the tail and vice versa. Cell growth is modeled by
adding a node, which represents the additional length gained
during growth. Cell division mechanism is described in Fig.
2 and it involves splitting the cell in such a way that each
daughter cell has length that is equal to half of the parent
cells.

In this discrete off-lattice model we assume that cell
movement is driven by the head node. This means that the
head node determines where the cell will move to. The other
nodes then get pulled forward following the head node. In

each iteration, cell k updates its head node position according
to the discrete model

xk�t + �t� = xk�t� + vVk�t��t + ��dBt
k, �1�

where �t is the time step, xk is the vector position of the head
node of cell k, ��dBt

k is white noise, v is the constant head
velocity, and Vk�t� is the unit direction due to A and S mo-
tilities. A motility is associated with the cell’s ability to se-
crete slime from its lagging pole while moving forward, and
at the same time, search for slime trail deposited by other
cells that is ahead of it. Once it finds a slime trail, the cell
turns at acute angle to follow the trail. The S motility is
associated with the ability of cells’ pili at the leading pole to
shoot and attach the pili to other cells ahead of it and pull the
cell body forward when the pili retract. A parameter rs in our
simulation defines the radius of the area within which a cell
can search for the slime trail, while a parameter rp denotes
the length of pili of a cell that facilitates S motility. More
detailed description of A and S motility algorithm can be
found in Sec. VII �methods�.

One obstacle in modeling a biological system is that there
are too many particles �cells� to simulate. A typical myxo-
bacteria colony consists of at least millions of cells and due
to computational complexity, it is almost unreasonable to
simulate all of them. Thus, we simulate fewer number of
cells and regard each cell in the simulation as a superindi-
vidual. Each superindividual cell represents a certain number
of cells in the actual experiment, all of which behave in an
identical manner as a single individual. In doing so, one
needs to ensure that the simulation of superindividuals is a
valid representation of the simulation of large number of
individual cells. We first derive the scaling law associated
with Eq. �1� to see how these parameters relate to one an-
other, and next we derive the scaling factor that tells us how
we should scale these parameters when we simulate superin-
dividuals instead of individuals.

From Eq. �1�, one can deduce a simple relationship

�x = v�t + ��dBt, �2�

where �t is the time step, �x is the distance a cell travels in
one time step, �� is the noise magnitude, and v is the speed of
a cell, which is kept constant in our simulation. In our simu-
lation �t and �x are the temporal and spatial resolutions,
respectively. It follows that �x, �t, and �� scale linearly. In
addition, we note that the radius of the slime searching area
rs in the A motility and the length of the pili rp in the S
motility are other parameters that also scale linearly with the
spatial resolution. Hence, we arrive at the following linear
scaling relationship between various parameters:

�t � �x � �� � rs � rp. �3�

We now consider a domain of area A, which we divide
into small squares, each of which has side equals �x. Let n
be the number of superindividual cells in a square. Then the
density of this square is given by �= n

�x2 . Assuming the den-
sity is uniform throughout the entire domain and the number
of superindividuals in a square is fixed, then the total number
of superindividuals in our simulation is nT= nA

�x2 . If N is the

FIG. 1. �Color online� A cell with five nodes, each of which is
connected by a segment of length L. The vector indicates its tail-
to-head cell orientation. When the cell undergoes a polarity rever-
sal, this tail-to-head cell orientation is reversed.

FIG. 2. �Color online� A parent cell divides in the middle into
two daughter cells with length half of the parent cell’s, mimicking
bacterial binary fission.
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number of cells in an actual laboratory experiment, then the
number of cells each superindividual represents is given by

� =
N

nT
=

N�x2

nA
. �4�

Thus, simulation of individual cells would give us �=1.
From Eq. �4�, it follows that

n =
N�x2

�A
. �5�

We keep n constant to ensure the consistency in the dynam-
ics of the simulation. Here, N and A are also constant. If �x0
and �x denote the spatial resolution in the simulation of
individuals and superindividuals, respectively, then Eq. �5�
gives us the relationship

N�x2

�A
=

N�x0
2

�0A
.

Note that in the simulation of individuals, we have �0=1,
and therefore

�x = ���x0 = �N/nT�x0 �6�

and the scaling factor is �N /nT.

III. DYNAMIC ENERGY BUDGET

DEB is the study of the mechanisms of acquisition and
use of energy by individuals that has consequences in physi-
ological organization and the dynamics of populations and
ecosystems. It is closely related to bioenergetics that focuses
on molecular aspects and metabolic pathways in a thermo-
dynamic setting. DEB theory treats individuals as nonlinear
dynamics systems. This approach has firm physiological
roots and provides a sound basis for population dynamic
theories. The aim of the DEB theory is to identify the main
rule for the uptake and use of substrates �nutrients, light, and
food� that all organism have in common and to develop a
simple quantitative framework for metabolism, or respira-
tion, as it changes during the life cycle of an organism, based
on elementary physico-chemical principles �16�.

DEB is ultimately a scaling theory. It traces its origin to
historical studies of metabolic rate measured as rate of oxy-
gen consumption and production of carbon dioxide. Growth
of individuals is seen as the difference between build up and
breakdown. The process of build up that becomes known as
the anabolic process is supposed to be directly proportional
to the metabolic process that in turn is supposed to be pro-
portional to surface area. The process of breakdown that is
called the catabolic process is supposed to be proportional to
volume. Weight is proportional to volume and the growth
rate becomes a weighted average between surface area and
volume. Thus, organisms that differ considerably in their
growth regulating system satisfy the same growth curve
known as the von Bertalanffy curve or the solution of the
logistic equations with saturated growth. The DEB theory
specifies a model for the individual but this model can also
be used to model populations and ecosystems in terms of

populations. The DEB model for the individual also serves as
a constraint for modeling suborganismal processes such as
regulations processes that specify details of the physiological
behavior of the individual. Thus DEB provides a link across
spatial and temporal scales and excludes for example rapid
processes at large spatial scales and slow processes at small
spatial scales.

