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Relative stability of uniaxial and biaxial nematic phases is analyzed in a model nematic liquid crystal
composed of flat molecules of C2h symmetry with four mesogenic groups rigidly linked to the same center. The
generalized effective quadrupole mean-field potential is proposed and its constants are evaluated numerically
for the pair intermolecular potential based on Gay-Berne interaction between mesogenic groups. The depen-
dencies of the constants on molecular shape parameters are systematically analyzed. Order parameters of the
uniaxial and biaxial nematic phases are evaluated by direct minimization of the free energy at different
temperatures. The corresponding phase diagrams are obtained enabling one to study the effects of molecular
model parameters on the stability regions of uniaxial and biaxial phases. The results are used to clarify the
nature of experimentally observed biaxial ordering in nematic liquid crystals composed of tetrapode molecules
with the same symmetry.
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I. INTRODUCTION

Liquid crystals are composed of strongly anisotropic mol-
ecules which are generally biaxial. At the same time, the
simplest liquid-crystal phases, i.e., conventional nematic and
smectic A ones, are macroscopically uniaxial. In uniaxial
phases, both long and short molecular axes are distributed
symmetrically around a unique macroscopic axis specified
by the director n. At lower temperatures many liquid-crystal
materials exhibit tilted smectic phases in which the director
is not parallel to the smectic layer normal. Tilted smectic
phases are intrinsically biaxial, and in these systems the mo-
lecular long axes are mainly ordered along the director while
short molecular axes are ordered along a direction perpen-
dicular to the tilt plane.

It should be noted, however, that in tilted smectic phases
the biaxial ordering of short molecular axes does not appear
in a self-consistent way but is induced by the tilt of the
director. From this point of view one of the greatest chal-
lenges in the field of liquid crystals is related to the biaxial
nematic phase in which molecular long and short axes are
ordered along the two macroscopic orthogonal directions
specified by the primary director n and the secondary direc-
tor m. The biaxial nematic phase is characterized by three
different principal refractive indices. Apart from their funda-
mental significance, biaxial nematic materials are also stra-
tegically important from the technological point of view be-
cause they have a number of advantages over both
conventional nematics and tilted smectics including a possi-
bility of ultrafast electro-optical and all-optical switching of
the second director.

The thermotropic biaxial nematic phase was predicted
theoretically 40 years ago by Freiser �1�. In 1980, Yu and
Saupe discovered the biaxial nematic phase for a lyotropic
liquid crystal composed of relatively large micelles �2�.
Many compounds have since been claimed to form a ther-

motropic biaxial nematic phase but there were no sufficient
experimental evidences. A potential existence of the biaxial
nematic phase has been supported by computer simulations
including the studies of lattice models �3,4�, athermal sys-
tems of hard biaxial ellipsoids �5,6� and soft biaxial particles
interacting via the generalized Gay-Berne potential �7� and
V-shaped multisite interaction models for bent-core mol-
ecules �8,9�. Recently the results of computer simulations of
biaxial nematics have been summarized in a review �10�.

In recent years strong experimental evidence in favor of
the existence of the thermotropic biaxial nematic phase has
finally been presented for two different materials. The biaxial
ordering has first been found in the nematic phase of bent-
core mesogens based on a mesogenic oxadiazole core
�11,12�. The biaxial phase has been characterized by x-ray
scattering �13�, conoscopy, and deuterium NMR �14� and
supported by atomistic computer simulations �9�. Very re-
cently the biaxial nematic ordering in bent-core liquid crys-
tals has also been studied using polarized Raman scattering
�15�, and several biaxial order parameters have been deter-
mined. The second biaxial nematic material is composed of
tetrapode molecules in which four mesogenic groups are
linked by flexible spacers to the central atom �16–18�. Polar-
ized infrared spectroscopy has been used to determine the
four orientational order parameters of this biaxial nematic
�16�. The existence of the biaxial ordering has later been
supported by NMR using a deuterated calamitic mesogen as
a spin probe �19�.

Pioneering works in the molecular theory of biaxial nem-
atic liquid crystals have been published by Fraser �1� and
Straley �20�. In particular, Straley has proposed a general
model quadrupole interaction potential composed of second
rank molecular tensors. This model potential has been used
in the majority of molecular theories developed later by dif-
ferent authors. In the molecular theory based on the quadru-
pole potential, the system undergoes a transition from the
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isotropic to the uniaxial calamitic NU or uniaxial discotic ND
nematic phase depending on the sign of molecular biaxiality
�21�. This first-order transition is followed by the second-
order transition from the uniaxial to the biaxial nematic
phase. The phase diagram of such a system is also character-
ized by the Landau triple point where the material undergoes
a direct transition from the isotropic to the biaxial nematic
phase �20–23�. Recently Virga, Sonnet, and Bisi with coau-
thors have presented a generalized mean-field phase diagram
for biaxial nematics �24–26� which contains both tricritical
and triple points. Four orientational order parameters of the
biaxial nematic phase have recently been calculated numeri-
cally using the same model �27�.

