
Dynamics of extended space charge in concentration polarization

Isaak Rubinstein* and Boris Zaltzman†

Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
�Received 3 April 2010; published 17 June 2010�

This paper is concerned with ionic currents from an electrolyte solution into a charge selective solid, such as
an electrode, an ion exchange membrane or an array of nanochannels in a microfluidic system. All systems of
this kind have characteristic voltage-current curves with segments in which current nearly saturates at some
plateau values due to concentration polarization—formation of solute concentration gradients under the pas-
sage of a dc current. A number of seemingly different phenomena occurring in that range, such as anomalous
rectification in cathodic copper deposition from a copper sulfate solution, superfast vortexes near an ion-
exchange granule, overlimiting conductance in electrodialysis and the recently observed nonequilibrium
electro-osmotic instability, result from formation of an additional extended space charge layer next to that of a
classical electrical double layer at the solid/liquid interface or, rather, from the peculiar features of the extended
space charge distinguishing it from that of a common diffuse electrical double layer. In this paper we discuss
the nature and origin of the extended space charge and analyze its peculiar steady state and time-dependent
properties important for understanding nonequilibrium electrokinetic phenomena in ionic systems.
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I. INTRODUCTION

In our recent studies �1,2� we re-examined the electrodif-
fusion time scales near the equilibrium �Ref. �1�� and as-
sessed the possibility of probing the diffuse electrical double
layer �EDL� at a permeable charge-selective interface, such
as a nonblocking electrode with a local equilibrium, ion-
exchange membrane, or an array of nanochannels, under a
finite steady-state current or voltage bias by small harmonic
high frequency current or voltage disturbances, electrical im-
pedance spectroscopy �EIS� �Ref. �2��.

Our main conclusion in Ref. �1� was that near the equi-
librium the EDL at such interfaces, as opposed to that at a
blocking interface, is essentially unamenable to the afore-
mentioned probing, with the entire system’s high-frequency
response dominated by the quasielectroneutral bulk �QEB�.
In the follow-up paper �2� we addressed the same question
away from equilibrium—under a finite steady-state current
or voltage bias. We particularly focused on the issue of prob-
ing the extended space charge �ESC� forming in such EDLs
in binary electrolytes in the course of concentration polariza-
tion �CP� near the limiting current �LC� �3–19�. This ESC is
the source of nonequilibrium electrokinetic effects of the sec-
ond kind �11–20�, including formation of the Dukhin’s vor-
tices �13� and nonequilibrium electro-osmotic instability in
ionic conductance �11,12,18�. This makes direct experimen-
tal probing of the ESC a relevant task especially in view of
the fact that, the aforementioned effects likely control several
processes of considerable applied importance, such as over-
limiting conductance in electrodialysis and shock formation
in protein preconcentration in micronanochannel systems
�21–23�. In this regime, corresponding to extreme electrolyte
depletion, the classical Poisson-Nernst-Planck description of
electrodiffusion is suitable without a need to account for

steric effects relevant for high ionic concentrations �24,25�.
The analysis in �2� was performed upon the same nonblock-
ing model problems as previously �1�. The main conclusion
was that also for a finite underlimiting bias, like near the
equilibrium, EDL at a nonblocking interface is not amenable
to this kind of probe; the high-frequency response of the
system is still dominated by QEB. On the other hand, ESC in
such EDLs may be probed in this way both by the linear and
nonlinear response, correspondingly by the EIS method and
via the anomalous rectification �AR� effect �26,27�. The lat-
ter appears preferable over the former as a potential experi-
mental tool for the study of ESC. Historically, until the dis-
covery of the nonequilibrium electrokinetic effects of the
second kind, AR remained the only known macroscopic
“footprint” of ESC in CP. It was argued in �2� that both
nonequilibrium electro-osmotic instability and AR are ex-
pressions of the same feature of ESC of nonequilibrium EDL
�NE-EDL� distinguishing it from the common diffuse space
charge of quasiequilibrium EDL �QE-EDL�.

This paper complements the above mentioned previous
studies �1,2� by addressing the peculiarity of NE-EDL and
ESC fronts. The main questions addressed here are as fol-
lows: what is ESC? Is it just the external part of a stretched
distorted EDL or something else, an entirely new structure
only spatially adjacent to EDL? If the former, the membrane
being an essentially bottomless source of counterions, what
could be the force pooling them out of it, while the electric
force pushes them back?

Below we conclude that ESC is not a part of EDL, rather
it is an extended vicinity of the counterions concentration
minimum with coions expelled from it by the electric field.
This conclusion emerges from a rigorous steady-state analy-
sis of the EDL structure in a one-dimensional �1D� model of
the diffusion layer at an ideally permselective membrane
�Sec. II� and study of the charge dynamics in this problem
combined with the observations on this system’s time re-
sponse to an instantaneous voltage increment �Sec. III�. In
addition, it is observed that ESC would even form without an
equilibrium EDL, with coions just sterically prohibited from
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entering the membrane, as in the “toy” model discussed in
Appendix A.

In Sec. IV we generalize the EDL analysis for a more
realistic three-layer problem, modeling a nonideally permse-
lective membrane flanked by two electrolyte diffusion layers.
For the purpose of analyzing the effect of membrane selec-
tivity on the dynamics of QE-EDL and ESC at the depleted
membrane/solution interface, in Sec. V the three-layer model
of Sec. IV is reduced to a much simpler one-layer setup.

For reference, in Appendix B we recapitulate from Ref.
�19� various types of the EDL’s structure corresponding to
various ranges of the applied voltage in relation to the di-
mensionless Debye length ��1, resulting from a suitable
analysis of the Painleve equation for the electric field in the
EDL.

II. FINE EDL STRUCTURE IN 1D STEADY-STATE
MODEL PROBLEM FOR IDEALLY PERMSELECTIVE

MEMBRANE

Below we analyze the following 1D steady-state model
problem. Let us consider a diffusion layer 0�x�1 of a uni-
valent electrolyte flanked by an ideal permselective mem-
brane �ideal nonblocking electrodes� x=0 and by a stirred
bulk solution maintained a fixed electrolyte concentration
and zero electric potential at x=1. The corresponding bound-
ary value problem reads

j+ =
def

�cx
+ + c+�x� = const, �1�

j− =
def

�cx
− − c−�x� = 0, �2�

�2�xx = c− − c+, �3�

��0� = − V, ��1� = 0, �4�

c+�0� = p1, �5�

c−�1� = 1, c+�1� = 1. �6�

Here c+ and c− are the dimensionless concentrations of cat-
ions �counterions� and anions �coions�, respectively �normal-
ized by the “outer” stirred bulk concentration c0�; � is the
dimensionless electric potential �normalized by the thermal
potential RT /F�; x is the dimensionless spatial coordinate
�normalized by the diffusion layer thickness L� and j+ , j− are
the dimensionless ionic fluxes �with a minus sign�; V is a
dimensionless voltage bias applied between the stirred bulk
and the membrane. Equations �1� and �2� are the steady-state
Nernst-Planck-Einstein equations for counterions and coions,
respectively, Eq. �3� is the Poisson equation with the space
charge in the right-hand side due to the local ionic concen-
tration imbalance and � is the dimensionless Debye length
defined as

� =
�dRT�1/2

2F��c0�1/2L
, �7�

where F is the Faraday constant, R is the universal gas con-
stant, T is the absolute temperature, and d is the dielectric

constant of the solution. �2 lies in the range 2�10−13��2

�2�10−5, for a realistic macroscopic system with 10−4

�L�cm��10−1, 10−4�c0�mol��1. Equation �2� asserts im-
permeability of the membrane for coions, whereas Eq. �5�
fixes the counterion concentration at the membrane/solution
interface. p1= N

e �1, where N is the dimensionless fixed
charge density in the membranes and V is a constant dimen-
sionless voltage bias applied between the stirred bulk and the
membrane. Condition �6� specifies the dimensionless con-
centration at the outer edge of the diffusion layer at unity.
Assuming � constant, with the underlying implicit assump-
tion of a constant dielectric permeability, is of course a crude
approximation in the current analysis �28� to be relaxed in
future studies.