We incorporate the following standard DEB model as de-
scribed in �17�

dL

dt
=

�̇

3

��E�/�Em�� − �L/Lm�
g + ��E�/�Em��

, �7�

d�E�
dt

=
�Ȧm�

L
� f −

�E�
�Em�

	 . �8�

The primary parameters in this model are �E�=internal en-
ergy density �stored energy per cubed length�, �Em�
=maximum storage energy, L=cell length �� cubic root of

structural biovolume�, Lm=maximum cell length, �Ȧm�
=maximum assimilation rate per surface area, and the com-
pound parameters are defined as follows:

f = scaled functional response:
X

K + X
,

g = investment ratio:
�G�

��Em�
,

�̇ = energy conductance:
�Ȧm�
�Em�

,

where the investment ratio is the cost for growth as a fraction
of the maximum energy density, and the energy conductance
is the maximum energy flux across a surface relative to the
maximum energy storage capacity �18�. The other primary
parameters are X=food density, K=saturation coefficient, �
=fraction of utilized energy spent on maintenance and
growth, and �G�=energy costs for a unit increase in size.

In the context of myxobacteria, the “food” in the DEB
model above refers to essential amino acids such as leucine,
isoleucine, valine, and methionine. These substrate are
known to be the essential sources of carbon and energy for
myxobacteria during this vegetative growth �19�. Cell
growth stops and the cells also immediately stop outward
swarming when they sense an amino acid shortage �2,20�. By
using the concept of synthesizing unit, the DEB model �Eqs.
�7� and �8�� can also be extended to distinguish multiple
substrates that correspond to the sources of carbon and en-
ergy. However, in this paper we do not make such distinction
as one needs to understand the metabolism between nutrients
and energy in order to do so and we will investigate this for
a future project.

In DEB theory, an individual organism consists of struc-
tural biomass and reserves. In DEB model �Eqs. �7� and �8��,
they are denoted by L and �E�, respectively. Structural bio-
mass is permanent and needs to be maintained continuously,
while the reserves function as a continuous supply for main-
tenance and need not be maintained because they are re-
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freshed via assimilation. When the density of the reserves is
sufficient, the reserves are also used for the increase in struc-
tural biomass, that is, for growth �21�.

This standard DEB model assumes all types of nutrients
are assimilated into reserves with a rate proportional to the
uptake rate. The uptake rate depends on the size of the cell
and on the food density. It is also assumed that all assimila-
tion pathways contribute to a single pool of reserves, which
then supports all metabolic processes. Energy reserve in the
context of DEB theory means a set of metabolites, mostly
polymers, that the organism can use for metabolic purposes.
These compounds are not just set aside for later use, but they
can also be used directly and can have active metabolic func-
tions. Among many compounds in the reserve, one may con-
sider adenosine triphosphate �ATP� and the ribosomal RNA
�rRNA� as they play important role as energy supplier and in
protein synthesis.

ATP is a complex molecule that is considered as primary
energy currency in all organisms. ATP powers all activities of
the cell, such as cell growth, locomotion, DNA replication,
and cell division �binary fission�. The source for constructing
the ATP molecule itself is food. However, ATP is not the only
main focus in ecoenergetics because ATP itself does not play
a leading role in energy fluxes. A typical bacterial cell has
approximately 5�106 ATP molecules, which is enough for
only 2 s of biosynthetic work and the mean lifetime of an
ATP molecule is about 0.3 s �16,22,23�. The cell has to make
sure that the adenylate energy charge remains fairly constant,
which relates to the concept of homeostatis. ATP is part of
the machinery used to harvest or mobilize energy �16�.
Moreover, cell division cycles and stages in the development
of individuals last too long compare to the processes of ATP
synthesis and use, which makes the time scales to be
irrelevant.

On the other hand, the intracellular concentration of RNA,
especially rRNA, increases when the food is abundant. Since
ribosomes represent such a large fraction of cellular mass,
they are a major storehouse for nutrients. As soon as the food
density becomes limiting, RNA degradation begins and the
ability of cells to survive during starvation may be related to
their capacity to generate nutrients and gain energy from
degraded ribosomes �24–27�. RNA plays a key role in bal-
ancing the acquisition and utilization of energy in the cell,
and its dynamics can be described when it constitutes a fixed
fraction of the energy reserve �17,28�. The analysis of the
data from �29� also shows that rRNA can be a significant part
of the reserves in bacteria. The degradation of RNA leads to
the decrease in the internal energy reserves, which is then no
longer sufficient to increase the structural biomass. Conse-
quently, cell growth as well as cell division stop during star-
vation.

We first nondimensionalize the DEB model �Eqs. �7� and
�8�� by introducing the scaled cell length L�=L /Lm and the
scaled internal energy density E�= �E� / �Em� and obtain the
following dimensionless version:

dL�

dt
=

�̇

3Lm
�E� − L�

g + E� 	 , �9�

dE�

dt
=

�̇

L�Lm
�f − E�� . �10�

Considering the contribution of both ATP and rRNA in the
energy reserve, one may also add the following equations
into the model

E� = 	r� + �1 − 	�a�, �11�

da�

dt
= 0, �12�

where r� and a� are the scaled level of rRNA and ATP, re-
spectively. The constant 	 indicates the fixed fraction of the
energy reserve consisting of rRNA. In Eq. �12�, we set the
rate of change of the ATP level to be 0 since the ATP pool of
a cell remains steady in the time scale that we use in the
model.

