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Results are presented for the nonequilibrium dynamics of a quantum XXZ-spin chain whose spins are
initially arranged in a domain wall profile via the application of a magnetic field in the z direction, which is
spatially varying along the chain. The system is driven out of equilibrium in two ways: a�. by rapidly turning
off the magnetic field, b�. by rapidly quenching the interactions at the same time as the magnetic field is turned
off. The time evolution of the domain wall profile as well as various two-point spin correlation functions are
studied by the exact solution of the fermionic problem for the XX chain and via a bosonization approach and
a mean-field approach for the XXZ chain. At long times the magnetization is found to equilibrate �reach the
ground state value�, while the two-point correlation functions in general do not. In particular, for quenches
within the gapless XX phase, the spin correlation function transverse to the z direction acquires a spatially
inhomogeneous structure at long times whose details depend on the initial domain wall profile. The spatial
inhomogeneity is also recovered for the case of classical spins initially arranged in a domain wall profile and
shows that the inhomogeneities arise due to the dephasing of transverse spin components as the domain wall
broadens. A generalized Gibbs ensemble approach is found to be inadequate in capturing this spatially inho-
mogeneous state.
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I. INTRODUCTION

Recent years have seen remarkable progress in manipulat-
ing cold-atom systems �1� providing us with almost ideal
realizations of strongly correlated many-particle systems.
Cold atom systems also have the unique feature that the in-
teractions between particles and the external potentials that
they are subjected to are highly tunable and can be changed
rapidly in time, thus, driving these systems into highly non-
equilibrium states �2�. This property has in turn motivated a
lot of theoretical activity that revolves around studying non-
equilibrium time evolution of strongly correlated systems
arising due to a sudden change in some parameter of the
Hamiltonian referred to as a “quantum quench.” The general
consensus is that if the strongly correlated system is inte-
grable, its time evolution from some arbitrary initial state is
highly constrained by the initial conditions so that these sys-
tems do not reach the ground state but instead reach interest-
ing nonequilibrium time-dependent or time-independent
steady states.

In this paper, we study quenched dynamics in one such
integrable model, namely the XXZ spin chain. This model
shows rich behavior even in its ground state �3�. For ex-
ample, it exhibits a quantum critical point at Jz= �J where J
is the exchange interactions for the x ,y components of the
spins, and Jz is the exchange interaction for the z component
of the spins. For �J /Jz��1, the ground state is an XX phase
characterized by gapless excitations, while for �J /Jz��1, the
spins are in an Ising phase where the excitation spectrum has
a gap. Note that the special point in the gapless phase corre-
sponding to Jz=0 will be referred to as the XX model, while
the term gapless XX phase will refer to the regime �J /Jz�
�1.

Nonequilibrium dynamics of the XXZ model arising due
to quenches has been a very active area of research �see for
example �4,5��. While most previous work has studied

quenched dynamics in spatially homogeneous systems, in
this work we consider the nonequilibrium time evolution
arising from quenching from an initial state which is spa-
tially inhomogeneous. Such an initial state is created by the
application of an external magnetic field in the z direction
that varies in magnitude along the chain, changing its sign at
some point so that the spins are aligned in a domain wall
pattern �see �6� for an experimental realization of such a
setup�. We study nonequilibrium dynamics that arise in the
following two ways: a�. by a sudden quench of the magnetic
field to zero; b�. by a sudden quench of the magnetic field to
zero along with a quench in the magnitude of the exchange
interactions. Note that the above are situations where the
time evolution is due to a final Hamiltonian that has a spa-
tially homogeneous ground state. We would like to under-
stand how the system evolves in time after the quench, and
whether the initial inhomogeneity affects the properties of
the system at long times.

Some literature already exists which studies time evolu-
tion of a spin chain initially arranged in a domain wall pro-
file. Antal et al. �7� study the time evolution of a sharp do-
main wall in the exactly solvable XX model and find ballistic
broadening of the domain wall width. Similar studies for the
time evolution of a domain wall has been carried out for the
XX model �8–10� and the critical transverse spin Ising model
�8,11�. The numerical method time-dependent density matrix
renormalization group �t-DMRG� has been used to study the
time evolution of a domain wall both in the gapless phase as
well as the gapped Ising phase of an XXZ chain �12,13�.
Their study reveals qualitatively different behavior in the two
phases, with ballistic broadening of the domain wall in the
gapless phase, and more complicated nonballistic behavior in
the Ising phase. In addition conformal field theory methods
�14� have been used to study both the time evolution of the
domain wall profile as well as two-point correlation func-
tions for the Ising chain. Studies also exist on the time evo-
lution of other quantities such as the entanglement entropy
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after a quench from a spatially inhomogeneous initial state
�15,16�. Thus, what is lacking in the literature is the study of
the time evolution of two-point correlation functions for the
XXZ chain from an initial inhomogeneous state. The advan-
tage of studying these quantities is that they are often more
sensitive to nonequilibrium initial conditions than averages
of local quantities such as the magnetization.

In this paper, we extend previous results by studying the
time evolution of both the local magnetization as well as two
point correlation functions related to the longitudinal �along
z direction� and the transverse spin correlation function for
the XXZ chain. In addition we use a variety of theoretical
methods such as bosonization, exact solution of the fermi-
onic problem as well as a classical treatment of spins which
allows us to compare the relative merits of these approxima-
tions. Consistent with previous results, we find that the mag-
netization always equilibrates �i.e., reaches the ground state
value�. In addition the details of how the domain wall profile
evolves in time depend on whether the system after the
quench is in the gapless phase or the gapped Ising phase
�12,13�. For example in the gapless phase the domain wall is
found to spread out ballistically, however, in the gapped
phase the dynamics is much more complicated showing os-
cillations and revivals at short time scales.

In studying the time evolution of two-point correlation
functions we obtain the interesting new result that the trans-
verse spin-correlation function shows a lack of equilibration
reaching a nonequilibrium steady state that is also spatially
inhomogeneous. The length scale of the spatial inhomogene-
ity is found to depend on the details of the initial domain
wall profile and is found to arise due to the dephasing of
transverse spin components as the domain wall broadens.
This result is qualitatively different from those obtained for
the Ising chain initially arranged in a domain wall profile
where no residual inhomogeneity was observed �14�.

The paper is organized as follows. In Sec. II, we study the
XX model which is initially subjected to a spatially varying
magnetic field so that the spins are arranged in a domain wall
profile. We study the nonequilibrium dynamics that arises
when this magnetic field is suddenly switched off. These
results are obtained for two cases. One, for an initial external
magnetic field that varies linearly in position and is equiva-
lent to an effective electric field on the fermions. The second
case is that of an initial magnetic field which has a sharp
step-function profile. In Sec. III, the effect of quenching only
a spatially varying magnetic field in the XX model is studied
via a bosonization approach. The results of Secs. II and III
are found to be in qualitative agreement and in particular
recover ballistic domain wall motion and spatial inhomoge-
neities in the transverse spin correlation function. A physical
explanation for this inhomogeneity is provided in Sec. IV
where the problem of quenching a spatially varying magnetic
field is studied classically and a spin-wave pattern is ob-
tained as a long time solution of a Landau-Lifshitz equation.