By defining

E =
def

− �
d�

dx
�8�

and adding Eq. �1� into Eq. �3�, we rewrite Eqs. �1�–�3� as
follows:

E�c+ + c−� = �
d

dx
�c+ − c−� − �j+, �9�

c+ − c− = �
dE

dx
, �10�

�
dc+

dx
= Ec+ + �j+. �11�

By adding Eq. �9� into Eq. �10� multiplied by E, substituting
c+−c− from Eq. �10� and c+E from Eq. �11� and integrating
the resulting equation, we obtain

c+ =
�

2

dE

dx
+

1

4
E2 +

j+

2
�x − x0� . �12�

Here x0 is an integration constant, which is the root of the
linear extrapolation of the outer QEB ionic concentration
profile near the interface. By substituting Eq. �12� into Eq.
�11� we obtain the following inhomogeneous Painleve equa-
tion of the second kind for E:

�2d2E

dx2 =
1

2
E3 + j+�x − x0�E + �j+. �13�

To analyze Eq. �12�, we define the following boundary layer
variables F and z:

F =
def

�j+�−1/3�−1/3, z =
def

�j+�1/3�−2/3x . �14�

In terms of these variables, the boundary value problem
�Eqs. �1�–�6�� assumes the form

d2F

dz2 =
1

2
F3 + �z − z0�F + 1, 0 � z , �15�

��dF

dz
+

1

2
F2��

z=0
= 2�j+�−2/3�−2/3p1 + z0, �16�
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F�z� = −
1

z − z0
for z � z0�QEB� , �17�

lim
z→�

��
0

z

F�z�dz + ln�z − z0�� = −
2

3
ln � −

2

3
ln j+ − V + ln 2.

�18�

Here parameter z0 is defined as

z0 = �j+�1/3�−2/3x0, �19�

and the electric current j+ is determined by solution of a
suitable problem. Solution of the problem �Eqs. �14�–�18��
and its related uniformly valid description of the EDL under
current in various voltage regimes was given in Ref. �19�.
For future reference, in Appendix B, we reproduce from Ref.
�19� various types of solutions to the Painleve Eq. �15� and
its approximations, corresponding to various ranges of pa-
rameter z0��� and, thus, through Eq. �18�, to various ranges
of voltage V in relation to ��1.

III. CHARGE DYNAMICS IN 1D STEADY-STATE MODEL
PROBLEM FOR IDEALLY PERMSELECTIVE

MEMBRANE

We begin with analyzing the dependence on V for various
regimes of EDL of the total charge in the diffusion layer
defined as

	total =
def�

0

1

�c+ − c−�dx = �2�x�0� + O��2� . �20�

Solution of the problem �Eqs. �15�–�18�� for the quasi-
equilibrium range �underlimiting current regime�, V
�

4
3 	ln �	, −z0�1, yields to leading order �19�,

	total =
�


2p1

�x0j+ + 2p1� = �
 2

p1
�p1 − c̄�0�� , �21�

where c̄�0�=1− j+ /2 is the value of the outer QEB concen-
tration at the membrane/solution interface. In Fig. 1�a� we
plot the current �j+�–voltage �V� dependence �curve 1� along
with the total charge �	total�–voltage �V� dependence �curve

2�. We note the saturation in both plots for the intermediate
high voltage–strong depletion �c̄�0�→0� range. In Fig. 1�b�
we reproduce once more the current �j+�-voltage �V� depen-
dence �curve 1� along with that of the parameter z0 �curve 2�.
We note that current saturation in curve 1 is accompanied by
z0 changing sign, thus manifesting the appearance of ESC.

For the nonequilibrium range 4
3 	ln �	
O�V��

1
� , 1


O�z0��
1

�2/3 analysis of Eqs. �15�–�18� yields to leading
order,

	total = �
2p1. �22�

Finally, for the macroscopic ESC regime, V=O� 1
� � , z0

=O� 1
� �, Eqs. �15�–�18� yield to the leading order, see Ref.

�19�,

	total = �
2p1 + 2x0j+ =
�


2p1

��x0j+ + 2p1� + O�x0
2�� ,

�23�

which corresponds to the inflexion and ’second rise’ of the
current and the total charge in Figs. 1�a� and 1�b� in the
extremely high-voltage range. Of course this range �102V
−103V in dimensional variables compared to no more than a
few volts or, rather, fractions of a volt in realistic situations�
is of mathematical interest only and its related “second rise”
has nothing to do with the true mechanism of overlimiting
conductance. We note that all three Eqs. �21�–�23� are iden-
tical to the leading-order term for the limiting current regime
	x0	�1.

In Figs. 2�a� and 2�b� we compare the numerically com-
puted total charge 	1 with that given by Eq. �23�. We note
that both stand in a very good agreement not only for the
extreme macroscopic ESC regime, z0=O��−2/3�, but also for
finite positive values of z0 and, correspondingly, moderate
voltages, V�	 4

3 ln �	.
Summarizing, with the current at the limiting value while

ESC is forming, the total charge remains practically un-
changed up to very high voltages of the order of O� 1

� �. After
that the total charge starts to increase again in accordance
with Eq. �23� as illustrated in Fig. 1�a�.
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FIG. 1. �a� Current �curve 1�, total charge �curve 2�-voltage dependence and �b� current �curve 1�, normalized vanishing concentration
location x0 �curve 2�—voltage dependence; one-layer model, p1=10, �=0.0001. The voltage range unrealistically extended for complete-
ness of mathematical picture of ESC.
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In the rest of this section we discuss the fine structure of
the EDL under current and the charge dynamics in conditions
of CP. We begin with describing the charge distribution in
the EDL for various regimes. In Fig. 3�a� we present the
charge distribution plots,

	�x� =
def�

x

1

�c+ − c−�dx = �2�x�x� + O��2� , �24�

for a sequence of values of the parameter z0 and the corre-
sponding voltage V. Let us note that for z0�0 ESC is partly
formed at the expense of QE-EDL. The considerable part of
ESC is located in the transition zone to QEB. This manifests
itself via the appearance in this zone of a charge-density
front with another charge-density maximum, in addition to
that at the solution/membrane interface �x=0�. This is illus-
trated in Fig. 3�b� depicting the charge-density profiles.