From Eqs. �9� and �10�, we can see that the decrease in
food density X leads to the decrease in f =X / �X+K�, which
then leads to the decrease in scaled energy reserve E�. This
in turn would reduce dL� /dt until it eventually becomes 0,
which means that the cell stops growing. Here we restrict
dL� /dt
0 as it makes biological sense that a cell cannot
reduce its physical length.

We omit Eqs. �11� and �12� in our simulation to minimize
the complexity of the system. Moreover, the use of only one
type of reserves will not affect the result as the fruiting body
formation is triggered by starvation, which is indicated by
the decrease in the reserves below a certain threshold. Thus,
the simulation only needs to compute the level of energy
reserves of individual cell, given a current food density, to
trigger the cell’s transition from the swarming stage to the
stage of fruiting body development. Hence, the food density
is the only parameter that controls the phase transition in the
simulation of the life cycle.

From Eqs. �9� and �10� we can derive the threshold in the
food density X for starvation condition. We associate starva-
tion condition as a condition where cell growth and cell di-
vision stop.

Zusman �30� describes cell division cycle as to consist of
the growth phase and division phase. DNA duplication oc-
curs during the growth phase, while division septum forma-
tion occurs during division phase. A cell divides after both
processes have been completed. For unicellular organism
such as bacteria, cell size is the basis of measurement for
maturity. Therefore a cell must reach a certain threshold
length, say La, before it can divide. The level of energy re-
serve �E� clearly affects the cell’s ability to grow and reach
the threshold length of La and to complete DNA duplication
process. Upon reaching the length La, the cell then divides
after a period of time ta, which corresponds to the time
needed to form the division septum. Data from �30� show
that the cells enter the division phase and start forming a
division septum at the average length of approximately
4.8�0.11 �m and divide at approximately 5.6�0.21 �m.
This sets the parameter values for La
4.8 �m and the
length at division Ld
5.6 �m. Since a myxobacteria cell is
known to have a length between 5–7 �m �2�, then we can
set the scaled length La

�
�4.8 /7� �m=0.68 and Ld
�
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�5.6 /7� �m=0.8. Then the period of time ta for the divi-
sion phase can be found by setting

ta = t�Ld
�� − t�La

�� , �13�

where t�Ld
�� and t�La

�� are the time needed to reach the scaled
length Ld

� and La
�, respectively. Equation �13� also agrees with

the definition of the division trigger by �18,31�.
Alternatively, the scaled cell length L� can be defined as

the ratio of the cubic root of the actual cell volume W, to that
of the maximum cell volume reached by cells that do not
divide when living at high food density, that is,

L� = �W/Wm�1/3. �14�

We will now derive the expression for t�L��, the time needed
to reach a certain scaled length, and furthermore show math-
ematically how cell division depends on food density X.

Following �18�, we first note that when food density is
constant for a sufficiently long time, we have dE�

dt =0 and thus
E�= f . Suppose the cell divides at scaled length Ld

�, which by
Eq. �14�, is defined to be

Ld
� = � Wd

Wm
	1/3

, �15�

where Wd is the cell volume at division. Right after division
�t=0�, the cell volume W�0�= �1 /2�Wd due to binary fission.
This gives the initial value

L��0� = �W�0�
Wm

	1/3

= 2−1/3Ld
�. �16�

Integrating the initial value problem �Eqs. �9� and �16��
yields

L��t� = f − �f − 2−1/3Ld
��e−
t, �17�

where t is the time since division and


 =
�̇

3Lm�g + f�
.

Note that as t→� we have L��t�→ f , which means that the
ultimate scaled length when the cell would not divide is
equal to f . So for population growth, we must have Ld

�� f .
Taking the inverse of Eq. �17�, it follows easily that

t�L�� =
1



ln� f − 2−1/3Ld

�

f − L� 	 . �18�

Substituting Eq. �18� into Eq. �13� gives us

f − Ld
� = �f − La

��e−
ta. �19�

Since Ld
�� f for the cell to divide, this forces f �La

�, and
when

X �
La

�K

1 − La
� , �20�

the cells are in starvation and they stop growing and divid-
ing.

For simulation purposes, we estimate the values of g and
�̇ as the experimental data for these parameters are unknown.
By analyzing the system, one can see that the curves E� and
L� versus t approach a limiting value that is equal to f . Since
a typical doubling time during the swarming stage is about 3
h, we can take this number to be the time period between two
consecutive divisions. We set the parameter f =0.95, repre-
senting the condition for which the nutrient is sufficient, and
adjust the parameters �̇ and g such that the curve L� versus t
falls above La

� and is sufficiently close to Ld
� at t=3 h. Physi-

cally, this ensures that the cell has completed the DNA du-
plication and reached the threshold length La

� for division,
and has also obtained an additional growth during the divi-
sion phase and septum formation, in accordance to experi-
mental data in �30�. We arrive at the estimate g
0.1 and �̇

0.15.

