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We show that the sequence of distorted commensurate phases observed in tilted chiral smectics is explained
by the gain in electrostatic and elastic energies due to the lock-in of the unit cell to a number of layers which
is the integer closest to the ratio of the helix pitch over the smectic layer thickness of the subjacent Sm-C�

�

phase. We also explain the sign change of the helicity in the middle of the sequence by a balance between two
twist sources one intrinsic and another due to the distortion of the Sm-C�

� .
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I. INTRODUCTION

The smectic phases made with chiral molecules have two
proper characteristics, they are allowed to be ferroelectric
and to present a helical precession of the optical axes around
the layer normal when a tilt of the molecules appears in the
layers �1�. Like other mesophases �2�, they are ferroquadru-
polar phases in the sense that a large amount of the indi-
vidual dipoles orient themselves collectively in the bulk and
sum up in an antiparallel way to give sizeable effects like the
flexoelectricity �3�. The liquid crystals molecules bear polar
links like CvO, NuO, CwN and delocalized electrons
�Fig. 1�a��, so they present a distribution of dipoles all along
their skeleton �Fig. 1�b��. The Boulder group has shown that
the molecular dipoles can be approximated without loss of
generality by a longitudinal one P� L and a transverse one P� T
�4� with amplitudes of several debyes.

Most of the literature in this field has dealt only with the
transverse polarization which is at the origin of the ferroelec-
tricity �1,5–17�, and only a few have recognized the impor-
tance of the longitudinal one �4,18�. In this paper, we will try
to explain the mechanisms at the origin of the formation of
the different tilted chiral smectics.

II. CHIRAL SMECTIC PHASES

By order of increasing complexity one encounters the fol-
lowing phases which structure is best described by the dis-
torted clock model mainly developed from the data of reso-
nant x-rays scattering experiments �19–25�.

A. Sm-A

The initial phase which precedes the various tilted phases
at higher temperature is the smectic A �Sm-A�. The mol-
ecules are normal to the layers. The transverse dipoles aver-
age to zero due to a uniform rotation about the long axis. The
longitudinal dipoles adopt equiprobable up and down orien-
tations �Fig. 2� ensuring that there is no macroscopic polar-
ization but a macroscopic uniaxial quadrupole �ij. The
uniaxial orientational order parameter �OOP� is expressed as

Sij =ninj −
1
3�ij where n� is the director. When it is written in a

frame for which the normal to the smectic layers is taken as
the z direction it reads �2�

Sij = �− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�, �ij = �aSij . �1�

B. Sm-C�

If the preferred layer thickness decreases with tempera-
ture and becomes smaller than the length of the molecules,
they have to tilt in one direction giving in the simplest case
the phase predicted by Meyer �1�, the smectic C��Sm-C��
where all the molecules are parallel �Fig. 3�. The transverse
dipoles give birth to the macroscopic polarization PS when
summed up over at least ten layers. The longitudinal ones
have to average to zero but they still sum up in a macro-
scopic quadrupole which main axis is tilted with respect to
the layer normal. If one approximates the OOP Qij of the
Sm-C� to be the same Sij as in the Sm-A with its eigenvector
3 tilted at an angle � with respect to the layer normal in the
azimuthal direction �0, as detailed further in Appendix B for
the biaxial case, one gets
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FIG. 1. dipolar distribution from real molecule to the Boulder
model.

PHYSICAL REVIEW E 81, 061704 �2010�

1539-3755/2010/81�6�/061704�10� ©2010 The American Physical Society061704-1

http://dx.doi.org/10.1103/PhysRevE.81.061704


Qij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
1

2
sin2 ��cos 2�0 sin 2�0 0

sin 2�0 − cos 2�0 0

0 0 0
�

− sin � cos �� 0 0 cos �0

0 0 sin �0

cos �0 sin �0 0
� . �2�

Due to the chirality, the structure precesses around the
layer normal z following the law �0=q1z with a pitch in the
micron range.

The macroscopic quadrupole �ij will be to first order pro-
portional to Qij. The more realistic case of biaxial Sij is
treated in Appendix B and keeps the same symmetry as in
Eq. �2� with slightly involved factorized coefficients. This
expression with three basic matrices will be found in all the

tilted phases and is fundamental for the continuum theory we
have developed.

