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The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the
solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here
we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal
friction. We model the chains as freely hinged but with localized bond angles and threefold symmetric dihedral
angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first
temporal and second spatial derivative of monomer position. With no internal potential between monomers, the
magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent
behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such
oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite

strong dihedral barriers for long enough wavelengths.
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I. INTRODUCTION

Polymer molecules in solution are usually modeled as-
suming that damping is mediated by interaction with sur-
rounding fluid, or other polymer chains. However it has been
noted early on, that there is another source of dissipation,
internally generated by the nonlinear dynamics of the poly-
mer chain [1-3]. In a set of important experiments [3] exten-
sional relaxation for different solvent viscosities was mea-
sured. By extrapolating the solvent viscosities to zero, an
interesting residual dissipation was discovered that is internal
in origin. A number of explanations for it have been pro-
posed [4,5], but the origins of this effect are still not well
understood.

In this work, the internal friction of a polymer is exam-
ined by considering it in isolation, that is, without any sol-
vent. This not only sheds light on the case of polymer solu-
tions, but also on more recent experimental techniques,
discussed below, used to characterize polymers by first gas-
ifying them without damaging their integrity.

Developments in mass spectrometry of long chain poly-
mers, have become important in recent years in order to
characterize large biological molecules such as proteins [6].
The process involved in these experiments puts single chains
into a vacuum. The study of polymer damping in this envi-
ronment would elucidate the understanding of internal dissi-
pation but has yet to be studied experimentally. However
recent work has studied the behavior of single chain mol-
ecules in a vacuum theoretically and by means of computer
simulation [7,8]. The statistical properties of single chains
with no damping, and subject only Newton’s laws was inves-
tigated. Both ideal chains (where only chain connectivity is
included and no intrachain interactions), and self-avoiding
chains, were considered. In related work, the detailed chaotic
properties of small chains with rigid links has also been ob-
served for self-interacting chains with two body Lennard-
Jones potentials [9]. Through a comprehensive analysis of
this problem, they were able to show that the simulated
chains were in excellent agreement with exact predictions
from a microcanonical average, providing strong evidence
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that the dynamics are indeed ergodic. The chaotic motion
derives from both the bond constraints and the convex nature
of scattering. In another related work [10] computer simula-
tions for polymer molecules were performed to examine
Lyapunov exponents. These were shown to be very small for
systems close to a phase transition, such as the coil-globule
transition.

An ideal chain modeled with only linear springs connect-
ing adjacent monomers is integrable and shows no damping.
Energy in every mode is conserved and cannot be exchanged
with other modes. Dissipation results from the nonlinear cou-
pling of modes to each other. This is closely related to the
problem of nonlinear one dimensional chains that have been
studied extensively using the Fermi, Pasta, and Ulam (FPU)
model [11]. In this model, there is energy transfer between
modes, however depending on initial conditions, the time it
takes to lose correlation with its initial state can be very long
[12]. An ideal chain is a similar one dimensional system
where the displacement of each particle is, in this case, much
larger and is vectorial in nature. However we expect that the
same equilibration problems persist. Therefore to thermalize
a polymer in a vacuum efficiently, the model chosen [7] uses
rigid links so that the local motion would be highly chaotic.
It also mimics the fact that the fluctuations in bond lengths
are small compared to those involved with rotational degrees
of freedom. On large length scales however, one might ex-
pect universal behavior, independent of the form of the po-
tential connecting adjacent monomers. As will be seen be-
low, this appears to be the case.

The dynamics of such ideal chains are also closely related
to the study of the dynamics and energy flow in one dimen-
sional chains, that govern its anomalous conductivity
[13,14]. The dynamics in one dimension systems with mo-
mentum conservation show faster relaxation than in higher
dimensions due to Galilean invariance. A consequence of
momentum conservation in higher dimensions is responsible
for long time tails in liquids that were predicted theoretically
[15] and confirmed experimentally [16]. In the case of one
dimensional nonlinear chains, a wide range of different mod-
els give the same heat conductivity exponent, for example
the Sinai Pencase model [17], the Random Collision Model
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[14] and FPU chains [18]. The main difference between
these one dimensional systems and ideal chains in a vacuum
is that the former has a fractal dimension of 1, and the latter,
of 2. It is therefore hard to define local hydrodynamic vari-
ables as a function of position for polymer chains. However
conservation of energy and momentum are common to both
problems.