IV. C-SIGNALING

In addition to DEB model �Eqs. �9� and �10��, we also
take into consideration the C-signaling that plays important
role in changing the cell-cell interaction and coordination,
and also in controlling the transition between substages dur-
ing the fruiting body development. From experiment in �8�, it
is known that there is on average a few C-signal molecules
per cell and this number is increased each time two cells are
in pole-to-pole contact. The rate of the increase is exponen-
tial and it saturates to its maximum level of several hundred
C-signal molecules. This exponential increase and saturation

FIG. 3. �Color online� The pattern comparison of A+S−, A−S
+, and A+S+ cells during the swarming stage. The left column
shows experimental results �5� and the right column shows simula-
tion results based on the A and S motility algorithms and discrete
model described in Eq. �1� and Sec. VII, which also includes polar-
ity reversal, cell growth and cell division. The slime trails produced
and left by A+S− and A+S+ cells are also shown in the simulation
�colored in blue/light gray�.
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are very much similar to the behavior of a logistic equation
given by

dN

dt
=

cN�Nmax − N�
Nmax

, �21�

where N is the current number of C-signal molecules on the
cell surface, Nmax is the maximum number of C-signal mol-
ecules at the time of sporulation, and c is the logistic con-
stant to be determined.

Furthermore, the increasing level of C-signal modulates
the frequency of polarity reversal and also provides different
thresholds for triggering different substages in the develop-
ment. In particular, when a cell has accumulated approxi-
mately 25–50 C-signal molecules, it no longer reverses its
polarity and that cells start to form aggregates when their
C-signal level is approximately 50% of the maximum. Fi-
nally, sporulation takes place when their C-signal level has
reached the maximum level, in approximately 18 h of devel-
opment �8,32�. Using these experimental data, we set Nmax

500 and adjust the logistic constant c such that the graph
saturates to Nmax in approximately 18 h. We found an esti-
mate of c
0.002. We also set several C-signal thresholds:
Np=50 for stopping the polarity reversal, Na=250 for start-
ing the mound formation, and Ns=450 for sporulation.

V. SIMULATION RESULTS

We run three different simulations, shown in Figs. 3–5,
for various purposes. The first one �Fig. 3� is simply a simu-
lation of the swarming stage with no phase transition to fruit-
ing body development. We simulate three different strains of
myxobacteria, namely, the A+S−, A−S+, and A+S+ cells,
separately during the swarming stage. Our goal here is to

justify our motion algorithm given by the discrete Eq. �1�
and the A and S motility algorithms described in Sec. VII.
Collision between cells is resolved according to collision-
handling algorithm, also described in Sec. VII. We do not
include DEB and C-signaling �the logistic equation� here as
we do not aim to show any phase transitions. However, we
include cell’s polarity reversal, cell growth, and cell division
as they are essential for swarming. We assign two internal
clocks for each cell that serves as periodic timer; one to
control its polarity reversal and the other to control its
growth. The cell divides in the next time period after it has
reached the threshold length. Our simulation results exhibit
similar patterns as those observed in the experiments, see
Fig. 3.

The first row of Fig. 3 shows A+S− cells and the slime
trails secreted by each cell. An isolated cell is able to move
by itself due to the thrust from slime secretion. We can see
many individual cells move freely by themselves following
the slime trails. Several cells may come together and form
stringy clustering. In contrast, A−S+ cells tend to clump and
move in groups. An isolated A−S+ cell is nonmotile and it
can only move when there is another cell or group of cells
nearby. The clustering of A−S+ cells are shorter, thicker and
shaped like arrowheads. The wild-type �A+S+� cells exhibit
combined patterns of A−S+ and A+S− cells. Cell clustering
of A+S+ is thicker than those of A+S−, and it is also longer

FIG. 4. The formation of aggregates due to deletion of polarity
reversal, cell growth and cell division during starvation condition:
�a� 400 A+S+ cells are randomly placed in circular field; �b� cells
stop swarming due to suppression in polarity reversal, cell growth
and division, which further results in the change of the global be-
havior; �c� streams entering an aggregate and joining aggregates are
formed as cells no longer reverse; �d� streams disappear and dense
stationary aggregates are formed.

FIG. 5. �Color online� Fruiting body formation stages: �a� initial
swarming stage; �b� cells moving in different directions collide and
are unable to reverse or turn resulting in the formation of traffic
jam; �c� circular motion of incoming cells around the traffic jam
causes the aggregate to become round in time; �d� early formation
of mound begins when incoming cells start to climb up from the
edge of the aggregate to the upper layer �colored in green/light
gray�. This eventually causes the mound to become hemispherical
as the process continues; �e� formation of toroidal mound consisting
of five layers �different color indicates different layer�; �f� mature
fruiting body consisting of nonmotile resistant spores.
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than A−S+ clusters. There are some cells that move indi-
vidually, but not as many as in A+S− simulation.

In the second simulation �Fig. 4� we want to show the
effect of deletion of polarity reversal, cell growth and cell
division on the global behavior of the system. We start with
400 A+S+ cells placed randomly in a circular field �Fig.
4�a��. We assume starvation condition in which each cell can
neither grow in length nor divide. In addition, periodic rever-
sal is also turned off. These eliminations prevent the cells to
swarm and cause the global behavior of the cells to change
during starvation �Fig. 4�b��.

As cells no longer reverse, they follow another cells ahead
of it by following the slime trails or by using its pili, and this
creates a chain of cells moving together in the same direction
without reversing. A chain of many cells moving in the same
direction then forms a stream, as observed in experiment
�33�. When streaming of cells moving in different directions
collide, they stall as they can neither reverse nor turn due to
high cell density behind and around them. This results in the
formation of traffic jams, which nucleate the aggregate.
Streams enter an aggregate and also connect one aggregate to
another �Fig. 4�c��. Through these streams the cells can also
be transferred from one aggregate into another. In most
cases, smaller aggregates join a larger aggregate. Since we
only simulate a limited number of cells, the streams eventu-
ally disappear leaving behind denser, stationary aggregation
centers that are scattered at random over the field �Fig. 4�d��.
In the experiment, each of these aggregates will develop into
a fruiting body. However, in this simulation we do not in-
clude DEB and C-signaling, and thus we do not see the tran-
sition into fruiting body development here.