In Sec. V, the effect of simultaneously quenching the
magnetic field and interactions is studied using a bosoniza-
tion approach. In Sec. V A, results are presented for the case
when the quench is entirely within the gapless XX phase. The
spatial inhomogeneities in the correlation functions are re-
covered along with the nonequilibrium exponents obtained

earlier in a purely homogeneous interaction quench �17,18�.
In Sec. V B the effect of quenching into the gapped Ising
phase is studied via a semiclassical approach. Here, we find
the domain wall dynamics to be qualitatively different, how-
ever at long times we find that all inhomogeneities eventu-
ally decay away. The latter result may very well be an arti-
fact of the semiclassical approach which neglects creation of
solitons. The results of the semiclassical approach is comple-
mented by a mean-field treatment in Sec. VI, where we ad-
dress the question of whether Ising order can develop for a
system initially in a domain wall state. Finally we conclude
in Sec. VII.

II. QUENCH OF A SPATIALLY VARYING MAGNETIC
FIELD IN THE XX MODEL: EXACT SOLUTION OF THE

FERMIONIC PROBLEM

In this section we will study the XX model with a mag-
netic field in the z direction that varies linearly in position
and changes sign at the center of the spin chain, so that the
ground state is a domain wall configuration. In Sec. II A we
will study the properties of this domain wall state, and in
subsequent subsections study the nonequilibrium time evolu-
tion arising when the spatially varying magnetic field is sud-
denly switched off.

A. Creation of domain-wall state

Our starting point is the XX Hamiltonian in a magnetic
field,

Hxx = − J�
j
�Sj

xSj+1
x + Sj

ySj+1
y −

hj

J
Sj

z� , �1�

where Sj
�= 1

2� j
�, �� are Pauli matrices, hj is an external mag-

netic field aligned along the ẑ direction, and J is the ex-
change energy. For a uniform magnetic field one commonly
employs the Jordan-Wigner transformation �19–22� to map
the spin system to a system of spin-less noninteracting fer-
mions which can be easily diagonalized �for details see Ap-
pendix A�.

To create an inhomogeneous state we will consider a lin-
early varying field hj =Fja, where a is a lattice spacing. Note
that the ground state properties of spin-chains in various spa-
tially varying magnetic fields has been studied in �23�. After
the Jordan-Wigner transformation Eq. �1� for hj =Fja maps
to the Wannier-Stark problem �15,24,25� of electrons in a
lattice subjected to a constant force �or electric field� F,

Hxx = −
J

2�
j

�cj
†cj+1 + cj+1

† cj� + �
j

jFacj
†cj �2�

This Hamiltonian can be diagonalized as follows:

Hxx = �
m

�m�m
† �m, �3�

where

�m = mFa, �∀m = integer� , �4�

and
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�m
† = �

j

Jj−m	 J

Fa

cj

† �5�

=
1

�N
�

k

exp�− ikma − i
J

Fa
sin�ka��ck

†. �6�

Above cj =
1

�N
�kcke

ikj, N is the total number of sites and
Jn�x�, is a Bessel function of the first kind.

We construct the ground state ��� by including all nega-
tive energy states,

��� = 

m�0

�m
† �0� . �7�

This is a domain-wall state with a characteristic width x
a

�	= J
Fa to the left �right� of which all spins are up �down�.

This can be seen by evaluating the magnetization at the po-
sition ja

mz�j� = ���cj
†cj��� −

1

2
. �8�

which on rewriting cj ,cj
† in terms of the �m operators and

evaluating the expectation value is found to be

mz�j� = −
1

2
+ �

m
0
Jj+m

2 �	� �9�

Upon noting that the support of Jn�x�, is restricted to �26�
�n��x, and using the identity �27� �nJn

2�x�=1, it is easy to
see that this indeed describes a domain-wall state of width 	.
Equation �9� is also plotted in Fig. 1. It is worth noting that
the case of 	=0 corresponds to an infinite “electric field” F
that forces a sharp wall of zero width. This case was inves-
tigated by Antal et al. �7�. We will extend some of their
results to more general domain walls, and also study spin-
spin correlation functions.

The basic spin correlation functions that we will compute
are,

C���j, j + n� = �Sj
�Sj+n

� �, �� = x,z� , �10�

where we will refer to Czz�Cxx� as the longitudinal �trans-
verse� spin correlation function. These may be expressed in
terms of Majorana operators �19� Aj =cj

†+cj, and Bj =cj
†−cj

as follows,

Czz�j, j + n� =
1

4
�BjAjBj+nAj+n� , �11�

and

Cxx�j, j + n� =
1

4
�BjAj+1Bj+1 ¯ Aj+n−1Bj+n−1Aj+n� . �12�

The above correlations can be evaluated by rewriting ci in
terms of �m and applying Wick’s theorem. The basic contrac-
tions are �28�

�BjAj+n� = − �AjBj+n� = �
m�0

�Jj+m�	�Jj+n+m�	�

− Jj−m�	�Jj+n−m�	�� , �13�

�AjAj+n� = − �BjBj+n� = �n=0. �14�

Using some Bessel function identities, the mixed contraction
can be simplified to

�BjAj+n� =
	

2n
�Jj+n�	�Jj+1�	� − Jj+n+1�	�Jj�	�

− Jj+n�	�Jj−1�	� + Jj+n−1�	�Jj�	�� . �15�

Since we encounter no contractions of the form �AiAi�, the
function Cxx�j , j+n�, may be written �19� as a Toeplitz deter-
minant which is a computationally cheap task. In the next
sub-section when we evaluate the correlation functions after
a quench of the magnetic field, we will find �AjAj+n��0 in
the nonequilibrium state. In this case, the evaluation of Cxx

will require computing the square root of a determinant �21�.
The correlation functions Czz and Cxx for 	=50 are given

in Figs. 2 and 3 respectively. The main point to notice here is
that close to the center of the domain wall where the external
magnetic field is small, the correlations tend to mimic those
in the ground state of the homogeneous �hj =0� XX model.
For example, the nearest neighbor longitudinal spin correla-
tion function in the absence of a magnetic field is �22�
Ceq

zz �n=1�=− 1

2 . This is precisely the value that the Czz�j , j

+1� correlation function takes in Fig. 2 at the center of the
domain wall.

B. Domain wall dynamics after the magnetic field quench

We will now explore the dynamics that arises when the
spatially varying magnetic field is suddenly switched off at
t=0, i.e., hj�t�=��−t�Fja. Thus at t�0 the many-body wave
function of the system is Eq. �7�, while for t�0, as shown in
Appendix A, the wave function evolves according to the
Hamiltonian,

Hf = �
k

�kck
†ck �16�

where �k=−J cos�ka�.
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FIG. 1. �Color online� Plot of the initial magnetization for vari-
ous values of the domain wall width 	= J

Fa .
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The time-dependent magnetization is given by

mz�j,t� = ���cj
†�t�cj�t���� −

1

2
. �17�

The time-evolution of cj ,cj
† in terms of the �m operators is

given in Eqs. �A6� and �A7� from which we obtain

mz�j,t� = −
1

2
+ �

m�0
�L�j + m,t,	��2, �18�

where �15�

L�j + m,t,	� = �
−



 dk

2

eik�j+m�−i�kt−i	 sin k. �19�

Evaluating the integral, we find

mz�j,t� = −
1

2
+ �

m�0
Jj+m

2 ���Jt�2 + 	2� . �20�

This corresponds to a wall whose width W=��Jt�2+	2 in-
creases linearly and hence ballistically in time with a veloc-
ity of Ja for times t�	 /J. Setting 	=0, we recover the
result of Antal et al. �7�. Note that the time evolution of the
entanglement for general 	 has been studied in �15�.