C. Sm-CA
�

In the anticlinic phase with a period of two layers �Fig. 4�,
both longitudinal and transverse dipoles contribute to a mac-
roscopic biaxial quadrupole which has the three C2 direc-
tions x, y, and z as symmetry axes. This phase is mislead-
ingly referred to be antiferroelectric due to the alternate
orientations of P� T, one should notice that there is also an
alternance of P� L that leads to an other periodic array in the x
direction �4,18�. So it is better to characterize this phase by
its quadrupole where P� T contributes to �yy and P� L to �xx and
�zz

As the Sm-CA
� is built by combining �=�0 and �=�0

+�, the OOP reads:

Qij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
1

2
sin2 ��cos 2�0 sin 2�0 0

sin 2�0 − cos 2�0 0

0 0 0
� �3�

with again a precession �0=q2z. It is known from experi-
ments that q2 has the opposite sign to q1 in a given com-
pound.

D. Sm-CFi1
�

This phase presents a unit cell commensurate to three lay-
ers with unequal changes of the azimuthal angle from layer
to layer ���=	 or 2��−	�� see e.g., Fig. 5 with the conse-

FIG. 2. Schematic arrangement of molecules in the Sm-A phase.
The transverse dipoles vanish while the longitudinal ones are in
equal numbers up or down. Note that each of the sketched mol-
ecules represent symbolically one half of all molecules in the bulk,
it is not a microscopic view.

FIG. 3. Tilted molecules in a Sm-C� layer, with the longitudinal
dipoles in equal number in opposite directions while the hindered
rotation leaves an average transverse dipole.

FIG. 4. In the anticlinic Sm-CA
� phase, the transverse and longi-

tudinal dipoles are compensated when pairing the layers, so the
phase is ferro-quadrupolar.
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quences that there is a net polarization at larger scale �the
Sm-CFi1

� is ferrielectric� and a macroscopic precession of the
structure around the layer normal ��0=q1�z�. All these infor-
mation can be gathered when writing the OOP of the phase

Qij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
J

2
sin2 ��cos 2�0 sin 2�0 0

sin 2�0 − cos 2�0 0

0 0 0
�

− I sin � cos �� 0 0 cos �0

0 0 sin �0

cos �0 sin �0 0
� �4�

taking the definitions of 	 and �0 given in the Fig. 5, one
finds �26� that the polarization PS is proportional to I= �1
+2 cos 	� /3 while the macroscopic quadrupole �ij is a func-
tion of �, I and J= �1+2 cos 2	� /3 and its main eigenvector
is tilted with respect to the layer normal.

E. Sm-CFi2
�

The unit cell is commensurate to four layers with unequal
changes of the azimuthal angle from layer to layer ���=
 or
�−
� see, e.g., Fig. 6 with now no net polarization at larger
scale �the Sm-CFi2

� is not ferrielectric� and a macroscopic
precession of the structure around the layer normal ��0
=q2�z, in almost all the studied compounds, q1 and q2� have
the same sign while q2 and q1� have the opposite�. All these
information are gathered in the OOP of the phase,

Qij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
J

2
sin2 ��cos 2�0 sin 2�0 0

sin 2�0 − cos 2�0 0

0 0 0
� �5�

with the definitions of 
 and �0 given in the Fig. 6, one finds
�26� that the macroscopic quadrupole �ij which has the layer
normal as one of its eigenaxes is a function of � and J=
−cos 
.

F. Sm-Cd6
�

A last commensurate phase with six layers has been pre-
dicted by H&T �23,27� and recently evidenced by Shun Wan
et al. �28�. We will not develop on it but it has a symmetry
close to that of Sm-CFi2

� and similar properties.