Having justified our motility algorithms and the effect of
cell growth, division, and polarity reversal in the first two
simulations, we now simulate the life cycle of myxobacteria.
As fruiting body is a three-dimensional structure, an idealis-
tic goal is to develop a three-dimensional algorithm. How-
ever, this would increase the complexity greatly. To avoid
this, we extend our simulation into two-dimensional simula-
tion in layers. The advantage of this is that we can accom-
modate the three-dimensional property of a fruiting body
without having to change the motility algorithms we have
developed for two-dimensional plane. Each cell in the simu-
lation will have a variable called layer indicating in what
layer of the fruiting body it is currently located.

We hone in on simulating only one fruiting body to mini-
mize the computational complexity of the system. We ini-
tially start with a circular colony consisting of 300 A+S+
�superindividual� cells. Since enough number of cells must
be present in order to complete a fruiting body and the cells
are no longer able to grow and divide during the fruiting
body development, we add a certain number of cells from the
boundary of the simulation domain periodically so that at the
end of the simulation there are approximately 2500 �superin-
dividual� cells. In this simulation, we include the DEB model
�Eqs. �9� and �10�� and also the logistic Eq. �21� for
C-signaling. Each cell is assigned the following initial val-
ues, all of which follow a uniform distribution:

�1� A scaled internal energy E� between 0 and 1.
�2� A scaled length L� between 0.5 and 1.
�3� C-signal molecules N between 5 and 10.

�4� Periodic polarity reversal between 6–8 min.
To see how the DEB Eqs. �9� and �10� function as a trig-

ger mechanism from the swarming stage to the stage of fruit-
ing body formation, we first set the food density X=20 and
the saturation coefficient K=0.25. We keep X constant for
the first few iterations so that the cells’ internal energy E� can
increase, allowing some of them to grow and divide. Cell
motion is determined by the A and S motility algorithms, and
collision is resolved according to collision-handling algo-
rithm when it occurs. However, when cells are in pole-to-
pole contact, Eq. �21� is solved numerically to update the
new level of C-signal molecules. Since food density is still
relatively high and the cells’ C-signal level are still below the
threshold Np=50, most cells are in the swarming stage at this
point. They move outward away from the center of the
colony and periodically reverse their polarity �Fig. 5�a��.

To trigger starvation in the simulation, we decrease X by
5% periodically. This would decrease f and cause E� to start
decreasing as well. When the food density X falls below the
threshold given by Eq. �20�, the cells are in starvation and
they are no longer able to grow as their internal energy E�

falls below a certain threshold. Since division requires a
threshold length La

�, this also implies that cell division is also
prevented by starvation. Thus, the DEB model �Eqs. �9� and
�10�� has prevented cell growth and cell division. On the
other hand, as cells move, their probability of having pole-
to-pole contact is increasing, and thus their level of C-signal
also increases. When their C-signal level reaches the thresh-
old Np, their polarity reversal is switched off. As a result, we
see similar behavior as shown in the previous simulation in
Fig. 4. When the cells moving in different directions collide,
they cannot turn due to high cell density around them. They
cannot reverse to resolve collision either as their C-signal
level has suppressed polarity reversal. The colliding cells
stall and form the traffic jam. This traffic jam nucleates the
aggregate. The incoming cells find the aggregate by follow-
ing the slime trails leading to the aggregate laid down by
earlier arriving cells �Fig. 5�b��. Clearly, this automatic phase
transition is triggered by the level of food density and energy
density from the DEB model, and also by the level of
C-signal from the logistic equation.

Some experiments show that cells in the early stages of
fruiting body development often pass through a ripple phase
characterized by traveling waves. This phenomenon is due to
C-signaling activity and the synchronization of the cells’ po-
larity reversal frequency. When the density of C-signal pro-
tein on the cell surface is low, cells respond to collision and
C-signaling by reversing their gliding direction. This reversal
response to the C-signaling induces the traveling wave pat-
terns characterizing the ripple phase �7,34–36�. The cells
control the reversal frequency and their movement becomes
periodic. The periodicity of individual cells matches the pe-
riod of the rippling �20�. However, with each C-signaling
event, more C-signal molecules are exported to the cell sur-
face. When the level of C-signal exceeds a threshold, the
cells decrease their reversal frequency and move unidirec-
tional in streams �37�. Within streams, cells do not reverse
and cells inside the aggregate circulate clockwise and coun-
terclockwise without reversing �38,39�.

Our current simulation does not exhibit the rippling phe-
nomenon as we switch off the cells’ polarity reversal entirely
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whenever the cell’s C-signal level has reached threshold Np.
This simplifies the model, however, since our goal is to show
that the inclusion of DEB can automate the transition from
the swarming to the development stage, the rippling phase
that precedes aggregation is a side issue that will not change
our simulation result. Traveling waves slightly enhances the
C-signaling, but it is not crucial for our simulation purpose
and therefore it is omitted.

As the incoming cells hits the traffic jam, the collision-
handling algorithm makes them turn or align with the traffic
jam. However, their A and S motility will keep them in con-
tact with the traffic jam as it is the area that has the highest
cell density and slime density. As a result, these incoming
cells move in the direction circumferential to the boundary of
the traffic jam and cause the aggregate to round up �Fig.
5�c��.