In addition, in the case of an ideal chain in a vacuum, the
equilibrium properties are effected by the conservation of
angular momentum [8], and this can be analyzed exactly,
showing that when the angular momentum is zero, the radius
of gyration is significantly smaller than without that conser-
vation law enforced.

Initial results [7] for an ideal chain in a vacuum showed
that its dynamics are very different than those of a chain in
solution. A freely hinged chain of N links, with constant link
lengths was studied. The time autocorrelation function for
position oscillates and is slowly damped. The damping time
appears to scale as T,,;xNU8*19 where L is the chain
length.

The reason for this behavior can be seen by understanding
the form of dissipation such chains should have. Because of
Galilean invariance, the frictional force f; on a monomer
cannot be proportional to its velocity, as this would imply
that a uniformly translating chain would slow down. If we
denote the position of a chain at arclength s as r(s), then the
simplest term respecting this translational invariance is

>r
fa= s (1)

This is the form of “Kelvin Damping” [19]. This theoretical
form was proposed by Maclnnes based on a calculation done
by him for a model system [4]. It was later proposed as the
origin of Cerf friction [2] where it was argued that this form
was compatible with experiments characterizing internal fric-
tion [3]. In Fourier space with wave-vector k conjugate to s,
and o conjugate to ¢, this dissipation is proportional to
iwk*#(k,w). Longer wavelength modes are weakly damped,
implying underdamped motion for long enough wavelengths
as we will shortly see. Using this damping along with linear
forces between monomers, analogous to the Rouse model
[20], one has

Pr J\Pr
?=<K+C£>g+§(s,t). (2)
Here £ is a noise term added to maintain ideal chain statis-
tics. p is the mass per unit arclength. The term «r”(s) is
identical to that of the Rouse equation and describes the net
force experienced from neighboring segments. For Gaussian
chains, k=3kgT, where T is the temperature [1]. For a linear
chain, r'(s)=0 at the two ends and the chain can be ex-
panded in terms of Fourier modes, similar to the analysis of
the Rouse equation

r(s) = > £, cos(ks) (3)
k

with k=nw/L, n=1,2,.... so that
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Pr AP
p¥=_k2(K—C5>r+§(k,t). 4)

When noise is omitted, this is of the form a damped har-
monic oscillator with an effective mass of p, a spring con-
stant of K=xk? and friction of v=Ck?, so that

Mi+vi+Kr=0. (5)

For underdamped long wavelength modes, the solution is
proportional to exp(i)¢) with ;= w;+i\;. The correlation
function for a k mode can then be calculated

(r(0)ri(2)) = (|rdHRe[exp(iQt) /oy ]. (6)

N\ k? (in the underdamped regime) so the damping time
«1/k>. The frequency of oscillation, ay, is proportional to k
for small k. Therefore in this limit, there are many oscilla-
tions, O(k™!) in a damping time.

The model of a freely hinged chain is not realistic at a
microscopic level. A molecule such as polyethylene has a
strong orientational dependence as dihedral angles are var-
ied. The chain will spend most of its time in minima and
make transitions between these. The arguments above are
general and do not give any indication of the prefactor for
the dissipation term. This is expected to depend on the de-
tails of the potential. We will use numerical methods to see
to what extent Eq. (4) is satisfied and to determine how the
size of the prefactor C depends on the potential used. We will
find, surprisingly, that underdamped motion is still present
even with rather strong potentials. We first describe the nu-
merical method used in this work and then give the simula-
tion results in the following section.

II. NUMERICAL METHOD

This method is an extension of the simulation of rigid link
systems developed by the author previously [21,22] which
considered the case of a highly overdamped systems where
inertia was negligible. Here we consider the general case of
particles with mass m and damping 7. In the subsequent
sections, we will take y=0.