C. Correlation functions after the magnetic field quench

We now turn to the evaluation of the longitudinal and
transverse correlation functions given in Eqs. �11� and �12� at
a time t after the quench. The basic contractions that we need
are �Bj�t�Aj+n�t�� and �Aj�t�Aj+n�t�� for which we find the
following expressions

�Bj�t�Aj+n�t�� =
r

2n
�ein��Jj+n�r�Jj+1�r� − Jj+n+1�r�Jj�r��

− e−in��Jj+n�r�Jj−1�r� − Jj+n−1�r�Jj�r��� ,

�21�

�Aj�t�Aj+n�t�� =
r

2n
�ein��Jj+n�r�Jj+1�r� − Jj+n+1�r�Jj�r��

+ e−in��Jj+n�r�Jj−1�r� − Jj+n−1�r�Jj�r��� ,

�22�

with r=��Jt�2+	2, and tan ��Jt /	. As before, we
have �Bj�t�Bj+n�t��=−�Aj�t�Aj+n�t�� and �Bj�t�Aj+n�t��
=−�Aj�t�Bj+n�t��.

The transverse correlation function Cxx�j , j+n , t� is given
by

�Cxx�j, j + n,t�� =
1

4
�det C , �23�

where C, is the antisymmetric matrix

C = 	 S G

− G Q

 , �24�

with the n�n, submatrices defined by

Sik = − Ski = �Bi+j−1Bk+j−1� �k � i� �25�

Qik = − Qki = �Ai+jAk+j� �k � i� �26�

Gik = �Bi+j−1Ak+j� . �27�

Note that both S and Q, are antisymmetric, and thus de-
fined by the elements with k� i, while no such restriction is
placed on G. The numerical evaluation of the above expres-
sion for 	=25 is shown in Fig. 4 for three different times:
t=0, an intermediate time and for long times where one finds
the appearance of a spatially oscillating pattern at the scale of
the Fermi-wave vector kF=
 /2.

In order to get some insight into the long time behavior of
the system, we consider the limit of r→� while imposing
the condition j , j+n�r on the two position indices of the
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FIG. 2. �Color online� Plot of Czz�j , j+n�, for n=1,2 ,3 ,4 and
	= J

Fa =50.
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correlation functions. This limit corresponds to a very broad
domain wall which may arise either due to a very weak elec-
tric field 	�1 at arbitrary times t �and hence arbitrary �� or
could arise on waiting long enough after a quench so that an
initial narrow domain wall has had enough time to broaden.
The condition on the position indices imply that we are look-
ing at correlations in the vicinity of the center of the domain
wall where the magnetization has locally equilibrated. Using
the asymptotic expansion for the Bessel functions with large
arguments �27�, we find

�Bj�t�Aj+n�t�� �
2 cos�n��


n
sin	n


2

 , �28�

�Aj�t�Aj+n�t�� �
2i sin�n��


n
sin	n


2

 . �29�

Substituting the asymptotic expansions in Eqs. �28� and
�29� we find,

Czz�j, j + n,t� → Ceq
zz �n� = −

sin2	
n

2




2n2 , �30�

where Ceq
ab�n� is the equilibrium result �i.e., the result in the

ground state of Hf� for the ab correlation function �22�.
Employing the asymptotic expansions in the evaluation of

Cxx�j , j+n�, we have verified through n�1000, that

Cxx�j, j + n,t� = Ceq
xx�n�cos�n�� �31�

→
t→�

Ceq
xx�n�cos	
n

2

 , �32�

where Ceq
xx�n�, is the equilibrium value of the xx-correlation

function �19� which has the asymptotic form �29�,

Ceq
xx�n� �

1
�8n

�2, �33�

with log �= 1
4 �0

� dt
t �e−4t− 1

cosh2 t
�.

The appearance of these oscillations at a wavelength of
�=4 where

Cxx�j, j + n,t� →
t→�

Ceq
xx�n�cos	2
n

�

 �34�

is indeed intriguing. To understand better what sets this
length scale, we study more general initial domain walls. The
one considered so far has the maximum possible positive
�negative� polarization of Sz= �1 /2 on the left �right� ends
of the domain wall, with a width of the domain wall con-
trolled by 	= J

Fa . Antal et al. �7� have shown how to con-
struct domain walls of zero width �	=0� but arbitrary polar-
ization �m0 at the two ends. Starting with this initial state,
i.e.,

Sj
z�t = 0� = − m0sgn�j� �35�

we study the time evolution under the XX model and extend
the results of Antal et al. to the study of the transverse spin
correlation function.

Details of the computation are given in Appendix B. In
the long time limit of Jt→�, analytic expressions for con-
tractions in Eqs. �28� and �29� generalize to Eq. �B9�. These
can then be used to construct the determinant of C �Eq. �23��
required for the computation of Cxx. The results for Cxx in the
long time limit for several different domain wall heights m0
are shown in Fig. 5. Indeed, we see the appearance of a
spatial oscillation where the wavelength depends on the
height m0 of the domain wall as follows,

� =
2

m0
. �36�
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FIG. 4. �Color online� Time evolution of Cxx�j=0,n� correlation
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Thus the main results of this section on the effect of
quenching a spatially varying magnetic field in a XX model
are as follows: a� An initial domain wall spreads out ballis-
tically after the magnetic field quench so that the magnetiza-
tion equilibrates to its homogeneous ground state value of
mz=0. For a sharp domain wall, �	= J

Fa �1�, the magnetiza-
tion at a distance na from the center of the domain wall
begins to equilibrate after a time Jt�na. This is an example
of the horizon effect �30,31�, namely, the minimal time re-
quired for ballistically propagating excitations from the cen-
ter of the domain wall to reach the observed point; b�. An-
other consequence of the horizon effect is that any two point
correlation function Cab�j=0,n� is found to change signifi-
cantly only after times �31� Jt� �n� for 	�1; c�. The
Czz�j , j+n� correlation function eventually equilibrates �i.e.,
reaches the ground state value� at long times where the ap-
proach to equilibrium is a power law of O� 1

Jt �; d�. The
Cxx�j , j+n� correlation function reaches a nonequilibrium
steady state at times min��	2+ �Jt�2 , tFa��1 to a value
given by Eq. �34�, which is basically the ground state corre-
lation function with oscillations at a wavelength �= 2

m0
super-

imposed on it, where m0 is the height of the domain wall,
i.e., the magnitude of the maximum polarization at its two
ends.

Note that the effect of quenching from an initial domain
wall state was also studied in �14� for the critical transverse
spin Ising model ��iSi

xSi+1
x +�iSi

z� using the methods of
boundary conformal field theory. Our results for the XX
model differ from those of �14� in two important ways. One
is that at long times we recover a spatial spin-wave pattern
that was not captured in �14�. Second at long times after the
quench, our two-point correlation functions continue to be
critical �i.e., have a power-law decay� whereas the results of
�14� point to thermal behavior with exponential decay in the
two-point correlation function. The differences between
these results are due to the very different universality classes
and conservation laws of the XX model and the transverse
spin Ising model. For example, while the total magnetization
in the z-direction is conserved in the XX model, it is not
conserved in the Ising model. As a result the magnetization
has a nontrivial time evolution in the Ising model even for
points outside the domain wall horizon, which eventually
gives rise to a thermal behavior. In addition, as we shall
show in Sec. IV, the appearance of the spin-wave pattern in
the transverse spin correlation functions in the XX model is
due to precession of spins in an effective magnetic field cre-
ated by the initial domain wall. This precessional physics is
absent for Ising spins.