G. Sm-C�
�

Last but not least, this phase shows a periodic precession
with a short period which is not commensurate to the layer
thickness. Its macroscopic OOP is simply uniaxial,

Qij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
� �6�

H&T have shown that the Sm-C�
� is fundamental for the

obtention of the commensurate subphases. In short the in-
commensurate period varies continuously with the tempera-
ture taking values comprised in a subset of the interval of 2
to 8 layers. They have shown �23,27� that when this period
gets close to an integer number of layers, the system prefers
to lock-in at this integer value at the expense of the twist
energy compensated by some other gains. They have pro-
posed that this gain scales at J2 due to an anisotropy of

FIG. 5. Left: Side view of the 3 layers unit cell of a Sm-CFi1
� . at

right top view assuming a clockwise rotation, the difference in azi-
muthal angles between layers 1 and 2 or between 1 and 3 is taken as
	 �23,26�. The in-plane projection of the director of layer 1 makes
the angle �0 with x.

FIG. 6. Left: side view of the 4 layers unit cell of a Sm-CFi2
� . at

right top view assuming a clockwise rotation, the difference in azi-
muthal angles between layers 1 and 2 or between 3 and 4 is taken as

 �23,26�. The in-plane projection of the bissectrix of layers 1 and 2
makes the angle �0 with x.
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in-plane elastic energy. What we propose here is that the
lock-in allows the onset of macroscopic quadrupole and
sometimes dipole with J2 and I2 contributions that explain
the development of the full set of subphases.

III. SEQUENCE OF TILTED PHASE

A. Macroscopic and microscopic orientational order
parameters (OOP & oop)

We have just seen that all the phases described by the
distorted clock model are characterized by their macroscopic
orientational order parameter �OOP� Qij which general form
valid in all phases has been given in Eq. �4�. It is defined on
a scale of at least ten layers like the quadrupole �ij and the
polarization PS

� . We have also recalled the fundamental state-
ment of H&T that the helicity of the Sm-C�

� governs the
appearance of other phases. So one has to develop the theory
of the Sm-C�

� phase and its transition from the Sm-A. For
that we consider that each layer in a tilted smectic phase is
such that the director makes an angle � with z while its
in-plane projection makes the angle � with x; so we express
the result of the rotation of Sij in the xyz frame as the tensor
sij which is the microscopic orientational order parameter
�oop� of the layer,

sij = �1 −
3

2
sin2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
1

2
sin2 ��cos 2� sin 2� 0

sin 2� − cos 2� 0

0 0 0
�

− sin � cos �� 0 0 cos �

0 0 sin �

cos � sin � 0
� . �7�

As already reported in �29,30� the oop splits into three
traceless invariants, namely a bulk three-dimensional �3D�
uniaxial tensor which depends only on �, and two in-plane
tensors respectively two-dimensional �2D� biaxial and 2D
uniaxial depending also on �. This local tensor will be used
to compute the bulk OOP of each tilted phase by including
the z dependence of the azimuth angle �.

B. Landau–de Gennes free energy

The free energy density describing the phase transition
from the Sm-A to tilted phases can be written as a power
series of the local oop sij,

F1 =
1

2
aijklsijskl +

1

3
�ijklmnsijsklsmn +

1

4
bijklmnopsijsklsmnsop.

�8�

Following the Smith and Rivlin theorem �31� we express the
tensorial coefficients aijkl, �ijklmn and bijklmnop as products of
the elementary tensors like the Kronecker �ij, the Sm-A OOP

Sij and as we deal with chiral compounds the fully antisym-
metric Levi-Civita odd tensor eijk.

After some tedious calculations �29,30� one gets rather
simple results which are functions of the invariants intro-
duced in Eq. �7�,

1

2
aijklsijskl =

1

2
a1szz

2 +
1

2
a2��sxx − syy�2 + 4sxy

2 � +
1

2
a3�sxz

2 + syz
2 �

�9�

1

3
�ijklmnsijsklsmn =

1

3
�1szz�sxz

2 + syz
2 �

+
1

3
�2szz��sxx − syy�2 + 4sxy

2 �

+
1

3
�3��sxx − syy��sxz

2 − syz
2 � − 4sxysxzsyz�

�10�

1

4
bijklmnopsijsklsmnsop =

1

4
b1szz

4 +
1

4
b2��sxx − syy�2 + 4sxy

2 �2

+
1

4
b3�sxz

2 + syz
2 �2 +

1

4
b4szz

2 ��sxx − syy�2

+ 4sxy
2 � +

1

4
b5szz

2 �sxz
2 + syz

2 �

+
1

4
b6��sxx − syy�2 + 4sxy

2 ��sxz
2 + syz

2 �

�11�

using the approximation sin ��� in Eq. �7�, the free energy
density can then be developed in a power series in �, without
any dependence on the azimuth �. This is not surprising as �
and � can be considered as the modulus and the phase of the
Sm-C complex order parameter � exp�i�� �2�,

F1 =
1

2
a3�2 +

1

4
b�4 + ¯ �12�

where a3=�3�T−Tc� governs the Sm-A to Sm-C phase tran-
sition. This �2 term comes from the 2D-uniaxial invariant
while the �4 one is the sum of a1, a2, �1, �3 and b3 contri-
butions.