Cells continue to C-signal as they move around the aggre-
gate. When the level of C-signal molecules passes the next
threshold Na=250, the cells may start the formation of three-
dimensional hemispherical mound. In this stage, some cells
leave the base of the aggregate when the cell density is very
high. They climb up from the edge of the aggregate to a layer
above it �Fig. 5�d��. As a cell moves up to the upper layer, we
increase its layer variable by one. The cells in the upper layer
continue to move according to A and S motility and collision
algorithms for two-dimensional plane. At the same time the
algorithm needs to check that there are cells in the layer
underneath it in order to keep the three-dimensional structure
physically make sense. As a cell in the upper layer gets
closer to the edge of the structure, it turns and follow the
circular boundary of the aggregate in the layer below it.
Eventually, the cells in the upper layer cover up the traffic
jam in the base layer. These cells may also align with one
another in the same layer when collision occurs and move
together in circular motion. If the cell density in the second
layer is high enough, then some cells may move up again
from the edge and form the third layer. This process contin-
ues until most cells in the simulation domain have formed
the mound. Collectively, this upward movement in spiraling
fashion, together with cell circular motion in each layer,
cause the mound to be hemispherical in time.

The motile cells in the base layer continue to circulate in
both clockwise and counterclockwise direction circumferen-
tial to the boundary of the aggregate without reversing. The
jammed cells on the base layer that are adjacent to these
motile cells align their orientations with the orientations of
the motile cells and begin to move. This circular movement
slowly resolves the traffic jam in the base layer. In the upper
layer this circular movement creates a topological singularity
that causes the inner part of the fruiting body to have lower
density than the outer shell. Eventually, a hole in the middle
of the mound starts to form and the hemispherical mound
now becomes a fruiting body with hollow center, or some-
times called a toroidal mound �Fig. 5�e��.

Figure 6 shows the internal structure of this toroidal
mound with cross sections of the layers. This result agrees
with experiment by Sager and Kaiser �40� which shows that
the structure of a nascent fruiting body consists of the inner
domain and the outer domain. The hemispherical outer do-
main is densely packed by cells that move in paths circum-

ferential to the fruiting body perimeter. These cells form
clockwise and counterclockwise cell streams in approxi-
mately equal proportions and they no longer reverse. In con-
trast, the inner domain consists of less ordered nonmotile
cells at threefold lower cell density.

C-signaling continues while cells in the high-density outer
domain are moving in circular orbit within the annulus. The
level of C-signal molecules on each cell surface increases
until it reaches a final threshold of Ns=450 for sporulation.
During sporulation, the cell differentiates into spore by short-
ening and rounding up its rodlike cell body. Figure 7 shows
a schematic diagram of the cell differentiation.

Myxospores are unable to move on their own. The cells in
the outer domain that differentiate into spores can only be
transported passively to the inner domain by undifferentiated
motile cells �41�. In our simulation, we model this passive
transport as a result of mechanical collisions between the
spores and the motile cells, which occurs very likely due to
the high density of the outer domain. The details on spore
differentiation and spore transport are described in Sec. VII.
The transported spores reach the inner domain and fill up the
hollow center of the mature fruiting body. Spores that do not
get transported into the hollow center stay in the outer do-
main inside the fruiting body.

With cell sporulation occurring nonstop, all viable cells
within the mound eventually differentiate into spores and the
fruiting body matures. The spores will be close-packed and
fill the entire fruiting body �41�. Figure 5�f� shows a mature
fruiting body with close-packed spores fill up the entire
structure. The cells outside the fruiting body do not differen-
tiate into spores. Figure 8 shows the cross sections of a ma-

FIG. 6. Cross section of each layer of a nascent fruiting body
showing the cells’ position and orientation. Darker area corresponds
to the outer domain, while lighter area corresponds to the inner
domain.

FIG. 7. �Color online� A rod-shaped cell differentiates into a
round myxospore.
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ture fruiting body at each layer. The transported spores are
those colored in green �light gray�, while those that stay in
the outer domain are colored in red �dark gray�. The spores
fill up the upper layers of the mound, whereas the base layer
still contains rod-shaped cells. This result gives a good
agreement with the experiment in �42�.

VI. DISCUSSION

We develop an off-lattice-based discrete model and the
algorithm to produce all stages of myxobacteria life cycle,
starting from the swarming stage up to the fruiting body
formation, including the sporulation, based on nonchemotac-
tic cell-cell interactions. Our model is basically an interact-
ing particle model for which cell movement is governed en-
tirely by motility algorithms. Thus, it offers transparency and
flexibility, which is an advantage in comparison to other off-
lattice-based statistical mechanics model that uses Hamil-
tonian to calculate the probability of accepting new position
of the cell. This flexibility allows us to incorporate additional
effects related to the biological system that we model, such
as the bioenergetics and other environmental factors, which
in this paper is the nutrient availability.

In addition to the local rules for cell motility, our model
consists of three ODEs. Two ODEs associated with the DEB
model keep track of the outer energy �interpreted as the cell
length� and the reproductive energy �interpreted as the num-
ber of ribosomal RNA�. The third ODE is a logistic equation
that keeps track of the level of C-signal molecules. The rea-
son why the inclusion of these ODEs automates the simula-
tion of the life cycle is that certain levels of these three
quantities initiate the starvation phase �when the cells stop
dividing�, the formation of the fruiting body �when the cells
stop reversing�, and finally sporulation �when the level of
C-signal molecules reaches its maximum�. Once these levels
�triggers� are set, the whole simulation of the life cycle is
determined by a single parameter, namely, the food density.