We would also like to point out that the spatial oscilla-
tions found by us have also been observed in a different
physical setting by Rigol et al. �32� who have studied inho-
mogeneous quantum quenches for one-dimensional hard-
core bosons. Via a Jordan-Wigner transformation hard-core
bosons in one dimension can be mapped onto a system of
spinless fermions. The physical situation considered by Rigol
et al. was one where an initial strong confining potential
produces a local region of high density. �In the spin language
this would correspond to creating a pile up of magnetization
in the center of a spin chain�. The time evolution of the

system when this confining potential was suddenly switched
off was studied. The initial inhomogeneity was found to
move out ballistically in two opposite directions. Moreover,
the analog of the transverse spin correlation function which
in the boson language corresponds to the off-diagonal matrix
element was found to show spatial oscillations in the two
out-going lobes. �This is somewhat different from our set-up
where the spatial oscillations appear at the center of the chain
and extend over longer portions of the chain as the domain
wall broadens�. For an initial tight confinement, Rigol et al.
found that the oscillations in the lobes appeared at precisely
the same wavelength of �=4 that we find here for a domain
wall of height m0=1 /2. For the case of bosons, these oscil-
lations had the physical interpretation of the appearance of
quasi-condensates at the wave vector kF= �
 /2. A similar
observation that an initial spatial inhomogeneity for a system
of hard core bosons can lead to correlations in momentum
space was also made by Gangardt et al. �33�.

In subsequent sections we will study the effect of quench-
ing a spatially varying magnetic field with and without an
interaction quench in a XXZ chain using a bosonization ap-
proach. For quenches within the gapless XX phase, results of
this section, namely critical behavior in the two-point corre-
lation function even after the quench, and the presence of
spatial inhomogeneities will be recovered. In addition we
will find that the wavelength of the inhomogeneity depends
on the strength of the exchange coupling Jz �and hence the
Luttinger interaction parameter�.

III. QUENCH OF A SPATIALLY VARYING MAGNETIC
FIELD IN A XXZ CHAIN: BOSONIZATION

APPROACH

In this section we will study a general XXZ chain, which
is subjected to a time-dependent spatially varying magnetic
field. The most convenient way to study this problem is via
the bosonization approach. We first review some of the no-
tation.

A. Equilibrium correlations

The Hamiltonian for the XXZ-spin chain in a magnetic
field is

H = �
j

�J�Ŝj
xŜj+1

x + Ŝj
yŜj+1

y � + JzŜj
zŜj+1

z − hjSj
z� . �37�

The above can be mapped onto a Luttinger liquid with a
back-scattering potential �3�,

H =
u

2

� dx�K����2 +

1

K
����2� +

1



� dxh�x� � �

−
2g

�2
	�2� dx cos�4��x�� , �38�

where g=Jza, and the fields �, and �, are defined in terms of
the boson creation/annihilation operators as
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��x� = − �NR + NL�

x

L
−

i


L
�
p�0

	L�p�
2



1/2

�
1

p
e−	�p�/2−ipx�bp

† + b−p� , �39�

��x� = �NR − NL�

x

L
+

i


L
�
p�0

	L�p�
2



1/2

�
1

�p�
e−	�p�/2−ipx�bp

† − b−p� , �40�

where N�=R,L=�p�0:��
†�p����p�:, and :¯ :, denotes normal

ordering of operators. In the continuum limit, we interpret
x= ja for some integer j and lattice spacing a. The coupling-
parameter relationships are

uK = vF = Ja sin�kFa� , �41�

u

K
= vF�1 +

2Jza


vF
�1 − cos�2kFa��� . �42�

For an xy, antiferromagnet �J�0�, the mapping from spin
language to boson language is given by �3�

Ŝz�x� =
− 1



� ��x� +

�− 1�x


	
cos�2��x�� , �43�

Ŝ+�x� =
1

�2
	
exp�− i��x����− 1�x + cos�2��x��� . �44�

In equilibrium and zero magnetic fields, the magnetization
and basic physical correlations in the gapless antiferromag-
netic XX phase are

�Ŝz�x�� = −
1



����x�� = 0, �45�

�Ŝz�x + n�Ŝz�x�� = C1	1

n

2

+ C2�− 1�n	1

n

2K

�46�

�Ŝ+�x + n�Ŝ−�x�� = C3	1

n

2K+1/�2K�

+ C4�− 1�n	1

n

1/�2K�

�47�

where the Cj, are nonuniversal constants.
The antiferromagnetic Hamiltonian may be transformed

to a ferromagnetic Hamiltonian by the transformation Sj
�

→ �−1� jSj
�, resulting in ferromagnetic operators

Ŝz�x�f.m. = −
1



� ��x� +

�− 1�x


	
cos�2��x�� , �48�

Ŝ+�x�f.m. =
1

�2
	
exp�− i��x���1 + �− 1�xcos�2��x���

�49�

As a consequence, the magnetization and spin correlations in
the gapless ferromagnetic XX phase are,

�Ŝz�x��f.m. = −
1



����x�� = 0, �50�

�Ŝz�x + n�Ŝz�x��f.m. = C1	1

n

2

+ C2�− 1�n	1

n

2K

�51�

�Ŝ+�x + n�Ŝ−�x��f.m. = C3�− 1�n	1

n

2K+1/�2K�

+ C4	1

n

1/�2K�

,

�52�

B. Magnetic field quench in the XX model (K=1)

1. Diagonalization

In this section, we will study the time-dependent Hamil-
tonian

H = Hi��− t� + Hf��t� . �53�

We choose a point in the XX phase corresponding to the XX
model K=1 and u=vF. Thus,

Hi =
vF

2

� dx�����2 + ����2 +

2

vF
h�x� � �� �54�

= �
p�0

vF�p�ap
†ap, �55�

so that the initial state at t�0 is the spatially inhomogeneous
ground state of Hi. The magnetic field h�x� is suddenly
switched off at t=0 so that the system evolves according to

Hf =
vF

2

� dx�����2 + ����2� �56�

= �
p�0

vF�p�bp
†bp. �57�

Since Eq. �54� basically represents harmonic oscillators sub-
jected to an electric field, it may be easily diagonalized by
the shift,

bp = ap + �p, �58�

where,

�p =
1

vF
�2
�p�L

hp, �59�

and hp is the Fourier transform of h�x�. Taking h�−x�=
−h�x� �corresponding to a magnetic field that is antisymmet-
ric in space allowing for a domain wall solution�, this gives

hp = − i� sin�px�h�x�dx . �60�

For some time t after the quench, it is straightforward to
show that

��x,t� = eiHft��x,0�e−iHft = �a�x,t� + ���x,t� , �61�

��x,t� = eiHft��x,0�e−iHft = �a�x,t� + ���x,t� , �62�

where
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�a�x,t� = −
i


L
�
p�0

	L�p�
2



1/2

�
1

p
e−	�p�/2−ipx�ap

†eivF�p�t + a−pe−ivF�p�t� , �63�

�a�x,t� = +
i


L
�
p�0

	L�p�
2



1/2

�
1

�p�
e−	�p�/2−ipx�ap

†eivF�p�t − a−pe−ivF�p�t� . �64�

Since we will be computing expectation values with re-
spect to an initial state, which is the ground state of the ap
operators, �a ,�a will just return the equilibrium results. Thus
the effect of the shift and, hence, the initial magnetic field is
contained entirely in

���x,t� =
i


vF
�

0

� dp

p
cos�pvFt�cos�px�hp, �65�

���x,t� =
− i


vF
�

0

� dp

p
sin�pvFt�sin�px�hp. �66�

For any antisymmetric h�x� the above reduces to,

���x,t� =
1

8vF
�

−�

�

dx�h�x���sgn�x� + z−� + sgn�x� + z+�

+ sgn�x� − z+� + sgn�x� − z−�� , �67�

���x,t� =
1

8vF
�

−�

�

dx�h�x���sgn�x� + z+� + sgn�x� − z+�

− sgn�x� + z−� − sgn�x� − z−�� , �68�

where sgn�x��x / �x�, and z�=x�vFt.
The above implies that the magnetization before the

quench is

�Ŝz� = −
1



� ���x�

�x
� = −

1




����x�
�x

=
1


vF
h�x� . �69�

Thus, within the bosonization approach, the magnetization
follows the magnetic-field profile.