In Fig. 4�a� we present two more plots illustrating the
total charge saturation at the limiting current and its relative
shift from the QE-EDL to the ESC zone. For this purpose, let
us define the QE-EDL outer edge as the location of the cation
concentration minimum, xmin:

xmin:
dc+

dx
�xmin� = 0, �25�

with the QE-EDL charge 	QE-EDL and ESC 	ESC defined
accordingly as

	QE-EDL =
def�

0

xmin

�c+ − c−�dx = �2��x�0� − �x�xmin�� ,

�26�

	ESC =
def�

xmin

1

�c+ − c−�dx = �2�x�xmin� + O��2� . �27�

The first curve in Fig. 4�a�, illustrating the total charge satu-
ration, depicts the convergence with the increasing voltage of
the total charge 	total to its limiting value �
2p1 with an
accuracy �5/3. The second curve illustrates the parallel mono-
tonic increase in ESC 	ESC.

To identify the precise mechanism behind this redistribu-
tion of the total charge, we trace the counterion and coion
redistribution with the voltage increase. In Fig. 4�b� we
present the ionic concentration profiles for an increasing se-
quence of parameter z0 with voltage V. We note the decrease
in both concentrations with the increasing voltage and a par-
allel expansion of the cation concentration minimum zone
into a finite-size interval �finite-size ESC region�, practically
void of coions. This suggests the following picture of the
systems response to increasing voltage. As a result of an
increase in the electric field acting in the direction of the
membrane the counterions are being pushed and leave the
EDL in the opposite direction toward the bulk. Near the equi-
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FIG. 2. Comparison of the numerically calculated total charge 	1 with its asymptotic approximation 	total �a� 	total �curve 1�, 	1 �curve
2� versus parameter z0; �b� the ratio 	1−	total / �3 versus parameter z0, curve 1; and versus voltage V, curve 2; p1=10, �=0.0001.
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FIG. 3. �a� Charge 	 distribution plots for a sequence of voltages V, parameter z0 values: 1—z0=−10, V=9.44 �QE-EDL�, 2—z0

=0, V=13.94 �transitional regime to NE-EDL�, 3—z0=5, V=23.38 �appearance of ESC�, 4—z0=10, V=42.31 �NE-EDL�, 5—z0

=20, V=96.5 �NE-EDL�; p1=10, �=0.0001; �b� charge-density c+−c− plots for a sequence of voltages V, parameter z0 values: 1—z0=
−10, V=9.44 �QE-EDL�, 2—z0=0, V=13.94 �transitional regime to NE-EDL�, 3—z0=5, V=23.38 �appearance of the ESC�, 4—z0
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ISAAK RUBINSTEIN AND BORIS ZALTZMAN PHYSICAL REVIEW E 81, 061502 �2010�

061502-4



librium, the coions concentration decreases faster than that of
counterions, yielding an increase in the total charge of the
QE-EDL. Upon the expulsion of coions near the limiting
current, the QE-EDL starts shrinking both in thickness and in
terms of its charge. Simultaneously, with the coions expelled
from it by the electric field, the locus of the counterion con-
centration minimum expands to a zone of a finite size, giving
rise to the emergence of ESC. The latter is in a nonequilib-
rium charged entity which develops next to QE-EDL partly
at its expense. At its emergence, the total ESC is of the order
of �4/3 and is mainly concentrated in a �2/3 wide charge front
zone between ESC and the QEB solution.

This qualitative picture stands in line with the following
asymptotic steady-state arguments valid for the moderate
voltage or underlimiting current regime. For these condi-
tions, the following Boltzmann relations for the ionic con-
centrations are valid in QE-EDL, 0�x
O���:

c− = e�, c+ = c̄�0�2e−� = �1 −
j+

2
�2

e−�. �28�

Substituting Eq. �27� into the Poisson Eq. �3� and integrating
the obtained equation we find

� = ln c̄�0� + 2 ln

c̄�0� + 
p1 − �
p1 − 
c̄�0��e−x/�
2c̄�0�


c̄�0� + 
p1 + �
p1 − 
c̄�0��e−x/�
2c̄�0�
.

�29�

Substituting Eq. �27� into the Poisson Eq. �3� and integrating
the obtained equation we find

� = ln c̄�0� + 2 ln

c̄�0� + 
p1 − �
p1 − 
c̄�0��e−x/�
2c̄�0�


c̄�0� + 
p1 + �
p1 − 
c̄�0��e−x/�
2c̄�0�
.

�30�

Substitution of Eq. �29� into Eq. �28� yields for 0�x

O���:

c− = c̄�0��
c̄�0� + 
p1 − �
p1 − 
c̄�0��e−x/�
2c̄�0�


c̄�0� + 
p1 + �
p1 − 
c̄�0��e−x/�
2c̄�0��2

,

�31�

c+ = c̄�0��
c̄�0� + 
p1 + �
p1 − 
c̄�0��e−x/�
2c̄�0�


c̄�0� + 
p1 − �
p1 − 
c̄�0��e−x/�
2c̄�0��2

.

�32�

Combining the “inner” cationic concentration �Eq. �32�� with
the “outer” ionic concentration in the electroneutral bulk
yields the following composite expression for the cation con-
centration valid in the entire diffusion layer, 0
x
1,

c+ = c̄�0��
c̄�0� + 
p1 + �
p1 − 
c̄�0��e−x/�
2c̄�0�


c̄�0� + 
p1 − �
p1 − 
c̄�0��e−x/�
2c̄�0��2

+
j+

2
x .

�33�

Finding the location of the minimum cation concentration
from Eq. �33� yields for the outer edge of the QE-EDL the
expression

xmin =
�


2c̄�0�
�3

2
ln

2c̄�0�
�2/3 + ln

4

j+ + ln

p1 − 
c̄�0�

p1 + 
c̄�0�

� .

�34�

With the ionic masses in the QE-EDL defined as

�+ =
def�

0

xmin

c+dx, �− =
def�

0

xmin

c−dx , �35�

Eqs. �31�–�34� yield for j+�2, V=O�1� to the leading or-
der:

�−

�
=


2c̄�0�
2

�3

2
ln

2c̄�0�
�2/3 + ln

4

j+ + ln

p1 − 
c̄�0�

p1 + 
c̄�0�

� ,

�36�

�+

�
=

�−

�
+ 
2p1 − 
2c̄�0� . �37�

Both ionic masses in QE-EDL and its outer edge location
xmin computed numerically and evaluated analytically for the
underlimiting current regime through Eqs. �34�–�37� are
plotted in Fig. 5 versus the current density j+ together with a
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FIG. 4. �a� The dependence of the total charge deviation from its limiting value, 	total−�
2p1, as a function on the applied voltage V,
curve 1; and the dependence of the ESC 	ESC on the applied voltage V, curve 2; p1=10, �=0.0001. �b� Cation c+ �continuous line� and
anion c− �dashed line� profiles for a sequence of voltages V �and the corresponding values of parameter z0�: �1� z0=−10, V=9.44 �QE-EDL�,
�2� z0=0, V=13.94 �transitional regime to NE-EDL�, �3� z0=5, V=23.38 �appearance of ESC�, and �4� z0=15, V=68 �NE-EDL�; p1

=10, �=0.0001.
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dependence of the QE-EDL edge location, xmin, on j+. We
point out the monotonic decrease in the ionic masses and the
change in direction of propagation of xmin near the limiting
current occurred near the transitional regime �c̄�0�
=O��2/3� , x0=O��2/3�, see Eq. �34��.