A drawback of all molecular theories based on a model
interaction potential is related to the difficulties in establish-
ing a correlation between the molecular structure and the
values of model parameters. Only a molecular model based
on dispersion interaction between biaxial molecules has been
used to express the coefficients of the model potential in
terms of the components of molecular polarizability �21�. No
attention has been paid so far to a relationship between the
symmetry of constituent biaxial molecules and the relative
strength of the biaxial part of the interaction potential, which
determines the stability of the biaxial nematic phase. How-
ever, such a relationship is very important. For example, sev-
eral attempts to tailor real disklike molecules with strong
biaxiality have not led to a biaxial nematic phase �see, for
example, �28��. At the same time, biaxial ordering has been
discovered in mesogens of rather unusual structure including
bent-core molecules and tetrapodes containing four me-
sogenic groups linked to the same center.

In this paper we consider a simple model of a rigid biaxial
molecule composed of four uniaxial mesogenic groups inter-
acting via a Gay-Berne potential. The biaxiality of such a
molecule is determined by the anisotropy of its geometrical
frame and by the angle between the mesogenic groups and
the axes of that frame. Taking into account the interactions
between all pairs of mesogenic groups within any two inter-
acting molecules we expand the total intermolecular interac-
tion potential in orthogonal functions and calculate all pa-
rameters of the corresponding effective quadrupole potential
numerically as functions of the model parameters of the mo-
lecular structure. We then employ the molecular-field theory
of biaxial nematics to investigate the phase diagram of the
system and to calculate numerically the order parameters of
the uniaxial and biaxial nematic phases. Although the studied
rigid molecules cannot be considered as a truly realistic
model for the real flexible tetrapode molecules, they possess
the same point symmetry as the averaged conformation of a
tetrapode. This enables applying our results to shed some
light on the origin of the biaxial ordering observed in the real
liquid crystals.

II. PAIR INTERMOLECULAR INTERACTION
POTENTIAL

The orientation of a rigid biaxial molecule can be speci-
fied by the unit vectors a and b in the direction of the pri-
mary �“long”� and secondary �“short”� molecular axes, re-

spectively. The third molecular axis is then specified by the
unit vector c which is orthogonal to both a and b. In the
biaxial nematic phase there exist three mutually orthogonal
macroscopic directions specified by the primary director n
and the secondary directors m and h. The unit vectors a ,b
and c, which form the molecular frame, can be expressed in
the macroscopic �n ,m ,h� frame in the following way:

a = n cos � + m sin � cos � + h sin � sin � �1�

and

b = − n sin � cos � + m�cos � cos � cos � − sin � sin ��

+ h�cos � sin � cos � + cos � sin �� �2�

and

c = n sin � sin � − m�cos � cos � sin � + sin � cos ��

+ h�cos � cos � − cos � sin � sin �� , �3�

where �, �, and � are the corresponding angles as follows:
the angle � is the polar angle between the primary axis a and
the primary director n, the angle � is the azimuthal angle
which specifies the orientation of the projection of the axis a
on the �m ,h� plane, and � specifies the angle between the
short axis b and the �a ,n� plane. A pair interaction potential
for two biaxial molecules “1” and “2” is generally a function
of all molecular orientations and the intermolecular vector
r=r12, i.e., U�1,2�=u�r ,a1 ,a2 ,b1 ,b2�.

We consider the model of a rigid flat biaxial molecule of
the C2h symmetry composed of four aligned mesogenic
groups �see Fig. 1�. The groups are parallel, lie in the same
plane, and their centers are located on the corners of a rect-
angle with sides A and B. The mesogenic groups are tilted by
an angle � with respect to the long axis of the rectangle.

The main part of the intermolecular interaction for such
molecules arises from the cross-interaction of pairs of me-
sogenic groups belonging to the two molecules. This inter-
action potential can be written as a sum of 16 similar terms:

u�r,a1,a2,b1,b2� = �
�,�=1

4

V�a1,r��,a2� , �4�

where r�� is the vector between the �th group of the first
molecule and the �th group of the second one, and the pri-

a

b
A

B

α κr0

r0

FIG. 1. �Color online� A model of a biaxial molecule of the C2h

symmetry with molecular axes a and b composed of four me-
sogenic groups.
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mary molecular axes a1,2 of the molecules are parallel to the
long axes of mesogenic groups in the corresponding mol-
ecule.