In the mean-field approximation, the angle � behaves like
b

�3
	Tc−T in the tilted smectic phases. This looks like previ-

ous theories �9,10,15� which make use only of the 2D-
uniaxial invariant missing somewhat the other terms which
are at the origin of the Hamaneh-Taylor �H&T� theory
�23,26,27�.

So far we have considered only the case of constant azi-
muthal angle � like in achiral smectics. As we are dealing
with chiral compounds, we can introduce the gradients of �
in the z direction to take into account the helicity of chiral
smectics.
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C. Helicity of the first tilted phase

When the tilt appears at the transition, the first phase that
condenses can be the Sm-C� or the Sm-C�

� , they are distin-
guished by the value of the pitch of the helix. We have to add
to the F1 term the energy contributions of �� � coming from
the gradients of the oop,

F2 = F1 − ijklmsij�kslm +
1

2
kijklmn�isjk�lsmn. �13�

The only gradients which do not perturb the symmetry of the
layers are the twisting ones which induce a rotation of the
2D-uniaxial and biaxial invariants around the layer normal.
So we assume that the first term linear in �� � measures the
twisting power of the phase while the second one, quadratic,
reflects the cost in twist elastic energy. One finally gets

ijklmsij�kslm = 1��sxx − syy��zsxy − sxy�z�sxx − syy��

+ 2�sxz�zsyz − syz�zsxz� , �14�

kijklmn�isjk�lsmn = k1���zsxx − �zsyy�2 + 4��zsxy�2�

+ k2���zsxz�2 + ��zsyz�2� �15�

when reduced to functions of � and � it remains,

F2 = F1 − �z� +
1

2
k��z��2 �16�

with the trivial solution �=�0+qz describing an helicoidal
rotation at the wave vector q= /k.

The introduction of helicity renormalizes slightly the qua-
dratic term in the free energy leading to a small displacement
of the transition temperature Tc to Tc1 �17�. Two cases must
be distinguished now, depending on the magnitude of the
helical pitch p=2� /q.

1. Small pitch: The Sm-A to Sm-C�
� phase transition

When the helical pitch takes values typically from 2 to 8
layers, the Sm-C�

� phase appears at the transition �32�. Al-
though it has been reported in a few compounds a Sm-C�

�

phase with 15 to 50 layers �23,32�, some caution must exer-
cised as it is on the basis of D.S.C. data taken at 3 °C mn−1,
with a small bump appearing above a large peak, that the
phase has been reported �33�. To be sure of the phase iden-
tification this bump should have been followed at lower
speeds as was done in MHPOBC �34�.

The Sm-C�
� phase is fundamental in order to get the full

sequence of commensurate subphases. It governs the number
of layers of the unit cell by means of the azimuth increment
� as developed in H&T theory. One of the experimental
challenges risen by this theory is the measurement of �
=2�d / p by means of the pitch p of the Sm-C�

� phase. Let us
point out that q=2� / p is the ratio of two polynomials in �
without any critical dependence,

q =
2�2 + 1�4

k2�2 + 2k1�4 �17�

we expect it to vary smoothly from 2 /k2 at the transition to
finite values later on. In all the known experiments to date

�19,21,22,24,32,35,36� there is a general trend of increasing
�=qd
qd0�1−�2 /2� when cooling down at the exception of
one compound �32,33� where the Sm-C�

� denomination is
subject to caution. Let us remark that the thermal variation of
qd is the product of two terms and cannot be predicted for
sure. Close to the transition, the decrease of d when cooling
down may be dominant but it seems that later on q will
increase and at the end will determine the response.