Let us complement the above rigorous analysis of EDL
and ESC with some heuristic scaling arguments. We begin
with inferring the origin of the �2/3 length scale.

Let us consider the ESC Region, where concentration of
coions vanishes and concentration of counterions is low and
nearly constant �see curves �3–5� in Fig. 3�b��. Neglecting
the diffusional cation flux component compared to the mi-
grational one in Eqs. �1� and the anions’ concentration com-
pared to that of cations in Eq. �3�, yield

c+�x = j+, xmin � x � x0, �38�

�2�xx = − c+, xmin � x � x0. �39�

To evaluate the ESC layer width x0−xmin, we rewrite Eqs.
�38� and �39� as follows:

�2d2�

dx2

d�

dx
� − j+, xmin � x � x0. �40�

Integration of Eq. �40� yields

x0 − xmin �
1

2
3����x0� − ��xmin���2/3�j+�−1/3. �41�

Equation �41� implies domination of the ESC layer by the
�2/3 length scale for the transitional range of potential drops
across this layer, O�1�
	��x�	x0

xmin
O�ln ��, whereas for
higher potential drops, 	��x�	x0

xmin=O��−� , 0��1, a
whole range of length scales appears, x0−xmin=O��2/3�1−��,
up to an ESC region of a finite size, x0−xmin=O�1�, for ex-
tremely high potential drops of the order of	��x�	x0

xmin=O� 1
� �.

The response of QE-EDL to the formation of ESC may be
traced through the force balance on the charge carriers. Inte-
gration of the Poisson Eq. �3� multiplied by �x, yields, taking
into account Eqs. �1� and �2� and integrating the obtained
expression

�2

2
��x

2�0� − �x
2�xmin�� − �p1 − c+�xmin�� = j+xmin,

0 � x � xmin. �42�

Equation �42� expresses the balance of forces acting on the
ions in the QE-EDL; that is, balance of the drop of total
pressure �sum of the Maxwell and osmotic pressures of ions
in QE-EDL� with the total friction force of this charges
against the water measured by j+xmin.

In terms of charge distribution the last equality reads

	total � 
	ESC
2 + 2�2�p1 − c+�xmin�� � �
2p1

+
	ESC

2

�
2p1

� 	ESC + �
2p1. �43�

Thus, indeed, the total charge in the diffusion layer is smaller
than the sum of the maximal charge of QE-EDL and the
ESC, that is, the latter is formed, at least partly, at the ex-
pense of the former. Here the magnitude of ESC charge,
	ESC, is determined by Eq. �23� �valid as previously men-
tioned for all relevant regimes� as

	ESC = �
2x0j+cmin. �44�

Integration of Eq. �40� yields, taking in account Eq. �41�,

	ESC � �
2j+�x0 − xmin� � �4/33j+���x0� − ��xmin���1/3.

�45�

Thus, recapitulating the entire picture, the ESC zone de-
velops as an extension of the cation minimum formed in the
course of the concentration polarization. The positive charge
of ESC is formed as a result of expulsion of anions by the
electric field into the locally electroneutral bulk, in which the
influx of the negative charge from ESC is compensated by
the influx of additional cations supplied by the anode. Simul-
taneously, with the formation of ESC the QE-EDL at the
membrane–solution interface adjusts itself by “squeezing” a
certain amount of cations back into the membrane �and then
to the far cathode� so that the total charge in the solution
stays almost constant and, thus, lower than the maximal
charge of QE-EDL plus the ESC in accord with Eq. �43�.
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FIG. 5. �a� The EDL ionic masses �+ �curves 1� and �− �curves 2�, calculated numerically for all regimes �continuous lines� and
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So far this qualitative picture was inferred from steady-
state arguments. These latter maybe complemented by obser-
vations of the systems time dependent response to an instan-
taneous voltage increment. Let us consider the following
time-dependent version of the boundary value problem �Eqs.
�1�–�6�� to be analyzed with a purpose to trace the system
response to an instantaneous voltage increment �;

ct
+ =

� j+

�x
, �46�

ct
− =

� j−

�x
, �47�

�2�xx = c− − c+, �48�

��0,t� = − �V + ��, ��1,t� = 0, �49�

c+�0,t� = p1, �50�

c−�1,t� = 1, c+�1,t� = 1, �51�

c+�x,0� = c0
+�x�, c−�x,0� = c0

−�x� . �52�

Here, the ionic fluxes j+ , j− are defined by Eqs. �1� and �2�,
and c0

+�x� , c0
−�x� are the steady-state ionic concentrations for

unperturbed voltage V, t is the dimensionless time �normal-
ized by the macroscopic diffusion time T=L2 /D, where D is
a typical ionic diffusivity in the electrolyte solution, assumed
equal for ions of both signs�. The following comparison of
instantaneous ionic fluxes j+ , j− computed at key locations
such as membrane/solution interface x=0, right edge of the
QE-EDL xmin, and diffusion layer/stirred bulk interface x=1
stands in line with the above scenario of ESC formation.

Thus, in Fig. 6�a� we present the time dependence of
fluxes computed near the equilibrium at the aforementioned
key locations. Comparing the cationic j+ flux �curve 1� cal-
culated at the membrane/solution interface, x=0, and at the
right edge of the QE-EDL �curve 2�, x=xmin, we observe a
decrease in the total cations’ mass �curve 2, Fig. 6�b�� in
QE-EDL. Simultaneously, an almost identical decrease in an-
ionic mass due to the anions expulsion from QE-EDL �curve
5, Fig. 6�a�� preserves the QE-EDL charge nearly constant.

In Figs. 7�a� and 7�b� we present similar plots computed
for the perturbation of a transitional state from quasiequilib-
rium to nonequilibrium, V=ln�p1�+10. We note a decrease in
anionic concentration in QE-EDL with voltage which yields
curves 1 �total QE-EDL charge� and 2 �total cation’s QE-
EDL Mass� approaching each other in Fig. 7�b�.

Finally, in Fig. 8 we present the corresponding plots for
perturbation of a strongly nonequilibrium state, V=ln p1
+20. We note vanishing of the anionic concentration in EDL
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accompanied by merging of the curves 1 �total QE-EDL
charge� and 2 �total mass of cations in QE-EDL� in Fig. 8�b�.
We also note a slight nonmonotonicity of the curves 1–3
�Fig. 8�b�� resulting from a slight nonmonotonic shift of the
location of the right edge of QE-EDL �inset to Fig. 8�b��.

Thus summarizing, the presented picture of temporal re-
sponse indeed confirms the view of development of ESC
zone as an extension of the cations’ minimum neighborhood.
The positive charge of ESC is formed as a result of the
expulsion of anions by the electric field into the locally elec-
troneutral bulk, where the influx of the negative charge is
compensated by that of additional cations from the anode.
Simultaneously, with the formation of ESC, the QE-EDL at
the membrane-solution interface adjusts itself by “squeez-
ing” a certain amount of cations back into the membrane
�and then further on to the cathode� so that the total charge in
the solution remains nearly constant or, rather, lower than the
sum of the maximal charge of QE-EDL and the ESC, in
accord with Eq. �43�. We also note that for all regimes of
EDL, the charge variation in QE-EDL under increase in the
applied electric field occurs through a suitable decrease in
the total amount of ions of both signs: counterions leave the
solution through the depleted interface, whereas coions are
expelled from the diffusion layer into the bulk and further on
to the anode.