It is an interesting problem to let the bacteria deplete the
food in an inhomogeneous way. This will create spatial pat-

terns and one can ask how many fruiting bodies are formed
given an initial cell density. However, this will be addressed
in a separate paper. In this paper we are simply addressing a
simpler problem about the “local” formation of a fruiting
body and food is all depleted without much spatial structure.

The formation of the fruiting body in our simulation is not
controlled in any way; it is simply a global structure formed
by the local interaction and the three evolving quantities in
the ODEs. The motility in the plane applies if the cells are
allowed to go on top of each other and form new two-
dimensional layers. We do not use any special algorithm for
spore transport. It is simply local interaction and collision
between motile cells and spores. The spores are transported
into the empty interior of the fruiting body as a result of
topology, geometry �the roundness of the spores�, and the
local interactions.

The scaling formula derived in Sec. II is used to justify
the comparison between our simulation of superindividuals
and the actual experiments with large number of individual
cells. The fruiting body in our simulation consists of 2500
�superindividual� cells. In an actual experiment, a fruiting
body consists of approximately 105 cells. This implies that
each superindividual cell represents approximately 40 single
biological cells, all of which behave in identical manner.
With the scaling law and the scaling factor, we are now able
to analyze how the parameters should scale when we simu-
late at the level of individual cells, i.e., when we simulate
105 cells instead of 2500 superindividuals. We require that
the dynamics to remain unchanged when a region is blown
up in scale.

In the simulation discussed in this paper, the spatial reso-
lution �x=10 �m and the temporal resolution �t=2 min.
Thus, Eq. �6� will give us

�x0 = �nT/N�x = �2500/105 · 10 �m 
 1.6 �m

and �t0=�2500 /105 ·2 min
19 s. This gives the actual
cell velocity to be approximately 1.6 �m /19 s, which is
equivalent to 5.05 �m /min. We note that this is a reasonable
number from biological perspective �43�. Thus, by multiply-
ing all related parameters with the correct scaling, we are
ensured to get the same dynamics when we simulate at the
level of individuals. This also justifies that our simulation
result is a good representation of the simulation with large
number of individuals.

With our model and its associated scaling law, DEB simu-
lation can now be done to investigate several interesting
problems. One is to explore the relationship between popu-
lation size and its survivability. Myxobacteria colony with
various cell density can be simulated and the number of ag-
gregates formed in the domain under starvation or limited
and declining food density can be counted. These aggregates
may eventually advance into fruiting bodies and sporulate,
which allow the colony to survive in unfavorable environ-
ment.

Second possible application is derived from the fact that
our DEB model uses cell length L and ribosomal RNA �in-
terpreted as a fraction of the internal energy density E� as
two measurable entities. One could experimentally verify
cell threshold length concept and internal energy density re-

FIG. 8. �Color online� Internal structure of a mature fruiting
body consisting of spores. The spores colored in green �light gray�
are those that get transported from the outer domain and fill up the
middle hole �inner domain� of the fruiting body.
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quirement for cell division as proposed in this model. Spe-
cifically, knowing the food availability in the domain of a
colony of cells, one may predict the growth rate and the
behavior of this colony over time by using DEB. So far there
is no experimental data found on two problems mentioned
above, however, experiments can be done and the results can
be compared with the DEB simulations, which we will ex-
plore in future publications.

The simulation of the life cycle presented in this paper is
done only for A+S+ cells. Similar simulation can also be run
for A−S+ and A+S− cells to further investigate the relation-
ship between lacking one of the motility motors and the de-
lay in fruiting body development as seen in the experiments.
Specifically, one can quantitatively measure the difference in
the rate at which C-signal level increases between various
mutants, which may account for the delay in their fruiting
body development.

Lastly, we can also naturally extend the model and use the
DEB as a constraint to simulate processes at suborganismal
level, such as cell signaling and feeding mechanism. In par-
ticular, we are currently working on improving this current
model by incorporating the interplay between the quorum
sensing A signal and C-signal in coordinating developmental
gene expression with cell movements during the early stage
of fruiting body formation.

VII. METHODS

In the discrete off-lattice model described in Sec. II, the
direction of cell motion is determined by the A and S motility
algorithms in the absence of collision and by collision-
handling algorithm otherwise. These algorithms are de-
scribed below.

A. A motility

In our algorithm, two possible factors, namely the cell
orientation and the slime orientation, contribute to A motility
direction. The cell orientation comes into play as the slime
secretion from the rear pole of the cell pushes the cell di-
rectly forward. We model this motility by trying to orient the
cell along its long axis, which is the normalized tail-to-head
orientation shown in Fig. 1 and it is given by

Ck =
nk1

− nkN

�nk1
− nkN

�
, �22�

where nk1
and nkN

are the position of the head and tail nodes
of cell k, respectively.

As a cell moves forward, it leaves behind trails of
polysaccharide slime. In our simulation, we keep track of the
cell position by keeping track of the position of each node.
Likewise, we keep track of the slime trail by keeping track of
the position of the slime points. When a moving cell encoun-
ters a slime trail �or slime point�, it turns to an acute angle to
follow the trail. To model this behavior, we first define the
slime searching circle to be the circular region around the
head node with radius rs, which we set to be half of the cell
length. If there are more than one slime points within the
slime searching circle that satisfy the acute angle require-

ment, then the cell moves toward the slime point which was
deposited the latest. This is based on the prediction that the
newer slime trails have stronger effect than the older ones.
The normalized direction due to slime orientation is given by

Lk =
s − nk1

�s − nk1
�
, such that Ck · Lk 
 0, �23�

where s is the position of the slime point. The inequality in
Eq. �23� ensures that the slime point makes an acute angle
relative to the tail-to-head orientation of cell k.