2. Large pitch: The direct Sm-A to Sm-C� phase transition

When the preferred pitch is typically larger than 0.3 	m,
the tilted phase can be considered locally as a Sm-C� which
precesses slowly around the layer normal. One has then to
take into account the macroscopic polarization �1� which ro-
tates too. In order to be coherent, P� is defined over a few
layers ��10�, while sjk is relative to one layer and the layer
polarization is not a macroscopic quantity �37�. One has to
introduce the macroscopic OOP Qjk= �sjk which is an aver-
age over the same area. This ensures that when the pitch is
smaller than 10 layers, i.e., in the Sm-C�

� phase, both P� and
the extra parts in �sjk vanish. As already stated earlier
�3,29,30�, the polarization can be formally introduced within
linear couplings with the 2D-uniaxial invariant of the OOP,
one describing the ferroelectricity �1� and the other the flexo-
electricity �3,38�,

�FP = CijkPiQjk + f ijklPi� jQkl �18�

=− C�PxQyz − PyQxz� + f�Px�zQxz + Py�zQyz� . �19�

The total polarization is obtained by the minimization
with respect to P of the following energy:

F =
Px

2 + Py
2

2�0�
+ �FP. �20�

One gets

P� = PF
� + Pf

� ,

Px = �0��CQyz − f�zQxz� ,

Py = �0��CQxz − f�zQyz� . �21�

As expected by symmetry the polarization is an in-plane
vector which maximizes �FP when it is normal to the pro-
jection of the director �Qxz ,Qyz� or equivalently parallel to
the gradient ��zQxz ,�zQyz�. Both contributions to P� are col-
linear, they follow the helical precession of the director and
they change sign with the chirality. The polarization which is
measured usually in unwound samples is the ferroelectric
one, as the other contribution disappears �17�.

Here again the introduction of the macroscopic ferroelec-
tric polarization renormalizes slightly the quadratic term in
the free energy leading to another small displacement of the
transition temperature Tc1 to Tc2 �30�. Conversely, the flexo-
elelectric polarization changes the twist elastic constant and
the helical pitch.
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IV. COMMENSURATE SUBPHASES

The Sm-C� and Sm-C�
� phases are not the only ones en-

countered in these compounds, when further cooling down a
sequence of commensurate phases with unit cells of 1 to 6
layers have been reported �5,28� which are best described by
the distorted clock model �19�. The fundamental idea in
H&T theory is that the basic tilted phase obtained below the
Sm-A phase is the Sm-C�

� one, with a short pitch varying
from about 2 to 8 layers. When the value of the pitch is close
to an integer number of layers, there can be a lock-in of the
structure at this integer number at the expense of the twist
energy, provided that there is a gain in electrostatic or elastic
energy �23,26,27�.

Let us enforce the fact that in these subphases, the tilt
angle � and the � parameter are functions of the temperature
only given by the solution of Eqs. �12� and �16�, respectively.

A. Hamaneh-Taylor theory (H&T)

The commensurate subphases of the distorted clock
model are a compromise between the pure XY clock model
�19� that requires a regular increase of the azimuth and the
old Ising model �7,18� that obliges the tilt to lie in one di-
rection of the plane �see, e.g., Fig. 7�. The azimuthal angles
in a subphase deviate from the regular XY behavior at the
expense of the twist elastic energy while the Ising model
favors in-plane anisotropy. H&T have introduced the angles
�� and � to describe the distance from the XY model and the
parameter J= �cos 2��1 to describe the biaxial Ising-like
tendency �23,27�. We have further defined the parameter
−1� I= �cos ��1 that measures the in-plane uniaxial char-
acter �26�.

I and J have already been introduced in the definition of
the OOP Qij = �sij in Eq. �4�, which is a function of the tilt
angle � and of �0 defined as the angle between the origin of
azimuthal angles in the unit cell and the x axis �26�. The
resulting order parameter Qij is unique; it is only its expres-
sion in a given frame which depends on �0.

B. Cost of lock-in: The short range term

From Eq. �16� one knows the amount of twist energy per
unit volume lost when the wave vector is slightly different

from its preferred value q=2� / p. It amounts to �Ft
=k��� /�z−q�2 /2. Introducing the azimuthal angle increment
�� and the layer thickness d, one gets �Ft=k���
−qd�2 /2d2, �Ft has a zero minimum value when ��=qd
=�.