The coordinates are denoted ry,r,,...,ry, where N is the
number of masses in the system. The time derivative of
these, that is the velocities, are denoted v;,v,,...,Vy. As in
the earlier work, we will assume that each mass is being
acted on by a force f;, which can be due to self-interaction or
externally applied. It will be convenient to define the differ-
ence operator of adjacent coordinates or velocities A;r
=r;,,-r; and A;v=v,,;-v,. To keep the link lengths con-
stant, we Introducing Lagrange multipliers ¢, ...,7y_; which
describe the tensions between neighboring masses, we can
write the equations of motion as

mV,+ ’yV,=t,(A,I‘) —tl_l(A,_ll') +fl’ (7)

r=v; (8)

for 1 <i<<N. For a linear chain, one can define #,=ty=0 to
give the equations for the chain ends, that is for i=1 and
i=N. We will discuss ring chains below.
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We wish to evolve the r’s and v’s in time by finding the
tension at every time step which allows us to iterate the
above equations by some appropriate integration scheme.
However this can be problematic due to the cumulation of
errors, as we require that the magnitude of A;r remain very
close to the step length, /. Define the error in this quantity as

€=|Ar]*-P. 9)

Without the problem of numerical error, the tensions would
be determined by the condition €;=0 for i=1,...,N. By dif-
ferentiating this equation twice with respect to time, a for-
mula for the tensions can be obtained. However numerical
error will cause bond lengths to stray from their initial val-
ues. Therefore we need to introduce feedback into the
method so that nonzero ¢; will be pushed back toward zero.
So instead we consider the equation

AEi+Béi+ él‘=0, (10)

where A and B are constants causing a damping of errors
with time, and whose values are determined to maximize
computational efficiency. This can be rewritten as

2A,l‘~A,-V=—A€,-—ZBA,»I'-AiV—2|AiV|2. (11)

Applying the difference operator A; to Eq. (7) and taking
the dot product with A;r gives

mAr-Av+yAr-Av=t, Ar- A r+t,_Ar-A_r
—2t]ArxP+ Ax - Af. (12)
Putting this into Eq. (11) gives
LAt - Ay = 26[ AP+ 1, A - Ay

= %(—AGZ' - ZBAZI‘ - AiV - 2|A,V|2) - Air * Alf

+ 'yAir' AiV. (13)

The left hand side contain the tensions, which are un-
knowns, but the rest of the variables and the right hand side
are all known. These equations form a tridiagonal matrix
equation which can be solved for the #;’s in a time O(N).

After the tensions are determined, they are used in the
right hand side of Eq. (7). These 2N first order differential
equation can be integrated by a variety of methods. This
paper uses fourth order Runge Kutta to do this. Excluding
the operations involving the computation of the forces f, this
algorithm runs in O(N) operations per time step. For short
range potentials, such as are used here, the forces also re-
quire O(N) operations, meaning the operations per time step
are O(N). This scales the same way with N as nonconstrained
simulations such as molecular dynamics with variable bond
lengths.

In general, this algorithm can be easily extended to sys-
tems with any set of connections between masses, such as
branched topology. For the simplest variant, the ring chain,
we modify the problem by introducing fictitious particles
Iy, =Ty, and ro=ry. This places an additional link between
monomer | and N, giving rise to an additional tension 7. To
keep the form of the equations the same, it is convenient to
introduce #y=ty. In this case Eq. (13) becomes a cyclic tridi-
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FIG. 1. (Color online) Correlation functions for a freely hinged
chain in a vacuum for N=64 for the lowest two modes, shown by
the solid triangles. The line going through them are fits using Eq.

(6).

agonal system of equations that can be easily solved as well.
However for more general connections, the order of the num-
ber of operations will be greater than N.

Typically, the step size used in this work for a Runge
Kutta iteration was 0.01. Therefore this algorithm provides
an efficient method for investigating dynamics of a polymer
in a vacuum.

III. SIMULATIONS

We first consider the case where there are no potentials
but only the freely hinged constraint. In this work, we con-
sider a step length /=1 and at temperature kz7=1. We fit the
correlation functions for numerical data for N=64 using Eq.
(6). The first two mode are shown in Fig. 1 As can be seen,
the fit to the data is excellent. This was averaged over 37 578
runs, so that the error bars on the data are negligible. Clearly
for this range of parameters, the decay of a single k-mode is
well described by a damped harmonic oscillator. All data for
correlation functions shown are normalized to unity at £=0.
This is because the amplitude of the modes is proportional to
1/k?, making it hard to discern the data without this rescal-
ing.