Anisotropic interaction between mesogenic groups is of-
ten modeled by the Gay-Berne �GB� interaction potential
�29,30� which is popular for its relative simplicity, smooth-
ness, and capability of reproducing orientational order of an-
isotropic liquids �30–33�. We use the following expression
for the GB potential VGB�1,2� to describe the pair interaction
of the mesogenic groups:

VGB�a1,R,a2� = 4��a1, r̂,a2� � �	 R

r0
− 	�a1, r̂,a2� + 1
−12

− 	 R

r0
− 	�a1, r̂,a2� + 1
−6� , �5�

where the orientation dependent range is

	�a1, r̂,a2� = �1 −



2
	 �r̂ · a1 + r̂ · a2�2

1 + 
a1 · a2

+
�r̂ · a1 − r̂ · a2�2

1 − 
a1 · a2

�−1/2

�6�

and the anisotropic interaction strength is expressed as

��a1, r̂,a2�

= �0�1 − 
2�a1 · a2�2�−1/2

��1 −

�

2
	 �r̂ · a1 + r̂ · a2�2

1 + 
�a1 · a2
+

�r̂ · a1 − r̂ · a2�2

1 − 
�a1 · a2

�2

.

�7�

Here r̂=R /R, r0 is the breadth of the molecule and the con-
stants 
= ��2−1� / ��2+1� and 
�= ���1/2−1� / ���1/2+1� are
determined by the relative elongation of the mesogenic
groups � as well as by the ratio �� of the energy well depths
for side to side and end to end mesogenic group orientations.

To take into account the hard-rod nature of the mesogenic
groups, which cannot penetrate each other, we multiply the
GB potential by 16 step functions of steric cutoff which take
the form ��r��−r0	�a1 , r̂ ,a2��. Thus we consider only those
pair molecular configurations when none of the groups inter-
sect.

III. MOLECULAR FIELD THEORY OF NEMATICS
WITH BIAXIAL ORDERING

A. Order parameters

Since the pioneering work of Straley �20� the following
two tensor order parameters: Qij = �aiaj − �1 /3�
ij
 and Bij
= �bibj −cicj
, where � . . . 
 denotes the statistical average,
have been used to describe the thermodynamic properties of
biaxial nematics. However, as has been shown recently �34�,
for the molecules of C2h symmetry with the symmetry axis
parallel to the axis c it is possible to introduce the third
independent molecular invariant aibj which is invariant un-
der all symmetry transformations of such a molecule and
which is orthogonal to both invariants aiaj − �1 /3�
ij and

bibj −cicj used in the existing theories. This new molecular
invariant gives rise to the new tensor order parameter �ij
= �aibj +biaj
. The statistical average of the antisymmetric
part of the molecular tensor �ij = �aibj −biaj
 is equivalent to
the macroscopic pseudovector Mi=�ijk� jk where �ijk is the
absolute antisymmetric Levy-Civita tensor.

The tensor order parameters Q, B, and � are second rank
symmetric tensors and thus they can be diagonalized. How-
ever, the main axes of all these tensors will coincide only in
the high-symmetry orthogonal biaxial nematic phase which
is characterized by three mutually perpendicular mirror
planes. The unit normals to these planes define three direc-
tors �n ,m ,h� of the biaxial nematic phase. This high-
symmetry biaxial nematic phase is assumed in the existing
molecular theory of biaxial ordering in nematics and in all
experimental papers. One notes that a low symmetry biaxial
nematic phases may also exist in principle �35�, but at
present there is no direct evidence on the precise symmetry
of any of the biaxial nematic phases studied experimentally.
Taking into account that the main aim of this paper is the
study of the tendency to exhibit the biaxial order depending
on the molecular structure, we follow the assumption of the
previous authors for simplicity and consider the high-
symmetry biaxial phase.

In the orthogonal biaxial phase the three tensor order pa-
rameters can be expressed in the common diagonal frame
�n ,m ,h� as

Qij = S�ninj −
1

3

ij� +

1

2
P�mimj − hihj� , �8�

Bij = D�ninj −
1

3

ij� + C�mimj − hihj� , �9�

�ij = G�ninj −
1

3

ij� + H�mimj − hihj� , �10�

where the six scalar order parameters are expressed in terms
of the following statistical averages:

S = �P2�cos ��
 , �11�

P = �sin2 � cos 2�
 , �12�

D =
3

2
�sin2 � cos 2�
 , �13�

C =
1

2
�cos 2� cos 2��1 + cos2 �� − 2 cos � sin 2� sin 2�
 ,

�14�

G = −
3

2
�sin 2� cos �
 , �15�

H =
1

2
�sin 2� cos 2� cos � − 2 sin � sin 2� sin �
 .

�16�
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The four conventional order parameters S, D, P, and C
have originally been introduced by Straley �20�. One notes
that our definition of S, P, and C corresponds to the defini-
tion of the Straley parameters S, T, and V, respectively, while
the expression for the order parameter D contains an addi-
tional factor of 3/2 compared with the definition of the order
parameter U used by Straley. See �36� for a relationship be-
tween different definitions of biaxial order parameters.

One also notes that the pseudovector order parameter M
vanishes identically in the high-symmetry biaxial phase. In-
deed, as any pseudovector, M changes sign under reflection
with respect to a mirror plane which is parallel to it. In the
high-symmetry biaxial nematic phase there are three or-
thogonal mirror planes, and thus all three components of M
must vanish.