Let 	ki
and �ki

denote the weights of Ck and Lk, respec-
tively, at the ith iteration. Since the cell has the tendency to
follow the slime trails, the algorithm first searches for the
slime points nearby. If it finds at least one slime point within
its searching circle that satisfies the angle requirement �Eq.
�23��, then we set �ki

=1. Otherwise �ki
=0, which corre-

sponds to the situation where there is no slime trail found
inside the slime searching circle. In this case, the cell moves
according to its tail-to-head orientation with some small ran-

dom turning angle �̂. This is based on experimental observa-
tion that cells may slightly bend and turn even though there
is no slime trail nearby. The formula for the A-motility di-
rection is then given by

Ak = 	ki
�Ck + ��dBt

k� + �ki
Lk, �24�

with

	ki
= �1 if �ki

= 0

0 if �ki
= 1
 and ��dBt

k = �cos �̂,sin �̂� .

B. S motility

The social interaction arise in S motility is mediated by
type IV pili that extend from the cell’s leading pole and
whose length can reach up to one cell length. We first define
the pili interacting area to be the semicircular region right in
front of the head node whose radius rp is equal to a pilus
length. This semicircular region is chosen to account for the
known stiffness of the pili which cannot bend too much, and
the tendency of the cell to bend or turn to less than 90° angle.
If there is a group of cell in this vicinity, then the pili can
attach to the group and pull the cell toward it.

We divide the pili interacting area of cell k into two re-
gions: Q1 and Q2, relative to the cell’s local coordinate sys-
tem X�O�Y� as shown in Fig. 9. Each neighboring cell that
lies inside this pili interacting area belongs to one of these
regions.

Thus, if either Q1 or Q2 is not empty, then the cell moves
toward the region whichever one that has the greatest num-
ber of cells. The orientations of the neighboring cells in this
particular region are then averaged to get the S motility di-
rection of cell k
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Sk = �cos 	

sin 	
�, 	 =

1

N
�
j=1

N

� j , �25�

where N is the number of distinct cells in the region to which
cell k is moving and � j is the position angle of cell j in this
region with respect to positive X� axis.

C. Discrete equation

In our model we assume that the direction of cell move-
ment is determined by the head node and that a cell moves
with a fixed step length L. In each iteration, cell k updates its
position according to the discrete Eq. �1�, where Vk�t� is the
weighted unit direction due to A and S motility defined by

Vk =

kAk + �kSk

�
kAk + �kSk�
. �26�

Here 
k and �k are the weights of A and S motility term of
cell k. The motility weights for A−S+ mutants are taken to
be 
k=0 and �k=1 and vice versa for the A+S− mutants. The
wild-type A+S+ cells have both A and S motility engines and
we assign the weights randomly such that


ki
� �0,1�, �ki

= 1 − 
ki
,

where the subscript i refers to the ith iteration.

D. Collision-handling algorithm

In a simulation with high cell density, collision between
cells is very likely to occur. We say cell k collides with cell
j if the distance between them is less than one cell width. We
distinguish two types of collision:

�i� Head-to-body collision: when the head node of cell k
collides with a body node of cell j, then cell k randomly

chooses to either stall during the current iteration or align to
the acute angle with cell j by taking Vk=sgn�Ck ·C j�C j,
where C j is the tail-to-head orientation of cell j as defined in
Eq. �22�.

�ii� Head-to-head collision: when the head node of cell k
collides with the head node of cell j, then Ck and C j are
calculated. If the difference in angles between these orienta-
tions is close to 180° �head-on collision�, then cell k rotates
its orientation by some small random angle away from cell j
and take the rotated orientation as the new direction Vk. Oth-
erwise, collision is resolved in a way defined in head-to-body
collision.

E. Spore transport algorithm

Spore transport occurs during the final stage of myxobac-
teria life cycle. Inside a fruiting body, rod-shaped cells that
have accumulated enough C-signal molecules differentiate to
form a round nonmotile spore. As illustrated in Fig. 7, the
head node of the cell becomes the center of the spore and the
radius r of the spore k is defined to be half of the length of
the segment connecting two consecutive nodes in the initial
cell, that is, r= 1

2 �nk1
−nk2

�, where nk1
and nk2

denote the
position of the first �head� and second nodes of cell k, re-
spectively.

Spore differentiation does not occur simultaneously dur-
ing the fruiting body development, and thus mechanical col-
lision between a spore and a nondifferentiated motile cell
may occur inside the fruiting body. We say spore k collides
with cell j if the distance between the head node of cell j and
one of nodes of spore k is less than one cell width. When
collision occurs, spore k gets pushed in the direction Vk, the
vector pointing from the head node of cell j to the center
node of spore k, defined by

Vk =
nk1

− n j1

�nk1
− n j1

�
,

where nk1
is the center node of spore k and n j1

is the head
node of cell j, as shown in Fig. 10. The center node of spore
k will move as far as the spore radius r, and the rest of the
nodes of spore k will maintain the distance r from the center
node.

FIG. 9. �Color online� Pili interacting area in S motility algo-
rithm. The pili interacting area represents the vicinity of the pili and
its radius can reach up to one cell length.

FIG. 10. �Color online� Spore transport mechanism as a result of
collision between nonmotile spore and a motile cell.
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Since the cell density in the outer domain of the fruiting
body is much higher than the inner domain, many spores that
are formed in the outer domain will get pushed in due to
collision with other motile cells. They move toward the inner
part �inner hole� of the fruiting body and eventually fill up
this space, as shown in Fig. 8.
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