We conclude this section with singling out the main pe-
culiarity of ESC compared to the QE-EDL charge, underly-

ing its related macroscopic effects, such as nonequilibrium
electro-osmotic instability �19� and AR �2�. According to Eq.
�21�, the QE-EDL charge depends only on the electro-neutral
interface concentration, with the potential drop across the
layer related to the former by the Donnan’s equation. As
opposed to this, the ESC depends on both the potential drop
across the EDL �� potential� and the interface value of the
electro-neutral ionic concentration gradient �see Eq. �45��.
For an ideally permselective interface, the former is propor-
tional to the electric current density. In the general case, it is
proportional to the “salt flux,” defined in the next section.
This difference in the control parameters of the QE-EDL and
ESC determines the difference of the system’s response to
external perturbations. Thus, in the underlimiting regime, the
QE-EDL charge and its related charge density decrease upon
the increase in the interface solute concentration. On the
other hand, at the limiting current, an increase in the inter-
face concentration gradient �parallel to the increase in the
interface concentration in the underlimiting regime since the
former is very low� yields contraction of the width of the
ESC region, with the total ESC charge practically un-
changed, that is yields an increase in the charge density.
Namely this difference in response underlies both nonequi-
librium electro-osmotic instability and AR.
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IV. THREE-LAYER MODEL

To test the universality of the above one-layer scenario,
let us consider a three layer problem concerning a nonideal
cation-exchange membrane, 1�x�2, separating two elec-
trolyte diffusion layers, 0�x�1 and 2�x�3, flanked on
the outside by two stirred bulks. The corresponding 1D time-
dependent formulation reads

ct
+ = jx

+, 0 � x � 3, t � 0, �53�

ct
− = jx

−, 0 � x � 3, t � 0, �54�

�2�xx = Q�x� + c− − c+, Q�x� = N�H�x − 1� − H�x − 2��,

0 � x � 3, t � 0, �55�

��0,t� = − V − �, ��3,t� = 0, c+�0,t� = c−�0,t� = c+�3,t�

= c−�3,t� = 1, �56�

c+�x,0� = c0
+�x�, c−�x,0� = c0

−�x� . �57�

The dimensionless ionic fluxes are given by Eqs. �1� and �2�,
� is the instantaneous voltage perturbation, c0

� are the respec-
tive unperturbed steady-state ionic concentrations, corre-
sponding to the unperturbed voltage V. Unity dimensionless
ionic diffusivities in the electrolyte and in the membrane are

assumed for simplicity, in order to focus entirely on the elec-
trostatics of EDL and concentration polarization. Generaliza-
tion of the subsequent analysis to a more realistic situation is
straightforward.

We begin with consideration of a highly charged cation
selective membrane �N�1�. In Figs. 9�a� and 10�a� we
present the time-dependence of the ionic fluxes at the
membrane/solution interface, x=0, at the right edge of the
QE-EDL, x=xmin and at the depleted diffusion layer/stirred
bulk interface, x=1, for a perturbation near the equilibrium
�V=0� and away from it �V=20�. Furthermore, in Figs. 9�b�
and 10�b�, we present the time dependence of the QE-EDL
charge, the total mass of cations and ESC showing a close
agreement between the one- and three-layer models for a
highly charged membrane �N=10e�.

The corresponding results for a moderately charged mem-
brane N=O�1� are presented in Figs. 11 and 12. Thus, in Fig.
11�a� we present the time dependence of the ionic fluxes at
the membrane/solution interface, x=0, at the right edge of
the QE-EDL �curve 2�, x=xmin and at the depleted diffusion
layer/stirred bulk interface, x=xmin for a perturbation near the
equilibrium �V=0� state for N=e. For short times, for this
kind of membrane the charge of EDL increases near the equi-
librium due to both expulsion of anions by the electric field
and diffusion driven exit of additional cations from the mem-
brane. For longer times, the cation flux reverses its sign �see
curve 1, Fig. 11�a�� with the cations driven back to the mem-
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brane by the electric field. In Fig. 11�b� we present the cor-
responding time dependence of the QE-EDL charge.

Finally, in Fig. 12 we present similar plots for a nonequi-
librium regime. We note the nonmonotonicity of the QE-
EDL charge and QE-EDL’s cations’ mass in these plots and
the presence of a significant number of anions in the QE-
EDL in the high-voltage regime for a low selectivity mem-
brane.

V. REDUCTION IN THE THREE-LAYER MODEL TO
ONE-LAYER

In order to analyze the effect of membrane selectivity on
the dynamics of QE-EDL and ESC adjacent to the depleted
membrane/solution interface, below we reduce the three-
layer model �Eqs. �53�–�57�� to a much simpler one-layer
setup. Let us consider the following steady-state version of
the problem �Eqs. �53�–�57��:

j+ =
def

D�x��cx
+ + c+�x� = const, 0 � x � 3 �58�

j− =
def

D�x��cx
− − c−�x� = const, 0 � x � 3 �59�

�2�xx = Q�x� + c− − c+, 0 � x � 3, �60�

��0� = − V, ��3� = 0, c+�0� = c−�0� = c+�3� = c−�3� = 1.

�61�

Here

Q�x� =
def

N�H�x − 1� − H�x − 2�� �62�

is the fixed charge density �0 in the electrolyte layers and
N�0 in the membrane� and

D�x� =
def

1 + �D − 1��H�x − 1� − H�x − 2�� , �63�

where D is the dimensionless ionic diffusivity in the mem-
brane assumed equal for both types of ions, compared to
their unity diffusivity in solution.

A. Solution of the “outer” problem

We begin the analysis of problem �Eqs. �58�–�63�� with
consideration of the “outer” QEB problem. The “outer” un-
knowns are the bulk electric potential �̃ and bulk ionic con-
centration c:

c =
def

c� �
Q�x�

2

= �c+ = c−, 0 � x � 1 − or 2 + � x � 3,

c+ −
N

2
= c− +

N

2
, 1 + � x � 2 − . �

�64�

Integration of Eqs. �58� and �59� in the electroneutral part of
the solution yields

c = �
J

2
x + 1, 0 � x � 1

J

2
�x − 3� + 1, 2 � x � 3,� �65�

�̃ = �
I

J
ln� J

2
x + 1� − V , 0 � x � 1

I

J
ln� J

2
�x − 3� + 1� , 2 � x � 3,� �66�

with the unknown constant “salt flux” J and electric current
I, defined as

J =
def

j+ + j− = 2cx, �67�

I =
def

j+ − j− = 2c�̃x. �68�

Taking into account continuity of electrochemical potentials
yields the following boundary-value problem for the electro-
neutral portion of the membrane:

cx +
N

2
�̃x =

J

2D
, 2 � x � 3, �69�

c�̃x =
I

2D
, 2 � x � 3, �70�

c�1+� =
N2

4
+ � J

2
+ 1�2

, �71�

�̃�1+� = � I

J
+ 1�ln� J

2
+ 1�

− V − ln�
N2

4
+ � J

2
+ 1�2

+
N

2
� , �72�

c�2−� =
N2

4
+ max��1 −

J

2
�,0�2

, �73�
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�̃�2−� = � I

J
+ 1�ln�1 −

J

2
� − ln�
N2

4
+ �1 −

J

2
�2

+
N

2
� .