B. Molecular theory and the parameters of the quadrupole
potential

Molecular-field theory is widely used in the description of
uniaxial nematics �37�, where the Maier-Saupe approach and
its generalizations appear to combine simplicity and semi-
quantitative agreement with experimental data.

The molecular-field approach can readily be applied also
to nematic liquid crystals composed of biaxial molecules and
exhibiting the biaxial nematic phase. In this approximation,
the free energy of the nematic phase reads

F/V =
1

2
�2� f1�a1,b1�u�r,a1,a2,b1,b2�

� f1�a2,b2�drda1db1da2db2

+ �kBT� f1�a1,b1�ln f1�a1,b1�da1db1, �17�

where � is the molecular number density and f1�a1 ,b1� is the
orientational distribution function which depends on the ori-
entation of both long and short molecular axes with respect
to the macroscopic directors.

The equilibrium distribution function is obtained by mini-
mization of the free energy which yields the following ex-
pression:

f1�a,b� =
1

Z
exp	−

UMF�a,b�
kBT


 , �18�

where Z is the normalization constant,

Z =� exp	−
UMF�a,b�

kBT

dadb , �19�

and where the mean-field potential UMF is expressed as

UMF�a,b� = �� f1�a2,b2�Ueff�a,a2,b,b2�da2db2. �20�

Here Ueff�a1 ,a2 ,b1 ,b2� is the effective interaction potential
integrated over all intermolecular vectors r:

Ueff�a1,a2,b1,b2� =� u�r,a1,a2,b1,b2�dr . �21�

In the general case the effective interaction potential
Ueff�a1 ,a2 ,b1 ,b2� depends on mutual orientation of the pri-
mary and secondary axes of the two interacting molecules.
Fixing the orientation of one of the molecules one can ex-
press the potential as a function of the angles �� ,� ,�� which
specify the orientation of the second molecule.

In the case of uniaxial molecules, the potential Ueff de-
pends only on the coupling between the primary axes of the
molecules a1 and a2, i.e., Ueff�1,2�=Ueff�a1 ·a2�. Such a po-
tential can be expanded in Legendre polynomials Pn�a1 ·a2�
and the first few terms of this expansion define a model
interaction potential used in the Maier-Saupe theory and its
generalizations �37�. A more complicated expansion of the
effective interaction potential has also been employed in the
molecular theory of smectics C �32�.

For biaxial molecules, the general form of the potential
Ueff depends on the molecular symmetry. For molecules of
the C2h symmetry group, the potential can be expanded in
powers of the three molecular tensors Qij

M =aiaj − �1 /3�
ij,
Bij

M =bibj −cicj, and �ij
M =biaj +aibj discussed in Sec. III A.

Keeping the quadratic terms one obtains the following ex-
pression for the effective interaction potential:

Ueff = u1Q1
M:Q2

M + u2B1
M:B2

M + u3�Q1
M:B2

M + B1
M:Q2

M�

+ u4�1
M:�2

M + u5�Q1
M:�2

M + �1
M:Q2

M� + u6�B1
M:�2

M

+ �1
M:B2

M� . �22�

One notes that Eq. �22� defines the generalization of the so-
called quadrupole interaction potential based on two molecu-
lar tensors which has been proposed by Straley �20� on semi-
phenomenological grounds and then used by other authors in
the theory of the biaxial nematic phase �24,26,27�.

Substituting the expressions for the unit vectors a ,b ,c
�Eqs. �1�–�3�� one obtains the following expression for the
potential:

Ueff��,�,�� = u1�cos2 � − 1/3� + u2�cos 2� cos 2��cos2 �

+ 1� − 2 cos � sin 2� sin 2��

+ u3 sin2 ��cos 2� + cos 2��

+ u4�2 cos 2� cos � cos �

− 2 cos � sin � sin �� + u5 sin 2��cos �

− cos �� + u6�2 sin ��sin � sin 2�

− sin 2� sin �� + sin 2��cos 2� cos �

− cos 2� cos ��� . �23�

The combinations of trigonometric functions appearing in
the right-hand side are mutually orthogonal, and this prop-
erty can be used to present an arbitrary interaction potential,
in the first approximation, as a linear combination of these
functions. For a given interaction potential �e.g., for the in-
teraction potential of a pair of model molecules� the coeffi-
cients u1–6 of the effective quadrupole potential can be evalu-
ated numerically by integrating the pair potential over the
intermolecular vector and all relative orientations of the two
molecules:
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u1 =
45

32�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�U��,�,��

� �cos2 � − 1/3� ,

u2 =
5

32�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�U��,�,��

� �cos 2� cos 2��cos2 � + 1� − 2 cos � sin 2� sin 2�� ,

u3 =
15

64�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�U��,�,��

� sin2 ��cos 2� + cos 2�� ,

u4 =
5

32�2�
0

�

d� sin ��
0

2�

d��
0

2�

�d�U��,�,���

� �2cos 2� cos � cos � − 2 cos � sin � sin �� ,

u5 =
15

64�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�U��,�,��

� sin 2��cos � − cos �� ,

u6 =
5

64�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�U��,�,��

� �2 sin ��sin � sin 2� − sin 2� sin ��

+ sin 2��cos 2� cos � − cos 2� cos ��� . �24�

This effectively six-dimensional integration requires signifi-
cant computational resources. We have performed the calcu-
lations for the potential �Eq. �4�� for a number of represen-
tative sets of parameters using the parallel processed
MATLAB–STAR-P code at the Lonsdale cluster at Trinity Cen-
tre for High Performance Computing, Trinity College Dub-
lin. In these calculations we have set A=B=2r0 �see Fig. 1�.
One notes that the increase in the ratio A /B obviously leads
to an increase in the elongation of the whole molecule which
leads to an increase in the uniaxial coupling constant u1 and
thus to a decrease in the isotropic-nematic transition tem-
perature.

We have studied the role of shape anisotropy �elongation�
of the mesogenic groups, represented by the parameter �,
and the role of the tilt angle of the mesogenic groups with
respect to the axes of the molecular frame on the coupling
constants of the effective quadrupole potential. A typical ex-
ample of the dependencies of the coupling constants u1–6 on
the parameter � is shown in Fig. 2. One can readily see that
the interaction constants u4, u5, and u6 �shown by dashed
lines�, which determine the contributions from molecular bi-
axial tensors �1,2

M , are very small which indicates that the
additional biaxial order parameters G and H should also be
small. The dependence of the coupling constants on the tilt
angle of the mesogenic groups is presented in Fig. 3. In this
case, the constants u4 and u6 are also small and only the
constant u5 is slightly larger. One notes, however, that the

constant u5 describes the coupling with the uniaxial molecu-
lar tensor QM, and thus it is not expected to have a strong
effect in the biaxial phase. At the same time, it is more im-
portant to note that the order parameters G and H vanish in
the limit of S→1, i.e., in the case of perfect order of long
molecular axes. Thus, at least far from the transition into the
isotropic phase the order parameters G and H are expected to
be small and for simplicity we will neglect them in the rest
of this paper.

If the parameters G and H are not qualitatively important
and the coupling constants u4 ,u5 ,u6 are relatively small, the
corresponding terms containing the tensor �M in the effec-
tive interaction potential can be neglected, and the relative
stability of the biaxial nematic phase is determined by the
ratios u2 /u1 and u3 /u1 where the constant u1 mainly deter-
mines the isotropic-nematic transition temperature. Thus we
now focus into the dependence of the constants u1 ,u2 ,u3 on
the parameters of the model.

One can readily see from Fig. 4 that the absolute values of
the constants u1 ,u2 ,u3 increase monotonically with the in-
creasing elongation as one may expect. At the same time, the

2.0 2.5 3.0 3.5 4.0
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-15

-10

-5

0

A = 2r0
B = 2r0
α = π/6
κ' = 4

u2u3

u 1
-6
/(

ρ
r3 0

ε 0
)

Mesogen elongation κ

u1

u4 u5 u6

FIG. 2. �Color online� All dimensionless constants of the effec-
tive quadrupole potential u1–6 / ��0r0

3�� as functions of mesogen
elongation � for �=� /6, A=2r0, B=2r0, and ��=4.
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-10
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ρ
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FIG. 3. �Color online� All dimensionless constants of the effec-
tive quadrupole potential u1–6 / ��0r0

3�� as functions of mesogen tilt
angle � for A=2r0, B=2r0, �=2, and ��=4.
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ratio of the constants u2 and u3 �which specify the biaxial
part of the quadrupole interaction potential� to the constant
u1 �which determines the uniaxial interaction� weakly de-
pends on �. Thus an increase in the shape anisotropy of the
mesogenic groups only weakly affects the ratio of the
isotropic—uniaxial nematic and uniaxial nematic—biaxial
nematic transition temperatures.

The dependence of the interaction constants in the mean-
field potential on the tilt angle of the mesogenic groups with
respect to the axes of the rectangular molecular frame is
different as shown in Fig. 3. The absolute value of the con-
stant u1, responsible for the uniaxial nematic ordering, de-
creases with the increasing tilt angle, while the absolute val-
ues of the biaxial constants u2 and u3 increases slightly with
the increasing tilt. This can be explained if one notices that
the overall shape of our model molecule changes from a
rectangle to a parallelogram upon tilting. This results in a
broader and effectively less elongated distribution of the me-
sogenic groups, i.e., the molecule becomes more biaxial. It
should be noted that the ratios u2 /u1 and u3 /u1 increase with
the increasing tilt of the mesogenic groups leading to an
increasing uniaxial-biaxial transition temperature and de-
creasing temperature interval of the uniaxial nematic phase.
This can be a reason why the biaxial ordering has been ob-
served in liquid crystals composed of tetrapode molecules of
the C2h symmetry and not in biaxial molecules of approxi-
mately rectangular shape.