This expression averaged over the unit cell of any dis-
torted clock model structure can be related to the short range
term FSR introduced empirically by H&T �23�. FSR
=F0�cos���−�� is a positive energy which takes its maxi-
mum value F0 in the Sm-C�

� phase when ��=�. On taking
F0=k /d2 and cos���−��
1− ���−��2 /2 one gets FSR
=F0− ��Ft with

��Ft =
1

2
F0���� − ��2 . �22�

We then know how much it costs to lock-in the average
increment ���=2� /n at a value close to �. In the initial
clock model this increment was supposed to be constant in
the locked-in phases but they would only be commensurate
Sm-C�

� phases without any change in energy. In that case the
unit cells are uniaxial without in-plane anisotropy so that the
extra parameters I and J are identically null.

C. Gain from quadrupolar and dipolar ordering: The I2

and J2 terms

Uniaxial nematic and Sm-A phases are well known to be
ferroquadrupolar �3�, i.e., the molecules are arranged at rest
so that their microscopic electric dipoles and quadrupoles
sum up cooperatively to give a macroscopic quadruple den-
sity proportional to the uniaxial OOP of the phase,

�ij
0 = �aSij . �23�

This can be demonstrated the following way: the quadru-
polar density has a quadratic self-energy �ij� ji /2�� and is
linearly coupled to the OOP by a term that we express as
−�a�ijSji /��. When minimizing the sum of these two terms
with respect to �ij, this leads to the result given in Eq. �23�
for the quadrupolar density and to the expression of the en-
ergy gained by its creation

�F�
A = −

�a
2

3��

. �24�

In the Sm-C�
� phase, this energy decreases with � propor-

tionally to the square of the modulus of the uniaxial OOP as

�F�
� = −

�a
2

3��
�1 −

3

2
sin2 ��2

�25�

the lock-in to commensurate subphases allows to recover a
part of this loss. In the uniaxial approximation we are using,
the quadrupolar energy in the Sm-C� phase is the same as in
the Sm-A, �F�

C =�F�
A . So when �F�

C is expressed as a linear
function of the squares of the modules of the three OOP
matrices it reads

FIG. 7. Sketch of azimuthal angles in the unit cells of Sm-CFi1
�

�top� and Sm-CFi2
� phases �bottom�. The real distribution in the

center is a combination of XY �left� and Ising models �right�.

J. P. MARCEROU PHYSICAL REVIEW E 81, 061704 �2010�

061704-6



�F�
C = −

�a
2

3��
��1 −

3

2
sin2 ��2

+
3

4
sin4 � + 3 sin2 � cos2 ��

�26�

this expression is exactly equal to Eq. �24� when factorizing
the sine and cosine terms. A straightforward generalization to
any value of I and J reads

�F�
IJ = −

�a
2

3��
��1 −

3

2
sin2 ��2

+
3J2

4
sin4 �

+ 3I2 sin2 � cos2 �� . �27�

We are eventually left with the gain due to the lock-in which
is the difference between the actual �F �Eq. �27�� and its
value in the SmC�

� phase �Eq. �25��,

�F = �F�
IJ − �F�

� = −
�a

2

��
� J2

4
sin4 � + I2 sin2 � cos2 ��

= − F0��1J2 + �1
	�1I2� � − F0��1�̃4J2 + �1�̃2I2� �28�

We have to take into account the elastic term introduced
by Hamaneh and Taylor �23� which is quadratic in J and
renormalizes the coefficient �1 to a new value �.

There is also a contribution due to the presence of the
macroscopic polarization PS

� if I�0 as developed by Dha-
ouadi et al. �26�,

PS = �0�CI� ,

�F̃P = −
PS

2

2�0�
= −

�0�C2�2

2
I2, �29�

the full energy gain reads with these new I2 and J2 terms,

�F̃ = − F0��J2 + �	�I2� � − F0��̃�4J2 + �̃�2I2� . �30�

D. Balance between short range loss and long range gain

When a phase described by the distorted clock model ap-
pears, it is characterized by nonzero values of I and J that
minimize at a negative value the following energy obtained
from Eqs. �22� and �30�,

F = F0�1

2
���� − ��2 − �J2 − �	�I2� . �31�

The phase diagrams in the plane �0���� , 0���1�
have been computed by H&T �23,27� with the J2 term and
Dhaouadi �26� �I2� together with their behavior under an ap-
plied electric field �−I .E� in the last case.