It is important to note that in general, this kind of corre-
lation function cannot be described by a single mode, and
that the answer is expected to be the sum over a large num-
ber of modes. In fact, for strong enough dihedral potentials
more modes need to be included, however we shall see that
for quite strong potentials, a single mode fits the simulation
data quite well.

The parameters for the oscillator can be fit as a function
of k. Q) is first determined and then the corresponding pa-
rameters in Eq. (5), M/K and v/K are calculated. In Fig. 2,
M and v were fitted for different mode numbers k=mn/N
with N=256 (the step length has been set to unity). The
fluctuations give a measure of the uncertainty in this data as
was checked by fitting with independent data.

Note that according to Eq. (2), both curves should be
constant as a function of the mode number. However a clear
variation is seen in each. The effective mass of the mode
increases with increasing k, and the effective friction coeffi-
cient is not «k?, but is slightly less. The data could be fit
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FIG. 2. (Color online) The parameters for fits of the time auto-
correlation function, Eq. (6). to a damped harmonic oscillator are
shown for a freely hinged chain with N=256. The upper line rep-
resents the mass k>’M/K of each mode, and the lower curve repre-
sents that damping v/K.

equally well, with a slightly smaller exponent so that vok?”
with p <2, or as a logarithmic correction, k*/log(k). In either
case, the assumption of a local term for the friction is appar-
ently not completely correct. There is a subtle transfer of
energy between modes leading to nonlocality. The same is
apparently true for the mass, and no doubt these two effects
are related. The goal of the present work is not to explain
these effects theoretically, but to investigate how the friction
coefficient is altered by local potentials along the chain.
Therefore we will now turn our attention to this problem.

The oscillations seen are a result of the weak form of
damping at low wave number. Do these persist if the chain is
no longer freely hinged? To answer this, we first examine a
model where the distribution of bond, or valency angles, is
weighted around a set of values centered at a particular angle
Oy. To restrict configurations in this manner, a potential is
constructed between the nearest neighbors of monomer i as
follows:

Uy
Uual=Z('ri+1_ri—l|2_r(2))2~ (14)

Because the distance between nearest neighbors is fixed, for
large U, this will limit configurations as just described. ry is
chosen to give the value of 6, desired, in this case 6y
=104°. This value is somewhat arbitrary and varies accord-
ing to the chemical structure of the polymer. As a result, the
dynamics will be restricted as well. Figure 3 shows the time
autocorrelation function for U, =10, for the first three modes.
In this case we see again that the fit to Eq. (6) is excellent.
The long wavelength modes are still quite underdamped. A
fit of the harmonic oscillator parameters is shown in Fig. 4. It
is similar to the freely hinged case, Fig. 1, suggesting that the
variation of the drag coefficient with k¥ may be understand-
able by some general mechanism.

Usually as a link is rotated, there are three energy minima
as a function of the dihedral angle. To make this model more
realistic, it is necessary to add such a dihedral potential. As a
function of the dihedral angle 6, between two adjacent
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FIG. 3. (Color online) Time autocorrelation functions where
bond angle is now restricted for N=64. Data for the first three
modes is shown by the solid triangles. The lines going through it is
a fit using Eq. (6).

monomers, the potential energy U=V, cos(36). This can be
expressed in terms of cos € using the usual trigonometric
identity. If the bond angle is fixed, cos # can be expressed in
terms of dot products which is computationally advanta-
geous. Because the bond angle is almost constant, we still
use the same dot product formula in the simulation. This also
breaks symmetry between the three minima moving the trans
state slightly relative to the two gauche states. This is also
seen in real data such as for polyethylene [23]. Figure 5
shows the distribution of bond angles, p(6), for two separate
dihedral potentials, with V;=3 and V,;=4, for U,=10 and
N=64. As the amplitude of the dihedral potential, V, in-
creases, the ratio of the maximum for the distribution, p,,,, to
the minimum p,;, increases. In these simulations the energy
scale was chosen so that the temperature is 1 and Fig. 6
shows that 10g(pmax/ Pmin) = 2V, It is reduced from approxi-
mately 4V, because of coupling to other degrees of freedom
such as bond angle. For a real temperature of 330 K, com-
parison with earlier modeling [24] of polyethylene, yields
that V;,~2.5 (as we are using units where T=1.) At lower