IV. PHASE TRANSITIONS

Substituting Eq. �23� into the general Eq. �20� and using
Eqs. �11�–�14� for the order parameters S, P, D, and C one
obtains the following expression for the mean-field potential:

UMF��,�,�� = u1	2

3
SP2�cos �� +

1

2
P sin2 � cos 2�


+ u2�D sin2 � cos 2� + C�cos 2� cos 2��1

+ cos2 �� − 2 cos � sin 2� sin 2���

+ u3�S sin2 � cos 2� +
2

3
DP2�cos ��

+
1

2
P�cos 2� cos 2��1 + cos2 ��

− 2 cos � sin 2� sin 2�� + C sin2 � cos 2�� .

�25�

Substituting now Eq. �25� into Eq. �18� and then into Eq.
�17� one obtains the expression for the free energy of the
biaxial nematic phase:

F/V = −
1

2
�	u1�2

3
S2 +

1

2
P2� + u2�2

3
D2 + 2C2�

+ u3�4

3
SD + 2PC�
 − �kBT ln Z , �26�

where the normalization factor Z reads

Z = �
0

�

sin �d��
0

2�

d��
0

2�

d� exp	−
UMF��,�,��

kBT

 .

�27�

Minimizing this free energy as a function of four scalar order
parameters one can calculate the order parameters as func-
tions of temperature for the biaxial and/or uniaxial nematic.
We do this numerically by decreasing T from highly ordered
to lower ordered phases, i.e., studying the transitions upon
cooling the liquid crystal. One notes that the simple minimi-
zation of the mean-field free energy is possible because the
corresponding model interaction potential is fully attractive.
In the case of a partially repulsive interaction potential one
has to employ the so called minimax procedure �see �26,38��
when the free energy is minimized with respect to one group
of order parameters and maximized with respect to other
parameters.

One notices that the given definitions of the order param-
eters �Eqs. �11�–�14�� are not intrinsically symmetric with
respect to the exchange of the molecular axes. Indeed, one
has to select the primary �or “long”� molecular axis a, and
then the two remaining secondary axes are treated in a sym-
metric way. For biaxial molecules, however, it is not always
obvious which axis is the primary one, i.e. which axis orders
along the main director. In fact, by changing the parameters
of the molecular structure one may also change the orienta-
tion of the primary axis within the molecular structure. For
example, the primary axis of the biaxial ellipsoid with semi-
axes a, b, and c is parallel to the axis a if a�b and a�c.
However, if a=b the ellipsoid becomes uniaxial and its pri-
mary axis is now parallel to the axis c. A similar change in
the primary axis occurs also in the molecular model pre-
sented in Fig. 1 when one changes the anisotropy of the basic
rectangular structure.

Fortunately, the general tensorial character of the molecu-
lar theory, employed in this paper, enables one to recalculate
easily the order parameters related to different molecular
frames. It is shown in the Appendix that if the axis c is
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chosen to be the primary one, the corresponding tensor order
parameters, which can now be expressed in the form Qij

c

= �cicj − �1 /3�
ij
 and Bij
c = �aiaj −bibj
, have the following di-

agonal representations similar to Eqs. �8� and �9�:

Qij
c = Sc�hihj −

1

3

ij� +

1

2
Pc�ninj − mimj� , �28�

Bij = Dc�hihj −
1

3

ij� + Cc�ninj − mimj� , �29�

where the scalar order parameters are expressed as

Sc =
1

4
S +

3

4
P +

1

4
D +

3

4
C , �30�

Pc = −
1

4
S +

1

8
P −

1

4
D +

1

4
C , �31�

Dc = −
3

4
S −

9

8
P +

1

4
D +

3

4
C , �32�

Cc =
3

4
S −

3

8
P −

1

4
D +

1

4
C . �33�

Therefore, it is not crucial which molecular frame is used in
the following mean-field calculations. One can readily trans-
form the results between the frames, find the physically
meaningful one, and define the primary nematic order pa-
rameter S accordingly.

One notes that if the coupling constants u4 ,u5 ,u6 are
small, the effective intermolecular interaction potential pos-
sesses the D2h symmetry in the first approximation. It fol-
lows from this symmetry that the primary molecular axis
must be parallel to one of the axes a ,b ,c. If the last three
terms in the effective interaction potential �Eq. �23�� are
taken into account, the primary molecular axes may deviate
from the axis a slightly. This deviation, however, is expected
to be very small for small u4 ,u5 ,u6�u1 and can be calcu-
lated only in the context of a more general theory based on
all three tensor order parameters.

We have performed the numerical calculations for the sets
of parameters u1–3 presented in Figs. 2 and 3 and obtained
the phase diagrams shown in Figs. 4 and 5, respectively.