2. Magnetization and correlations after the quench

The magnetization at some time t after the magnetic-field
quench is

�Ŝz� = −
1



��x�

a�x,t�� −
1



�x���x,t�

=
1

2
vF
�h�x + vFt� + h�x − vFt�� . �70�

As anticipated, the domain wall spreads out with speed vF in
both directions. This result is consistent with the ballistic
time-evolution found in Sec. II from the exact solution of the
fermionic problem.

Next we turn to the evaluation of the Cxx correlation func-
tion which from the exact solution of the fermionic model

was found to be �Ŝj+n
x Ŝj

x�→cos� 2
n
� �Ceq

xx�n� where Ceq
xx�n�

� 1
�n

was the equilibrium correlation function, and the wave-
length of the oscillation was found to be �= 2

m0
, m0 being the

height of the domain wall �or the magnitude of the maximal
magnetization at the ends of the domain wall�.

In the bosonization approach,

�Ŝ+�x + n,t�Ŝ−�x,t�� � exp�− i����x + n,t� − ���x,t���
1

�n
.

�71�

Let us suppose

h�x� = h0 tanh�x/�� �72�

implying

hp = − ih0� 
�

sinh	
p�

2

� . �73�

Then we find,

���x + n,t� − ���x,t�

= −
�h0

2vF
log� cosh��x − vFt�/��cosh��x + n + vFt�/��

cosh��x + n − vFt�/��cosh��x + vFt�/���
→

vFt,�vFt�x�,�vFt��x+n����

−
�h0

2vF
	 �x − vFt�

�
+

�x + n + vFt�
�

−
�x + n − vFt�

�
−

�x + vFt�
�


 . �74�

For vFt� �x� , �x+n�, i.e., long after the moving domain wall
front has crossed the two observation points at x and x+n,
we find

���x + n,t� − ���x,t� →
h0n

vF
. �75�

so that

�Ŝ+�x + n�Ŝ−�x�� � einh0/vF	 1
�n


 . �76�

Thus we find that for an initial domain wall that has the
profile

�Sz�x = � ��� → �
h0


vF
= � m0, �77�

the transverse spin correlation function at long times do not
equilibrate but acquire a spatial oscillation at the wavelength

� =
2
vF

h0
=

2

m0
�78�

This result is identical to that obtained from the exact solu-
tion of the fermionic problem �Eqs. �34� and �36��.

Note that the wavelength of the spatial oscillation is set by
the height of the domain wall m0 and is independent of the
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width � �or 	= J
Fa in the fermionic problem�. For the case of

a linearly varying magnetic field studied in the previous sec-
tion, the domain wall magnetization approached its maxi-
mum possible value �

1
2 , at its two ends. This in the boson

language corresponds to

h0

vF
→ −




2a
, �79�

so that writing n= n̄a in Eq. �76�, where n̄ is an integer,

�S+�x + n̄a�S−�x�� → ei
n̄/2	 1
�n̄


 , �80�

giving us precisely the observed behavior of Eq. �32�.
For the evaluation of the �SzSz� correlation function, we

need to evaluate exp�i���x+n , t�− i���x , t��. We find,

���x + n,t� − ���x,t�

=
− h0�

2vF
log� cosh	 x + n + vFt

�

cosh	 x + n − vFt

�



cosh	 x + vFt

�

cosh	 x − vFt

�

 �

→
vFt��,�x�,�x+n�

0. �81�

The above result together with the fact that

�x���x + n,t��x���x,t� =
1

4
vF
2 �h�x + vFt� + h�x − vFt��

� �h�x + n + vFt� + h�x + n − vFt�� .

�82�

implies that for vFt�� , �x� , �x+n�, the Czz correlation function
equilibrates which is in agreement with the results in Sec. II.

To summarize the results of this section: a� Within the
bosonization approach, an applied magnetic field produces a
spin pattern that follows the local magnetic field. b� After a
quench, the domain wall spreads out ballistically. The mag-
netization equilibrates �in this case vanishes to zero every-
where�. c� The Czz correlation function equilibrates, whereas
the Cxx correlation function acquires spatial oscillations at
wavelength �= 2

m0
where m0 is the height of the initial do-

main wall defined as Sz����= �m0. These results are in
agreement with the exact results of Sec. II obtained from
solving the fermion lattice problem. Thus, bosonization is
good at capturing the behavior at long distances and times,
even for the nonequilibrium problem. As expected it misses
some of the details of the short distance physics both in the
static properties �as shown in Fig. 6�, as well as during the
time evolution such as the existence of a complex internal
structure in the propagating domain wall front �34�.

In the next section we provide an explanation for the in-
homogeneities observed in the transverse spin correlation
function by solving the classical equations of motion for the
spins.

IV. MAGNETIC FIELD QUENCH IN A CLASSICAL XX
SPIN CHAIN: FORMATION OF A TRANSVERSE

SPIN-WAVE PATTERN

The Hamiltonian in Eq. �1� implies the following equa-
tions of motion for the spins

dSj
z

dt
= − J�Sj

y�Sj+1
x + Sj−1

x � − Sj
x�Sj+1

y + Sj−1
y �� �83�

dSj
x

dt
= − JSj

z�Sj+1
y + Sj−1

y � − hjSj
y �84�

dSj
y

dt
= JSj

z�Sj+1
x + Sj−1

x � + hjSj
x. �85�

We will treat the spins as classical variables, and solve the
above equations for a sudden quench of a spatially inhomo-
geneous magnetic field, hj�t�=hj��−t�. First notice that for
t�0, after performing the course-graining Sj

a=Sj+1
a , the fol-

lowing spin profile satisfy the equations of motion:

Sj
z = −

hj

2J
�86�

Sj
x = �S2 − �Sj

z�2 �87�

Sj
y = 0. �88�

With the above as an initial condition, the dynamics for
t�0 can be easily studied numerically and we find a ballistic
spreading out of the domain wall profile �see Fig. 7�, and the
appearance of a spin-wave pattern. The latter result, i.e., the
appearance of an inhomogeneous pattern at long times can
be verified analytically rather easily as follows. Suppose,
hj�t�=−h0 tanh x

���−t�. Then for t�0, if we assume a ballistic
broadening of the domain wall,
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FIG. 6. �Color online� Plot of the magnetization obtained from
the bosonization approach with h�x�=h0 tanh x /�, and from the fer-
mionic lattice model with 	=20.
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Sj
z�t� =

h0

2J
�tanh	 ja − vt

�

 + tanh	 ja + vt

�

� . �89�

Writing Eqs. �84� and �85� in terms of S�=Sx� iSy, and per-
forming a course-graining, one obtains the following equa-
tion for S+�x= ja�

dS+�x,t�
dt

= 2iJSz�x,t�S+�x,t� �90�

Using Eq. �89�, �90� may be easily solved to obtain

S+�x,t� = S+�x,0�exp� ih0�

2v �ln

cosh	vt + x

�



cosh	vt − x

�

�� . �91�

Thus, for vt� �x� we find the spin-wave pattern

S+�x,t� → S+�x,0�eih0x/v �92�

in agreement with the results of the previous sections.
Thus the appearance of the spatial inhomogeneity may be

understood as follows. Right after the magnetic field is
switched off, the spins in the XY plane begin to precess due
to a nonzero magnetization in the z direction. However this
precession only lasts for as long as it takes the domain wall
profile to flatten out to zero. Since this time is different for
spins located at different spatial positions, the spins locally
dephase with respect to each other and arrange themselves in
a spin-wave pattern.