�74�

The formulation �Eqs. �69�–�74�� is valid for all regimes,
except for the boundary condition �Eq. �74�� which fails
along with continuity of electrochemical potentials across the
depleted interface at the limiting current, when J→2.

Substituting Eq. �70� into Eq. �71� and integrating the
resulting equation, we find

c

J
+

IN

2J2 ln� IN

2J
− c� =

x

2D
+ const. �75�

Substitution of boundary conditions �Eqs. �71� and �73�� into
Eq. �75� yields

− 8

N2 + �2 − J�2 + 
N2 + �2 + J�2

+
IN

J2 ln

IN

J
− 
N2 + �2 − J�2

IN

J
− 
N2 + �2 + J�2

=
1

D
. �76�

Equation �76�, valid for all regimes, determines the depen-
dence of the electric current I on J. For the large fixed charge
limit N�1, Eq. �76� yields to the leading order

J

I
= 1 +

1

R
O� 1

N2� . �77�

Here

R =
def 1

DN
�78�

is membrane resistance which we assume to be of the order
unity. Thus, as expected the limit of high membrane’s charg-
ing, implies ideal permselectivity, with coions flux vanishing
and the salt flux and the electric current coinciding:

j− =
1

R
O� 1

N2� , �79�

Taking, the limiting current limit, J→2, in Eq. �76� we find

IlimN

4
ln

IlimN − 2N

IlimN − 2
N2 + 16
−

8

N + 
N2 + 16
=

1

D
. �80�

In Fig. 13�a� we present the dependence of the limiting elec-
tric current Ilim on the fixed charge density N for a fixed
membrane resistance. In Fig. 13�b� we present the depen-
dence of the ratio of the salt flux versus electric current on
the salt flux J for the three cases of a slightly charged �N
=0.1�, moderately charged �N=1�, and highly charged mem-
brane �N=10�. We note the low sensitivity of this ratio to the
salt flux and, correspondingly, to the applied voltage. We
also note that Eq. �76� and, correspondingly, the dependence
presented in Fig. 13, are valid for all voltage regimes.

B. Solution of the “inner” problem

Below we solve the problem �Eqs. �58�–�63�� in the mem-
brane QE-EDL and, using the solution to the outer problem
obtained above, reduce the three-layer model to a one-layer
formulation valid for a nonideal ion-selective membrane.

Solution of Eqs. �58� and �59� in the membrane QE-EDL,
2−O���
x�2, yields the following Boltzmann relations for
the ionic concentrations:

c+ = �c�2−� +
N

2
�e�̃�2−�−��x�, c− = �c�2−� −

N

2
�e��x�−�̃�2−�.

�81�

Here c�2−� , �̃�2−� are, respectively, the membrane/solution
interface values of the outer ionic concentration and electric
potential at the membrane’s side �see Eq. �64��. Note that an
analogous integration across the EDL at the depleted electro-
lyte side of the membrane/solution interface is valid only for
underlimiting regime.

Multiplying the Poisson Eq. �60� by ��, substituting Eqs.
�58� and �59�, and integrating the obtained equation across
the QE-EDls, we obtain the following expressions for the
inner electric field, analogous to Eq. �42� and bearing the
same physical meaning
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FIG. 13. �a� Curve 1: dependence of the half limiting electric current Ilim �the ratio of the limiting current and the limiting salt flux J
=2� on the fixed charge density N in the three-layer model, for a fixed membrane resistance R=1; curve 2: dependence of the limiting fluxes
ratio limV→�

j−

j+ on the fixed charge density N in the three-layer model for a fixed membrane resistance R=1; �b� The dependence of
electric/salt flux ratio, I

J , on salt flux J for N=10 �curve 1�, N=1 �curve 2�, N=0.1 �curve 3�, and R=1.
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�2��2	2−
x = 2N���x� − �̃� + c+ + c− − 2c�2−� + J · O����,

2 − O��� 
 x 
 2, �82�

�2��2	2+
x = 2�c+ + c− − 2c�2+� + J · O����,

2 
 x 
 2 + O��� . �83�

For the membrane/solution interface, x=2, the latter two
equations yield

N���2� − �̃�2−�� + 2c�2+� − 2c�2−� = 0. �84�

Taking into account Eqs. �74�, we find the potential drop
across the membrane QE-EDL:

��2� − �̃�2−� =
1 + �2c�2+�
N

�2

−
2c�2+�

N
= 1 + O� c�2+�

N
� .

�85�

Substitution of this expression into the Boltzmann relation
�84� yields

c+�2� = �
N2

4
+ c�2+�2 +

N

2
�e�2c�2+�/N�−
1+�2c�2+�/N�2

=
N

e
�1 + O� c�2+�

N
�� . �86�

Thus, we are able to evaluate the interface cation concentra-
tion in terms of fixed charge density N and the outer EN bulk
interface concentration, c�2+�=1− J

2 , only. We note that for
the limiting current regime, J�2, or high fixed charge den-
sity, N�1, Eqs. �85� and �86� yield

��2� − �̃�2−� = 1, c+�2� =
N

e
. �87�

The last equation justifies the determination of the interface
cation’s concentration in the one-layer problem �Eqs.
�1�–�6��. Thus, the maximal potential drop across membrane
QE-EDL is independent of the fixed charge density and equal
to unity or thermal potential in terms of dimensional vari-
ables. Since, according to Eq. �76�, flux ratio depends only
on the fixed charge density N and, the salt flux J, that is the
voltage V �recall the virtual independence of this ratio of the
voltage� to complete the formulation we have to find the
potential drop across the electrolyte layer in terms of the
voltage V.

To this end, we integrate Eq. �69� across the electroneutral
portion of the membrane and use the boundary conditions at
the enriched electrolyte layer/membrane interface, x=1,
where continuity of electrochemical potentials is valid for all
regimes. This integration yields

c�2−� − c�1+� +
N

2
��̃�2−� − �̃�1+�� =

J

2D
�88�

and

�̃�2−� =
1 + �2 + J

N
�2

−
1 + �max�2 − J

N
,0��2

+ � I

J
+ 1�ln� J

2
+ 1� − V − ln�
N2

4
+ � J

2
+ 1�2

+
N

2
+

J

2DN
� . �89�

Finally, referring to the flux ratio G�N ,J� =
def

I
J determined

by Eqs. �76� and �89�, we complete the formulation of the
model problem for the depleted diffusion layer of the three-
layer setup:

cx
+ + c+�x =

1 + G�N,J�
2

J, 2 � x � 3, �90�

cx
− − c−�x =

1 − G�N,J�
2

J, 2 � x � 3, �91�

�2�xx = c− − c+, 2 � x � 3, �92�

c−�3� = 1, c+�3� = 1, ��3� = 0, �93�

c+�2� =
1

2
�
N2 + �max�2 − J,0��2 + N�e�2−J/N�−
1+�2 − J/N�2

,

�94�

��2� =
1 + �2 + J

N
�2

+ �G�N,J� + 1�ln� J

2
+ 1� − V

− ln�
N2

4
+ � J

2
+ 1�2

+
N

2
� − max�2 − J

N
,0�

+
J

2DN
. �95�

Let us recall that for the high-voltage regime or high fixed
charge density, boundary condition �Eq. �94�� is simplified to
c+�2�= N

e .