The qualitative structure of the phase diagrams is similar
to the one obtained by the previous authors �see, for ex-
ample, �20,24�� using a phenomenological quadrupole poten-
tial. In all cases the biaxial nematic phase separates two dif-
ferent uniaxial nematic phases which can be called calamitic
and discotic nematic phases, respectively. There exists also a
“triple” point where all three different nematic phases are in
equilibrium with each other and with the isotropic phase.
Numerical calculations indicate that in a rather broad vicinity
of the triple point the discontinuity of the isotropic-uniaxial
nematic phase transition is very small or virtually absent.
This apparently originates from the growing molecular biaxi-
ality associated with the increasing order parameter D. It
should also be noted that at the triple point the intermolecu-
lar interaction potential is characterized by the higher D4h

symmetry �26�, and as a result the system undergoes the
direct second-order transition from the isotropic to the biax-
ial nematic phase. Thus in the vicinity of the triple point the
discontinuity of the isotropic-nematic phase transition is in-
deed expected to be small.

It is interesting to consider the influence of the novel or-
der parameters G and H on the triple point. As discussed
above, the parameters G and H are expected to be small far
from the isotropic-nematic transition. At the same time, in
the vicinity of the triple point, all order parameters are small,
and G and H should be taken into consideration. As shown in
�26�, at the triple point the primary molecular axis a is
equivalent to one of the short axes, i.e., the conventional
interaction potential �with u4=u5=u6=0� is invariant under
the exchange of these axes. In the case of the flat molecules
considered in this paper the primary molecular axis a is
equivalent to the axis b at the triple point. Then the addi-
tional tensor order parameter G does not have a direct effect
on the triple point because the tensor G is invariant under the
exchange of the axes a and b itself. In the general case the
behavior may be more complicated and deserves a separate
consideration.

The thermodynamic behavior resembles a conventional
picture of the phase sequence in biaxial nematics: the liquid
crystal first undergoes a first-order transition from the isotro-
pic �I� to the uniaxial nematic �NU� phase. Then at a lower
temperature the second-order transition to the biaxial nem-
atic �NB� phase occurs. Throughout the whole temperature
range the order parameters P and D remain much smaller
than S and C. Typical examples are shown in Figs. 6�a� and
7�a�.

After the triple point, the transition from the isotropic to
another uniaxial nematic phase takes place. This uniaxial
phase ND is ordered in a different way as the molecular axes
c are now aligned along the main director. This phase is
usually called the discotic nematic phase, and in such a
phase, the planes of the molecules are aligned, which is
equivalent to the alignment of the c-axes normal to those
molecular planes. Accordingly, we present the results in
terms of the c-related order parameters.
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One can readily see from Figs. 6�b� and 7�b� that below
the transition from the isotropic phase, the liquid crystal is
actually a uniaxial nematic. The tensor order parameters re-
main uniaxial around the h axis and the only difference here
from conventional nematic is the negative sign of Dc. At
lower temperatures, a second-order transition to the biaxial
nematic occurs. Qualitatively, the order parameters in the NB
phase look rather similar in both a and c representations. The
order parameters S and C are large, while P and D are rela-
tively small and negative in the c representation. In other
words, the phases ND and NU, presented in the phase dia-
grams, are both uniaxial nematic phases composed of mol-
ecules of the same general structure, but the principal mo-
lecular axes are different. In the NU nematic phase the
principal molecular axis is the axis a which is parallel to the
long axes of the mesogenic groups, while in the ND phase the
principal molecular axis is the axis c which is perpendicular
to the molecular plane.

V. DISCUSSION

In this paper we have considered a model of a biaxial
molecule of C2h symmetry composed of four parallel me-
sogenic groups linked to the same center and located at the
corners of a rigid rectangle. In the context of this model the
molecular anisotropy can be controlled by changing the an-

isotropy of the mesogenic groups and/or the tilt angle of the
mesogenic groups with respect to the axis of the rectangle.
The interaction energy between two such molecules is taken
to be equal to the sum of all pair interaction potentials of the
mesogenic groups within the two molecules, and the interac-
tion between the mesogenic groups is modeled by a standard
Gay-Berne potential.

The total interaction potential between two such mol-
ecules has been expanded in orthogonal functions and ap-
proximately reduced to the so-called quadrupole effective in-
teraction potential which has been proposed by Straley on
semiphenomenological grounds and which is used in the ex-
isting molecular theory of biaxial nematics. The explicit
form of the intermolecular interaction potential, based on a
model for a biaxial molecule of the C2h symmetry, enables
one to calculate numerically the coupling constants of the
effective quadrupole potential and to study their dependence
on the parameters of the model molecular structure which
has not been achieved before. All coupling constants have
been calculated numerically as functions of the shape aniso-
tropy �elongation� of the mesogenic groups and the tilt angle
of the groups.

The increase in the elongation of the mesogenic groups
results in the increase in the absolute values of both the con-
stant u1, which determined the uniaxial intermolecular inter-
action, and the constants u2 and u3, which specify the biaxial
part of the interaction potential. As a result the relative
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strength of the biaxial interaction only weakly depends on
the elongation and the biaxial nematic phase is not promoted.
In contrast, the increase in the tilt angle of the mesogenic
groups results in the decrease in the absolute value of the
constant u1 while the absolute values of the biaxial constants
u2 and u3 slightly increase. This leads to an increase in the
relative strength of the biaxial part of the total intermolecular
interaction and thus to the increasing stability of the biaxial
nematic phase.