V. QUENCH OF A SPATIALLY VARYING MAGNETIC
FIELD AND INTERACTIONS IN A XXZ CHAIN:

BOSONIZATION APPROACH

A. Quench within the gapless XX phase

We will now turn our attention to the case where as the
magnetic field is switched off at t=0, the interactions are also

turned on so that the Luttinger parameter is K=��−t�
+K��t�. We will first consider the case where the ground
state both before and after the quench corresponds to a gap-
less XX phase, so that the cos���� term can be neglected.

1. Bogoliubov rotation

We wish to begin with a non-interacting system in an
inhomogeneous magnetic field,

Hi =
vF

2

� dx�����2 + ����2 +

2

vF
h�x� � �� �93�

= �
p�0

vF�p�ap
†ap, �94�

and quench to zero field, while turning on interactions so that

Hf =
u

2

� dx� 1

K
����2 + K����2� �95�

= �
p�0

u�p��p
†�p. �96�

The �p, operators have a simple time evolution and may be
related to the bp, operators by a Bogoliubov rotation �17,18�,

�p = cosh �bp + sinh �b−p
† , �97�

�p
† = cosh �bp

† + sinh �b−p, �98�

where e−2�=K. We define,

f�p,t� = cos�u�p�t� − i sin�u�p�t�cosh�2�� , �99�

g�p,t� = i sin�u�p�t�sinh�2�� . �100�

and 	� � f�p , t��g�p , t�. Performing the shift bp=ap+�p as
before, we write the � and � fields as �� ,��= ���

a ,��
a�

+���� ,���, where

��
a�x,t� =

− i


L
�
p�0

	L�p�
2



1/2 1

p
e−	�p�/2−ipx�	+

�ap
† + 	+a−p�

�101�

��
a�x,t� =

i


L
�
p�0

	L�p�
2



1/2 1

�p�
e−	�p�/2−ipx�	−

�ap
† − 	−a−p� .

�102�

The ��� ,�� arise due to the spatially varying magnetic field
and are given by,

����x,t� =
u

vF
���x,t,� = 0,vF → u� , �103�

����x,t� =
ue2�

vF
���x,t,� = 0,vF → u� , �104�

where ���x , t ,�=0,vF� ,���x , t ,�=0,vF� are given in Eqs.
�65� and �66�, respectively.
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FIG. 7. �Color online� Thick line: Time evolution of the mag-
netization from the solution of the classical Landau-Lifshitz equa-
tion assuming that Sz�t�0� is given by Eq. �9�. Thin lines: Time
evolution from the exact solution of the quantum problem.
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2. Magnetization after the quench

It is straightforward to show that the magnetization at a
time t after the quench is

Sz�x,t� = −
1




����x�
�x

=
1

2
vF
�h�x + ut� + h�x − ut�� .

�105�

Thus even with the interaction quench, the domain wall
spreads out ballistically, but with the renormalized velocity
u=vF /K.

3. Basic nonequilibrium correlations

To compute the correlation functions, some basic expres-
sions we need are

G�� = ����
a�x,t� − ��

a�x�,t��2� �106�

G�� = ����
a�x,t� − ��

a�x�,t��2� . �107�

Note that G��, is related to G�� by K→ 1
K the computation of

which is identical to that already presented in �17,18�. For
completeness we present the results below,

G�� = �
0

� dp

p
�cos2�utp� + e−4� sin2�utp��

� �1 − cos�p�x − x����e−	p, �108�

which eventually gives

G�� = G��
�0� + 	K2 − 1

8



� log� �	2 + �2ut�2�2�	2 + x2�2

	4�	2 + �2ut + x�2��	2 + �x − 2ut�2�� ,

�109�

G�� = G��
�0� + 	K−2 − 1

8



� log� �	2 + �2ut�2�2�	2 + x2�2

	4�	2 + �2ut + x�2��	2 + �x − 2ut�2�� ,

�110�

where G��
�0� = K

2 log� x2+	2

	2 �, G��
�0� = 1

2K log� x2+	2

	2 �.

4. Spin correlations after the quench

Taking the 2ut�x, limit, we can easily obtain the cor-
relator asymptotics. The memory of the initial domain wall
profile appears as oscillatory pre-factors of the form
exp�2i����x+n�−���x��� and terms such as ����x
+n�����x�. For the specific case of h�x�=h0 tanh�x /�� we
find at long times,

�Ŝz�x + n�Ŝz�x�� = f�x + n,t�f�x,t� +
C1�

n2 +
C2��− 1�n

nK2+1
,

�111�

�Ŝ+�x + n�Ŝ−�x�� =
C3�e

ih0n/�vFK�

n1+K2+�1+K−2�/4
+

C4��− 1�neih0n/�vFK�

n�1+K−2�/4
,

�112�

where

f�x,t� =
1

2vF
�h�x + ut� + h�x − ut�� . �113�

The case of the pure interaction quench �h0=0� was studied
in �17,18� where the above anomalous power-laws corre-
sponding to an algebraic decay which is faster than in equi-
librium �since K2+1
2K, for all real K� were obtained.
From Eq. �112� we find that the effect of an initial domain
wall profile is to superimpose spatial oscillations onto this
decay, where the wavelength of the oscillations depends on
the interaction parameter K and is found to be

� =
2
vFK

h0
=

2K

m0
. �114�

As expected, increasing the exchange interaction Jz increases
the effective magnetic field seen by the precessing spins, thus
decreasing the wavelength of the spin wave pattern.

5. Generalized Gibbs Ensemble

Rigol et al. have made the interesting proposal that the
long-time properties of out of equilibrium integrable systems
may be captured by a generalized Gibbs ensemble that en-
forces the constraints imposed by the integrals of motion
�35�. This approach has been applied with success by Iucci
and Cazalilla �17,18� who studied homogeneous interaction
quenches in models similar to those studied in this paper. It
has also been successfully applied to models of free bosons
�36�, and for some general family of integrable models �37�.
An interesting question has been to identify situations in
which the Gibbs ensemble argument might break down
�38,39�. We find that for an inhomogeneous quantum quench
starting from an initial domain wall state, the Gibbs en-
semble argument cannot capture the spatial inhomogeneities
at long times after the quench. In this section, we review the
Gibbs ensemble argument and show why this does not work
for our case.