C. EDL charge dynamics in the nonideal one-layer setup
under current

In the remainder of this section we reproduce the analysis
of Secs. II and III for the nonideal one-layer formulation
�Eqs. �90�–�95��. We rewrite the unscaled Painleve Eq. �13�
as

�2d2E

dy2 =
1

2
E3 + J�x − x0�E + G�N,J�J� �96�

and redefine the boundary layer variables F and z, Eq. �14�
via equalities

E = �G�N,J�J�1/3�1/3F, y = �G�N,J�J�−1/3�2/3z . �97�

In terms of these variables, the boundary value problem
�Eqs. �90�–�95�� is transformed into
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d2F

dz2 =
1

2
F3 +

z − z0

G�N,J�
F + 1, 0 � z , �98�

��dF

dz
+

1

2
F2��

z=0
= �G�N,J�J��−2/3�
N2 + �2 − J�2 + N�

�e�2−J/N�−
1+�2 − J/N�2
+

z0

G�N,J�
, �99�

F�z� = −
G�N,J�
z − z0

for z � z0�QEB� , �100�

lim
z→�

��
0

z

F�z�dz + ln�z − z0�� = −
2

3
ln � +

1

3
ln G�N,J� −

2

3
ln J

+ ��2� + ln 2, �101�

where ��2� is given by Eq. �95� and J is determined by
requiring the “outer” concentration to vanish at x=x0, yield-
ing

J = 2�1 − �G�N,J�J�1/3�2/3z0� . �102�

Here z0 is

z0 = �G�N,J�J�1/3�−2/3x0. �103�

In Fig. 14�a� we present the dependence of the voltage V and
potential drop across the depleted electrolyte layer −�2 on
the salt flux J for three values of the fixed charge N
= e

10 , N=e , N=10e. In Fig. 14�b� we present the depen-
dence of the QE-EDL thickness xmin on J for the same three
values of the fixed charge �N= e

10 , N=e , N=10e�. We note
the increase in x0 with the fixed charge and the shrinking of
the QE-EDL at the limiting current.

In Fig. 15�a� we present the dependence of the ionic
masses �+ and �− in the depleted QE-EDL on the salt flux J
for three values of membranes’ fixed charge N= e

10 , N
=e , N=10e. We note that both masses decrease with the
increase in the J �V� for all values of fixed charge density N,
whereas the anions’ mass vanishes at the limiting current
regime only for moderate and high values of N. In Fig. 15�b�
we present the corresponding dependence of the total charge
	total in the depleted electrolyte layer 2�x�3, and the QE-
EDL charge 	QE-EDL on J for the same three values of N. We
note the linear increase in the total charge with J, that im-
plies its saturation for high voltages �see Fig. 14�a�� and the
decrease in the QE-EDL charge for high voltages.
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FIG. 14. �a� Dependence of the total potential drop V �continuous line� and the potential drop across the depleted electrolyte layer −�2

�dashed line� on the diffusional current J for three values of membranes’ fixed charge N= e
10 �curves 1�, N=e �curves 2�, N=10e curves �3�,

and R=1; �b� dependence of the QE-EDL thickness xmin on the diffusional current J for three values of membranes’ fixed charge N= e
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�curves 1�, N=e �curves 2�, N=10e curves �3�, and R=1.
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VI. CONCLUSIONS

Our main conclusion in this study is that the extended
space charge in concentration polarization, although always
related to the quasiequilibrium electrical double layer, is not
a part of it. Rather, ESC is a separate entity developing from
the counterions’ minimum zone, which forms in the course
of CP near the depleted solid/liquid interface. Dynamics of
ESC, although bearing some features common with that of
QE-EDL, is different from the dynamics of the latter. In the
toy model in Appendix A below both QE-EDL and ESC,
absent at the equilibrium at zero current, emerge in the
course of CP, with the development of the former preceding
that of the latter. The summarizing sentence for the relation
between the properties of ESC and its induced effects might
be this: the vigor of the ESC related flows �such as Dukhin’s
vortices or those in the nonequilibrium electro-osmotic insta-
bility� compared to common quasiequilibrium electro-
osmotic flows results from the greater distance of ESC from
the wall compared to QE-EDL. The very occurrence of criti-
cal effects of ESC �such as anomalous rectification and non-
equilibrium electro-osmotic instability� is due to peculiarities
of ESC response to external perturbations.
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APPENDIX A: EDL CHARGE DYNAMICS IN A TOY
PROBLEM

To illustrate the particular relation between the QE-EDL
and ESC let us analyze the following toy model in which
anions are sterically prohibited from crossing an infinitesi-
mally thin membrane located at x=0, and separating two
diffusion layers −1�x�0, 0�x�1, flanked on the outside
by two stirred bulks. The corresponding boundary value
problem reads

j+ =
def

cx
+ + c+�x = const, − 1 � x � 1, �A1�

j− =
def

cx
− − c−�x = 0, − 1 � x � 1, x � 0, �A2�

�2�xx = c− − c+, − 1 � x � 1, �A3�

c−��1� = 1, c+��1� = 1, ��− 1� = − V, ��1� = 0.

�A4�

Integration of Eq. �A2� and substitution of boundary condi-
tions �Eq. �A4�� yield

c− = �e�+V, − 1 � x � 0

e�, 0 � x � 1.
� �A5�

Similarly with a consideration of the three-layer problem
�Eqs. �58�–�62�� we integrate the three-layer problem �Eqs.
�A1�–�A5�� across the enriched electrolyte layer −1�x�0
and reduce it to a one-layer setup. We start integration of the
respective outer “electroneutral bulk” problem with the left,
enriched electrolyte layer −1�x�0. The respective electro-
neutral electrolyte concentration and electric potential read

c = 1 +
j+

2
�x + 1�, �̃ = ln�1 +

j+

2
�x + 1��, − 1 � x � 0.