Let us remark that up to now we have discussed the com-
mensurate subphases in the unwound geometry although we
know that they are all precessing around the layer normal.
We propose to treat this problem now and compare our re-
sults with the well known pitch inversion at the Sm-CFi1

� to
Sm-CFi2

� phase transition �39�.

E. Helicity of the subphases

We have considered when discussing the equations used
to compute the phase diagrams that the unit cells of the com-
mensurate subphases were frozen and did not rotate while
the subjacent Sm-C�

� phase experiences a strong spontaneous
twist.

It is known that there is in fact a rotation about the layer
normal which is at the origin of the optical activity �39–41�.
Usually for a given compound there is a sign inversion in the
middle of the phase sequence so that the high temperature
Sm-C� and Sm-CFi2

� have the opposite sign to the Sm-CFi1
�

and Sm-CA
� phases. For one particular compound �19� it has

been reported a divergence of the optical activity in the
middle of the Sm-CFi2

� phase. This has been interpreted either
as a selective reflection �39� i.e., a matching of the pitch with
the light wavelength or by a sign inversion of the helix
�41,42�, let us note that in this case there should be three
successive sign inversions along the phase sequence in order
to obey the deVries formula �39,40�.

Some theories using a discrete approach have been pro-
posed to explain the usual sign inversion �43,44� or the spe-
cial Sm-CFi2

� case �42�. Our continuum approach allows us to
give a natural explanation for the usual case.

We first examine graphically the Sm-C� and Sm-CA
�

phases where the azimuth increase between layers is equal to
��=0 or ��=� while the Sm-C�

� phase that would take
place otherwise has a value �1=� not necessary small in the
first case �Fig. 8� or is close to � in the second ��2=�−�
Fig. 9�. The figures show that the cost in twist energy of the
lock-in will be reduced if the Sm-C� rotates in the same
direction as the Sm-C�

� while the Sm-CA
� has to take the

opposite sense. This illustrates the general trend observed in
the experiments �39� that the sense of the helix is opposite in
the two phases for a given compound. We have thus shown
that the would-be Sm-C�

� phase exercises a kind of torque on
the azimuthal angle �0 with a non trivial sign. It has to be
completed by a spontaneous twist we will develop now.

We take into account the preceding remarks by replacing

�Ft=F0���−��2 /2 by �Ft
˜ =F0���+d�z�0−��2 /2. We then

FIG. 8. Sketch of the short range term expressing the cost of
lock-in from Sm-C�

����=�� to Sm-C� phase ���=0�. A small posi-
tive increment ����� would reduce the cost, if this increment is
repeated for each layer it induces an helix with the same sign as in
the Sm-C�

� .
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state that the macroscopic angle �0 is subject to the same
laws than the microscopic �,

Ft
˜= F0��� + d�z�0 − ��2/2 − ��z�0 +

1

2
K��z�0�2 �32�

replacing F0 by k /d2, one has to minimize

1

2
�k + K���z�0�2 + � k

d
��� − �� − ���z�0 �33�

yielding

�z�0 =
� − k��� − ��/d

k + K
, �34�

thus the wave vector of the macroscopic helicity is given as
usual by the ratio of the twist sources to the rigidity. We
already know that the pitches are much larger than in the
Sm-C�

� phase so one may assume safely K�k. The source in
the numerator is made of two terms. The first one is the
intrinsic twisting power � which we take as having the same
sign as the microscopic one  and a comparable order of
magnitude, this remaining to be checked in real world. The
second one corresponds to the discussion we just developed
with the help of Figs. 8 and 9.

Let us briefly determine the sign of �z�0 in the different
commensurate subphases:

�1� In Sm-C� the second term dominates and has the sign
of �. The wave vector of the macroscopic helix is reduced
with respect to the Sm-C�

� one by the factor k /K.