This result enables one to speculate why the biaxial nem-
atic phase has been discovered empirically in liquid crystals
composed of tetrapode molecules which are characterized,
on average, by the C2h symmetry, rather than in various ma-
terials composed of strongly biaxial molecules of higher
symmetry which have been synthesized and studied for a
decade. Calculations presented in this paper indicate that in
the context of the present molecular model the relationship
between the uniaxial and biaxial parts of the effective inter-
molecular interaction potential can be controlled by the tilt of
the mesogenic groups, and the relative strength of the biaxial
interaction increases with the increasing tilt enhancing the
stability of the biaxial nematic phase. One notes that in this
paper we have used the simplified rigid model while real
tetrapode molecules are flexible. Recently the role of flex-
ibility in biaxial nematics has been taken into account �39�
although it is still unclear how to obtain the parameters of the
effective interaction potential for flexible molecules.

The effective interaction potential with numerically calcu-
lated coefficients has been used in the molecular-field theory
of biaxial nematics to determine the order parameters and the
phase diagrams of the system of biaxial molecules of C2h
symmetry. Orientational order parameters of the uniaxial and
the biaxial nematic phases have been calculated numerically
by direct minimization of the free energy for representative
sets of the molecular model parameters. Two phase diagrams
have been obtained enabling one to study the dependence of
the transition temperatures on the shape anisotropy and the
tilt angle of the mesogenic groups.

Both phase diagrams contain a triple point where all three
nematic phases �uniaxial calamitic nematic, uniaxial discotic
nematic, and biaxial nematic� are in equilibrium with the
isotropic phase. Remarkably, the calamitic and discotic
uniaxial nematic phases, presented in the phase diagrams, are
composed of biaxial molecules of the same general structure
but with different effective primary molecular axes. In the
calamitic nematic phase, the primary molecular axes are par-
allel to the long axes of the mesogenic groups, while in the
discotic nematic phase, the primary axes are perpendicular to
the molecular planes. This reorientation of the primary mo-
lecular axis is related to the fact that the molecule becomes
more disklike with the increasing tilt of the mesogenic
groups. Statistically, both uniaxial phases, calamitic and dis-
cotic, are rather similar. The order parameters defined for the
corresponding primary molecular axes exhibit similar tem-
perature variations except for the sign of the order parameter
D which is negative in the discotic phase.

We note finally that the order parameters P and D appear
to be smaller than the primary biaxial order parameter C
everywhere in the biaxial nematic phase for all sets of pa-
rameters. The same result has recently been obtained also in

�27� using one set of coupling constants, and relationship
between the order parameters has also been confirmed by
computer simulations �10�. As discussed in �27�, this result
differs qualitatively from the results obtained experimentally
using the Fourier transform infrared spectroscopy �16�. Our
preliminary analysis of the theory of IR absorption in biaxial
nematics indicates that in one of the experimental geometries
used in �16� the light wave in the medium is not transversal
�due to birefringence�, and the electric field is testing a dif-
ferent component of the averaged molecular IR polarizabil-
ity. This, in principle, may lead to dramatic changes of the
values of order parameters. The corresponding detailed
analysis will be published elsewhere.
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APPENDIX: TRANSFORMATION OF THE ORDER
PARAMETERS BETWEEN DIFFERENT

MOLECULAR FRAMES

If one chooses the molecular axis a as the primary one,
the tensorial order parameters are conventionally defined as

Qij = �aiaj − �1/3�
ij
, Bij = �bibj − cicj
 . �A1�

If another molecular axis, say, the axis c, is supposed to be
the primary one, a different pair of tensors is to be consid-
ered:

Qij
c = �cicj − �1/3�
ij
, Bij

c = �aiaj − bibj
 . �A2�

Using the identity aiaj +bibj +cicj =
ij, one can easily find
that

Qij
c = −

1

2
�Qij + Bij�, Bij

c =
3

2
Qij −

1

2
Bij . �A3�

Next, using the identity ninj +mimj +hihj =
ij one can rewrite
the tensors �Eqs. �8� and �9�� as

Qij = �−
1

2
S −

3

4
P��hihj −

1

3

ij� +

1

2
�S −

1

2
P��ninj − mimj� ,

�A4�

Bij = �−
3

2
C −

1

2
D��hihj −

1

3

ij�

+ �−
1

2
C +

1

2
D��ninj − mimj� . �A5�

By substituting these tensors in such form in Eq. �A3� and
collecting the terms proportional to �hihj −

1
3
ij� and �ninj

−mimj� we finally arrive at Eqs. �28� and �29� with the scalar
order parameters given by Eqs. �30�–�33�.
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