�A6�

Continuity of the cations’ electrochemical potential across
the QE-EDL in this enriched diffusion layer yields

ln�c+�0�� + ��0� = 2 ln�1 +
j+

2
� − V . �A7�

To complete the formulation of the one-layer problem we
employ the pressure balance across both EDLs similar to Eq.
�42�. Thus, multiplying the Poisson Eq. �A3� by ��, substi-
tuting Eqs. �A1� and �A4� and integrating the obtained equa-
tions across the electrolyte layers −1�x�0, 0�x�1, we
obtain the following expressions for the inner electric field at
x=0:

�2���0�2 = 2�c+�0� + e��0�+V� − 2�2 − j+� = 2�c+�0� + e��0��

− 2�2 + j+� , �A8�

and find the potential drop across depleted electrolyte layer
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��0� = ln�−
2j+

eV − 1
� . �A9�

The latter condition completes the formulation of the re-
duced one-layer problem for the depleted electrolyte layer
0�x�1, which reads as follows:

j+ = cx
+ + c+�x = const, 0 � x � 1, �A10�

�2�xx = e� − c+, 0 � x � 1, �A11�

��0� = ln� 2j+

eV − 1
�, c+�0� =

�1 +
j+

2
�

j+ �1 − e−V� ,

�A12�

c+�1� = 1, ��1� = 0. �A13�

The rest of the analysis is similar to that of the problem �Eqs.
�1�–�6��. We reduce the formulation �Eqs. �A10�–�A13�� to a
suitable boundary-value problem for inhomogeneous Pain-
leve equation of second kind, whose solution yields the EDL
dynamics under current. Let us note that for the quasiequi-

librium regime, V=O�1�, ionic concentration profiles in both
layers −1�x�0 and 0�x�1, are antisymmetric, with the
interface counterion concentration c+�0� equal unity. This
symmetry breaks down with the appearance of the ESC
zone. In Fig. 16�a� we present the current or voltage depen-
dence together with the total electrolyte layer charge/versus
voltage plot. Let us note the perfect coincidence of both
plots, which means that in our toy model, with membrane’s
fixed charge absent, the charge of the electrolyte layer is
proportional to the electric current. In Fig. 16�b� we plot the
depleted electrolyte layer’s charge versus voltage along with
the QE-EDL charge versus voltage. We note a sharp decrease
in the second plot with the appearance of the ESC zone.

APPENDIX B: REVIEW OF SOLUTIONS TO THE BASIC
PROBLEM [Eqs. (14)–(18)] FOR VARIOUS RANGES

OF VOLTAGE V

Scenario 1. Thin QE-EDL, z0=−O��−2/3�, x0=−O�1�, and
V=O�1�.

We begin with the regime of a thin QE-EDL near the
membrane surface z=0. In this case the integration of the
basic problem �Eqs. �14�–�18�� yields �see Ref. �19��

F�z� = −
1

z − z0
−

4
	z0	�2
p1

	z0	�2/3 �j+�−2/3 − 1�e−z
	z0	

�
2
p1

	z0	�2/3 �j+�−2/3 + 1�2

− �
2
p1

	z0	�2/3 �j+�−2/3 − 1�2

e−2z
	z0	

. �B1�

Then, rewriting Eq. �B1� in outer variables we find

�x =
1

x − x0
−

1

�

4
j+x0�2
p1

j+x0
− 1�e−x
j+x0/�

�
 2p1

j+x0
+ 1�2

− �
2
p1

j+x0
− 1�2

e−2x
j+x0/�

�B2�

and

x0 = −
2
p1

j+ e−V/2. �B3�

Finally, from the solution of the leading-order problem for
Eqs. �1�–�6� valid for x�� we obtain

j+ = 2�1 − 
p1e−V/2� . �B4�

Scenario 2. Thick QE-EDL, −�−2/3�O�z0��1, −1�O�x0�

−O��−2/3�, and O�V��− 4

3 ln �.
In this case in addition to the thin QE-EDL intrinsic scale

x=O��� there appears a new scale x=O� �

	x0	 �, which for

higher voltages O�V�= 4
3 ln � transforms into the extended

space charge scale x=O��2/3�. The following asymptotic ex-

pansion of Eq. �B1� implies the appearance of the thick com-
ponent to the QE-EDL:

�x = 4

− j+x0

�
·

exp�− x
− j+x0

�
�

1 − exp�− 2x
− j+x0

�
� −

2

x
+

2

x + 
2p1�

−
1

x − x0
. �B5�

The solution of the problem �Eqs. �1�–�6�� in the EN bulk
yields up to the leading order

x0 = − 2
p1e−V/2, j+ = 2. �B6�

Scenario 3. Transition to nonequilibrium EDL. z0=O�1�, x0

=O��−2/3�, and V=−O� 4
3 ln ��.

In this case the electric current density j+ is up to the
leading order given by Eq. �B4� and electric field is given by
�see Ref. �19��:
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�x =
2

x + 
2p1�
− 21/3�−2/3F�21/3x

�2/3 � . �B7�

First term in the composite solution �Eq. �B7�� represents the
contribution of the thin EDL and the second of the extended
space charge, where F�z� is the basic singular Painleve solu-
tion to the following problem:

d2F

dz2 =
1

2
F3 + �z − z0�F + 1, �B8�

��F +
2

z
��

z=0
= 0, F��� = 0. �B9�

In order to simplify Eqs. �B8� and �B9�, we define the regular
part G�z� of the singular Painleve solution as

G�z� = F�z� +
2

z
. �B10�

Substitution of Eq. �B10� into problem �Eqs. �B8� and �B9��
yields the following boundary-value problem for G�z�:

d2G

dz2 =
1

2
G3 +

6

z2G −
3

z
G2 + zG − 1 + z0�2

z
− G� ,

�B11�

G�0� = 0, G�z� =
2

z
−

1

z − z0
for z − z0 � 1.

�B12�

The control parameter z0 is determined via the solution of the
following equation:

P�z0� = −
4

3
ln � − V − ln p1 −

4

3
ln j+, �B13�

where

P�z0� =
def�

0

� �G�z� −
1

z + 1
�dz . �B14�

Scenario 4. Developed microscopic nonequilibrium �ex-
tended� space charge zone O�1��z0�O��−2/3�, O��−2/3�
�x0�O�1�, and −O� 4

3 ln ���V�O�1 /��.

In this case the electric current density j+ is up to the
leading order given by Eq. �B6� and electric field is given by
�see Ref. �19��:

�x =
2

x + 
2p1�
−

2

x
+

2
x0

�

2

e2
x0x/� − 1

− �−2/321/3F1�21/3�−2/3�x − x0�� , �B15�

where F1 is the following unique Painleve transcendent:

d2F1

dz2 =
1

2
F1

3 + �z − z0�F1 + 1, �B16�

	�F1 + 
− 2z�	z=−� = 0, F1��� = 0. �B17�

Substituting asymptotic expansion �Eqs. �B15�–�B17�� into
Eq. �B13� and keeping leading-order terms yield

z0 =

32/3�V +
4

3
ln ��2/3

2
, x0 = �3�V +

4

3
ln ���

4
�

2/3

.

�B18�

Scenario 5. Macroscopic extended space charge zone z0
=O��−2/3�, x0=O�1�, and V=O�1 /��.

Keeping leading-order terms in Eq. �B15� we find

�x =
2
2x0j+

�

·

1 −
 p1

x0�j+�1/3 + 1

�1 +
 p1

x0�j+�1/3 + 1�e

2x0j+/� + 1 −
 p1

x0�j+�1/3 + 1

− �−2/3�j+�1/3F1��j+�1/3�−2/3�x − x0�� . �B19�

Integrating the outer EN bulk problem we find

j+ =
2

1 − x0
, �B20�

and substituting Eq. �B19� into Eq. �B18�, keeping leading-
order terms, we obtain the following algebraic equation for
the edge of macroscopic extended space charge

x0
3

1 − x0
= �3V�

4
�2

. �B21�
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