Consider a quantum quench of the form H=Hi��−t�
+Hf��t�, so that for t�0 the system is in the ground state of
Hi, whereas at t�0, the wave function begins to evolve ac-
cording to Hf. Let us further assume that both Hi and Hf can
be diagonalized

Hi = �
p

�p
aap

†ap �115�

Hf = �
p

�p
bbp

†bp �116�

and that the two Hilbert spaces may be related to each other
via a canonical transformation. For the case of bosons a gen-
eral canonical transformation is of the form,

bp = cosh �pap + sinh �pa−p
† + �p, �117�

where �p is a linear shift and �p is a rotation angle.
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The essential idea behind predicting the long-time behav-
ior is that an integrable model such as Hf has a conserved
quantity for every degree of freedom. For the example given
above, the conserved quantity is trivially given by Ip=bp

†bp.
Thus during the time evolution �bp

†bp� should be conserved.
Since the initial state is the ground state of Hi for which
�ap

†ap�=0, for p�0, it follows that the Gibbs’ ensemble
should be characterized by the distribution function

�bp
†bp� = ��p�2 + sinh2 �p. �118�

For the particular models studied here, we find the initial
spatial inhomogeneity is captured by the linear shift �p
�given by Eq. �59��, while the angle �p captures the homo-
geneous changes in the interaction parameter. Since in our
example ��p�2 vanishes in the thermodynamic limit, any ef-
fect of the initial spatial inhomogeneity is lost. Thus while
the Gibbs ensemble captures the effect of the rotation, and
therefore correctly predicts the new power-law exponents of
�17�, it misses the spin-wave pattern at long times. In par-
ticular, the Gibbs ensemble prediction for the transverse spin
correlation function is given by

�Ŝ+�x + n�Ŝ−�x�� =
C3�

n1+K2+�1+K−2�/4
+

C4��− 1�n

n�1+K−2�/4
, �119�

which differs from the correct answer �Eq. �112�� by the
absence of the spatially oscillating factors eih0n/�vFK�.

B. Magnetic field and Interaction quench into the gapped Ising
phase: Semiclassical treatment

In this section, we will study the effect of quenching the
external magnetic field and the interactions into the massive
Ising phase where the cos � term is strongly relevant. In
order to study the time evolution, we will employ a semiclas-
sical approximation which corresponds to replacing cos �

�1− �2

2 . Thus, for this case the initial wave-function is the
ground state of

Hi =
vF

2

� dx�����2 + ����2 +

2

vF
h�x� � �� , �120�

=�
p

vF�p�ap
†ap, �121�

while for t�0 the wave-function evolves according to

Hf =
u

2

� dx����̃�2 + ���̃�2 +

m2

u2 �̃2� �122�

=�
p

�p�p
†�p, �123�

where �̃= �
�K

, �̃=�K� and �p=�p2u2+m2.
The calculations mirror that of the previous section. Writ-

ing �=�a+�� ,�=�a+��, we find for a time t after the
quench

�a�x,t� = −
i


L
�
p�0

	L�p�
2



1/2

�
1

p
e−	�p�/2−ipx�ap

†�cos��pt�

+ iK
u�p�
�p

sin��pt�� + a−p�cos��pt�

− iK
u�p�
�p

sin��pt��� , �124�

�a�x,t� =
i


L
�
p�0

	L�p�
2



1/2

�
1

�p�
e−	�p�/2−ipx�ap

†�cos��pt�

+ i
�p

Ku�p�
sin��pt�� − a−p�cos��pt�

− i
�p

Ku�p�
sin��pt��� , �125�

and

���x,t� =
i


vF
�

0

� dp

p
cos��pt�cos�px�hp, �126�

���x,t� =
− i


KvF
�

0

� dp

p
sin��pt�sin�px�	 �p

u�p�
hp.

�127�

1. Magnetization after the quench

The magnetization at a time t after the quench is given by
�Sz�x , t��=− 1


�x��x , t�+ �−1�x


	 �cos�2��x , t���. Due to the pres-
ence of infrared divergences, we find that for all times after
the quench,

�e−2i��x,t�� � 0 �128�

so that Ising order never develops. This is consistent with the
results of �18� and may be an artifact of the semi-classical
approximation. In Sec. VI, we will compare this result with a
mean-field treatment for the order-parameter dynamics.

Thus, within the validity of the semiclassical approxima-
tion we find the following time evolution for the initial do-
main wall profile,

�Sz�x,t�� = −
1



�x����x,t��

=
h0


vF
�

0

�

dz cos�ut

�
�z2 + 	m�

u

2� �

sin	 x

�
z


sinh	
z

2

 .

�129�

The above is plotted in Fig. 8 for several different masses.
The domain wall profile shows a more complex time evolu-
tion than for the quench in the gapless phase where a simple
ballistic broadening of the domain wall occurs. In the Ising
phase instead we find oscillations of the local magnetization
at the frequency of the mass. In addition the domain wall
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spreads out less and less as the mass increases, a result which
is in agreement with a t-DMRG study of the XXZ chain
�12,13�. Note however that we find oscillations of the mag-
netization outside the light cone at the time-scale of 1 /m.
This is due to the nature of the Klein-Gordon equation �t

2

−�x
2+m2 which has solutions of the form eikx−i�k2+m2t

→
mt�1

e−imteikx−ik2/�2mt�. The t-DMRG results on the other hand
found oscillations only within the light cone.

We also find that the magnetization eventually equili-
brates at long times. Figure 9 shows the time evolution for
the magnetization for a given point in position space. At long
times Eq. �129� may be evaluated in a stationary phase ap-
proximation which gives,

�Sz�x,t�� �
2h0x


vF

� 2m


u2t
cos	mt +




4

 �130�

showing that the magnetization decays locally as a power
law.

2. Correlation functions after the quench

Here we give results for some typical spin correlation
functions. Again, due to the presence of infrared divergences,
the transverse-spin correlation function is found to vanish at
all times after the quench,

�ei��x,t�e−i��0,t�� � 0 �131�

On the other hand the z−z correlation function is found to be

�e2i��x,t�e−2i��0,t�� = e2i����x,t�−���x,0��A��	�	1

x

 . �132�

For a purely interaction quench ���=0� we find a power law
decay in the Ising phase with an exponent which is half of
that in the initial gapless phase, a result which was also
found by �18� for homogeneous quenches. The initial domain
profile superimposes the additional structure

e2i����x,t�−���y,0�� →
mt�1

e2i��h0�x2−y2�/vF��2m/�
u2t�cos�mt+
/4��.

�133�

Thus at long times, the spatial oscillations due to the initial
domain-wall eventually decay to zero.

VI. EFFECT OF QUENCHING A MAGNETIC FIELD AND
INTERACTIONS: MEAN-FIELD TREATMENT

In this section, we will use a mean-field argument to ex-
plore whether after quenching both a magnetic field as well
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FIG. 8. �Color online� Contour plot for �Sz� after a “semiclassi-
cal” quench for several different masses.
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as interactions, local antiferromagnetic �AF� Ising order can
develop. Thus our initial wave function corresponds to the
ground state of the following Hamiltonian

Hi = J�
j
�Sj

xSj+1
x + Sj

ySj+1
y +

hj

J
Sj

z� , �134�

with J�0, and we will assume hj =Fja. While, as a result of
the quench the wave function evolves in time due to

Hf = J�
j

�Sj
xSj+1

x + Sj
ySj+1

y � + Jz�
j

Sj
zSj+1

z . �135�

Performing a Jordan-Wigner transformation followed by the
change of variables ci→ �−1�ici, Hi becomes identical to the
Hamiltonian �Eq. �2�� already studied in Sec. II A, whereas
the Hamiltonian after the quench is,

Hf = −
J

2�
i

�ci
†ci+1 + H.c.� + Jz�

i
	ci

†ci −
1

2

	ci+1

† ci+1 −
1

2

 .