�z�0 =
�

K
+

k

K

�1

d



k

K

�1

d
. �35�

�2� in Sm-CA
� the second term dominates with the opposite

sign, the wave vector is reduced the same way by k/K.

�z�0 =
�

K
−

k

K

� − �2

d

 −

k

K

� − �2

d
�36�

�3� in Sm-CFi1
� if the angle 	 is much larger than 2� /3 as

reported in literature �26�, the opposite sign comes again.
�4� the Sm-CFi2

� is more involved as it seems that the first
source dominates and in our hypothesis on the sign of �, the
helix has the same sign as �. However the proposed sign
inversion in one particular compound �41,42� could be ob-
tained by a different balance between these two terms when
� is close to � /2.

So we have found that the usual sequence with a sign
change in the middle of the range is well explained in our
theory. Let us also point out a side effect of the introduction
of the macroscopic helicity which is a new energy gain after
the minimization of Eq. �32�, that adds new J2 and I2 elastic
terms to the previously computed ones.

V. CONCLUSION

The tilted phases of chiral smectics are in finite number,
they are well known mainly by resonant x-rays scattering
experiments �19�. They have unit cells of one to six layers
described by the distorted clock model. Many models have
been proposed, most of them dealing with discrete interac-
tions between more or less close layers
�7,10–15,18,22,42–44�. A continuum model has been pro-
posed by Hamaneh and Taylor �23,27� which retrieves these
phases with a minimum number of adjustable parameters.
We have recently added the polarization and electric field to
this model �26� and try to assess in this paper the physical
meaning of the short and long range terms used in the theory.

We have shown that the sequence of distorted commen-
surate phases observed in tilted chiral smectics is explained
by the gain in electrostatic and elastic energies due to the
lock-in of the unit cell to a number of layers which is the
integer closest to the ratio of the helix pitch over the smectic
layer thickness of the subjacent Sm-C�

� phase. We also ex-
plain the sign change of the helicity in the middle of the
sequence by a balance between two twist sources.
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APPENDIX A: Tc SHIFTS

1. Due to the helicity

remembering Eq. �16� and introducing the preferred wave

vector q= /k, one gets F2
˜=F1−kq2 /2=F1−2 /2k. F1 is an

even polynomial in � as well as the correction term, the
leading term reads now after Eq. �12� �3�T−Tc��2 /2
−2

2 /2k2=�3�T−Tc
���2 /2 with a straightforward definition of

Tc
��Tc.

2. Due to the polarization

Here again the correction term due to the macroscopic
ferroelectric polarization can be expressed as �FP

1 =−�C2�2

leading to another shift in the transition temperature �Tc
�

=�C2 /�3.

FIG. 9. Sketch of the short range term expressing the cost of
lock-in from Sm-C�

����=�−�� to Sm-CA
� phase ���=��. A

smaller �� i.e., a rotation in the direction opposite to the Sm-C�
�

would reduce the cost.

J. P. MARCEROU PHYSICAL REVIEW E 81, 061704 �2010�

061704-8



APPENDIX B: BIAXIALITY VS UNIAXIALITY

All the unwound phases in the distorted clock model are
biaxial with the in-plane C2 axis as one eigenvector. Their

OOP S̃ij has three eigenvalues,

S̃ij = �− a 0 0

0 − b 0

0 0 a + b
� . �B1�

The matrices used to express a rotation of angle � around the
eigenvector 2 and another of angle � around the resulting
axis 3 read,

Pij
� = � cos � 0 sin �

0 1 0

− sin � 0 cos �
�Pij

� = � cos � sin � 0

− sin � cos � 0

0 0 1
�
�B2�

one gets

Qij =
3

2
�a cos 2� + b cos2 ���− 1/3 0 0

0 − 1/3 0

0 0 + 2/3
�

+
1

2
�− a cos 2� + b�1 + sin2 ����cos 2� sin 2� 0

sin 2� − cos 2� 0

0 0 0
�

− �2a + b�sin � cos �� 0 0 cos �

0 0 sin �

cos � sin � 0
� �B3�

this differs only slightly in the coefficients from the uniaxial
form we have used. We took a=b=1 /3, we could have been
closer to reality with a=1 /3, b=1 /3+� because of � fluc-
tuations evidenced by conoscopy under field �5�.
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