2.6

Suf

FIG. 4. (Color online) The parameters for fits of the time auto-
correlation function, Eq. (6), to a damped harmonic oscillator are
shown for the same data as in Fig. 3. The upper curve is a measure
of the mass kM /K, and the lower curve is measure of the damping
v/ K.
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FIG. 5. (Color online) The distribution of dihedral bond angles
for two different heights of the dihedral potential, V,=3 (circles)
and V, =4 (triangles). Here U,=10 and N=64.

real temperatures, the potential will be correspondingly
higher.

Figure 7 shows the correlation function fit to the damped
harmonic oscillator for V;,=2 (a), and V;=3 (b). Here N
=64 and U,=10. In both cases, clear oscillations can be seen
for the lowest modes.

It is of interest to know how the frequency dependent
damping depends on the height of the dihedral potential. Fig-
ure 8 shows the results of fitting different modes to the
damped harmonic oscillator, taking into account the possibil-
ity of both underdamped and overdamped motion. As with
Fig. 2, the damping v is divided by K k. The nonconstant
nature of the results show that for quite substantial V,, there
is a similar deviation from the expected Kelvin damping as
was seen in Figs. 2 and 4. Note that even if higher modes are
overdamped we expect the for lower enough k, and long
enough chains, the motion will become underdamped. This is
because of the k-dependent form of the damping v, which
goes to zero for as k— 0.

As can be seen from Fig. 6, for V,> 1, barriers to rotation
are substantial. It would then first appear that motion would
be much more like that of a lattice model, where a monomer
stays in a potential minimum for a long time and flips to
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FIG. 6. (Color online) The natural logarithm of the dihedral
angle distribution maximum to minimum as a function of potential
amplitude V,; with U,=10.
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FIG. 7. (Color online) Time autocorrelation functions where
bond angle and a dihedral potential for N=64, U,=10. Data for the
first three modes are shown by the solid triangles. The lines going
through it is a fit using Eq. (6). (a) with V,=2 and (b) with V,=3.

another state. This would suggest that the motion would be
heavily overdamped, with correlation functions like those of
the Rouse model. However we have seen that even in these
cases, the motion for long wavelengths, is underdamped. For
strong enough potentials such as V,=4, the motion even at
long wavelengths and N=64, ceases to be underdamped. The
relaxation becomes very slow and does not fit well to a
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FIG. 8. (Color online) The damping as a function of mode num-
ber for a range of dihedral potentials with N=64. The bottom curve
shown by the triangles is V,=0, the next highest, V,=1 (squares),
then V,;=2 (diamonds), and V,=3 (crosses).
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simple harmonic oscillator. Many more frequency modes
must be considered in this case. However as we argued
above, for long enough chain length, we expect to see under-
damped motion for low k. When the value of U, is increased,
this increases 10g(pyax/ Pmin) and will make the barrier height
larger. Still for N=64, when the dihedral constant U, is
raised to U,=40, oscillations persist when V,=2.

IV. CONCLUSIONS

These results are of interest for two reasons. First, it sheds
like on the nature of internal friction of polymer chains in
solution. This work characterizes the nature of this dissipa-
tion. It is quite similar to that of Kelvin friction, Eq. (1).
However it is not identical as the damping is larger for small
wavenumber. This departure is at present unexplained and is
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probably quite nontrivial to understand as it is related to the
dynamics of nonlinear one dimensional chains [11,12].

Second, it is important in the understanding the internal
dynamics of polymers in a vacuum of which there is at
present little experimental or theoretical understanding. In
reality polymers in this situation will be charged and have
van der Waals interactions. An investigation of these have
shown that their effects are very important [7]. However as
with the understanding of ideal chains in polymer solutions,
it is important to understand an ideal chain in a vacuum as
the starting point for further analysis.
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