�136�

Thus the initial state which is the ground state of Hi �given
by Eq. �7�� evolves in time according to Eq. �136�. In what
follows, we will study this time evolution using a mean-field
approximation.

Defining the AF order parameter at a time t, �0�t� as
�ci

†�t�ci�t��= 1
2 + �−1�i�0�t�, Eq. �136� within a mean-field ap-

proximation becomes

Hf
mf = �

�k��
/2
�k�ck

†ck − ck+

† ck+
� − 2Jz�0�t� �

�k��
/2
�ck

†ck+


+ ck+

† ck� , �137�

where �k=−J cos ka, and �0�t� is determined from the self-
consistency condition

�0�t� =
1

N
���eiHf

mft�
i

�− 1�ici
†cie

−iHf
mft��� , �138�

where N is the total number of sites.
In terms of the amplitudes c̃k� of being in the adiabatic

eigenstates of Hf
mf, the self-consistency condition becomes

�0�t� =
1

2N
�

�k��
/2
�sin 2�k�t���c̃k+�t��2 − �c̃k−�t��2� − cos 2�k�t�

��c̃k+
� �t�c̃k−�t� + c̃k−

� �t�c̃k+�t�� � cos��
0

t

dx�Ek+�x�

− Ek−�x��� − i cos 2�k�t��c̃k+
� �t�c̃k−�t� − c̃k−

� �t�c̃k+�t��

� sin��
0

t

dx�Ek+�x� − Ek−�x���� , �139�

where

Ek��t� = � ��k
2 + 4Jz

2�0
2�t� �140�

tan 2�k�t� = −
2Jz�0�t�

�k
�141�

and the coefficients c̃k� satisfy the equations of motion,

dc̃k��t�
dt

= c̃k��t����kJz
d�0

dt

�k
2 + 4Jz

2�0
2 e�i�0

t dx�Ek+�x�−Ek−�x��

�142�

In an adiabatic approximation
�̇0

�0
2 �1, we can approximate

c̃k� by its value at t=0. In this case Eq. �139� becomes

�0 �
1

2N
�

�k��
/2
�sin 2�k�t��sin 2�k�t�Ik

x + cos 2�k�t�Ik
z�

− cos 2�k�t��sin 2�k�t�Ik
z − cos 2�k�t�Ik

x�

� cos��
0

t

dx�Ek+�x� − Ek−�x���
− i cos 2�k�t�Ik

y sin��
0

t

dx�Ek+�x� − Ek−�x���� ,

�143�

where Ik
x,y,z denote the following expectation values in the

initial state before the quench,

Ik
x = ���ck

†ck+
 + ck+

† ck��� , �144�

Ik
z = ���ck

†ck − ck+

† ck+
��� , �145�

Ik
y = ���ck+


† ck − ck
†ck+
��� . �146�

Since in the initial domain wall state, Ik
x,y,z �0, this implies

that �0�t�=0, and hence antiferromagnetic order does not
develop within a mean field and adiabatic approximation.
This result can also be understood from the fact that the
initial state is a highly excited state of the antiferromagnetic
model as it corresponds to introducing a domain wall in the
staggered magnetization at almost every site �12�.

The above conclusion also holds if we relax the adiabatic
approximation. To see this note that at every k, the mean-
field Hamiltonian Eq. �137� corresponds to a pseudo-spin 1/2
��k where �40� �k

z =ck
†ck−ck+


† ck+
, �k
x=ck

†ck+
+ck+

† ck and �k

y

= i�ck+

† ck−ck

†ck+
�. This pseudospin is subjected to a mag-
netic field that has to be determined self-consistently at each
time t where for t=0 ��k

x,z�0��= Ik
x,z , ��k

y�0��= iIk
y. Since for the

initial domain wall state ����0��=0, it implies
dn��k

x�
dtn �t=0�=0 to

all orders in n, so that antiferromagnetic order ���k��k
x�� will

not develop.

VII. CONCLUSIONS

In summary we have studied quenched dynamics in a
XXZ chain starting from an initial inhomogeneous state
where the spins are arranged in a domain wall profile. The
dynamics of the domain wall is found to be qualitatively
different within the gapless XX phase and the gapped Ising
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phase. In the former the domain wall broadens ballistically,
while in the latter the domain wall spreads out less and less
the deeper one is in the Ising phase. The magnetization is
locally found to oscillate, and eventually decays as a power
law. Although the results in the Ising phase were obtained
within a semiclassical treatment, they are in qualitative
agreement with t-DMRG simulations of the XXZ chain
�12,13�.

We have also presented results for the time evolution of
two-point correlation functions. For quenches within the
gapless XX phase we find that the longitudinal spin correla-
tion function �Czz� reaches a steady state which is indepen-
dent of the initial domain wall. On the other hand, the trans-
verse spin correlation function �Cxx� reaches a
nonequilibrium steady state which retains memory of the ini-
tial domain wall. This memory appears as an inhomogeneous
spin wave pattern with a wavelength which is inversely re-
lated to the height of the initial domain wall. This result was
obtained by using three different methods: exact solution of
the fermionic problem �Eqs. �34� and �36��, bosonization
�Eqs. �112� and �114�� and the solution of the classical equa-
tions of motions for spins �Eq. �92��. The spatial oscillations
are found to arise due to the dephasing of transverse spin
components as the domain wall broadens. We also find that a
Gibbs ensemble argument is not adequate in capturing the
spin wave pattern.

For quenches into the gapped Ising phase, all inhomoge-
neities both in the local magnetization and in the two-point
correlation functions are found to eventually decay away.
This may be an artifact of the semiclassical approximation
which neglects soliton creation �18�. We would also like to
point out a recent preprint �41� that studies time evolution of
an initial domain wall in the gapped Ising phase using Alge-
braic Bethe Ansatz. The authors study the Loschmidt echo
and find a lack of thermalization.

Finally we perform a mean-field treatment for the time
evolution of the antiferromagnetic Ising gap and find that for
an initial state corresponding to a domain wall profile, anti-
ferromagnetic order never develops. This should be expected
on the grounds that the initial domain wall profile corre-
sponds to a highly excited state of the anti-ferromagnetic
Ising model.
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APPENDIX A: DIAGONALIZATION OF THE XX MODEL

The Hamiltonian for the XX model is

Hxx = − J�
j

�Sj
xSj+1

x + Sj
ySj+1

y � . �A1�

The Jordan-Wigner transformation maps the spin Hamil-
tonian to that for spin-less fermions cj, and cj

† which are
defined in terms of the spin raising and lowering operators
Sj

�=Sj
x� iSj

y as follows,

Sj
− = exp�− i
 �

n=−N/2+1

j−1

cn
†cn�cj , �A2�

Sj
+ = exp�i
 �

n=−N/2+1

j−1

cn
†cn�cj

†, �A3�

The Hamiltonian is diagonal in momentum space cj

= 1
�N

�kcke
ikj where,

Hxx = �
k

�kck
†ck �A4�

�k = − J cos k . �A5�

Thus the operators ck, have the trivial time evolution ck�t�
=ck�0�e−i�kt. In terms of the �m, quasiparticles that diagonal-
ize the Wanner-Stark problem �Eq. �2��, the transformation
given by Eqs. �5� and �6� yields

cj�t� =
1

N
�
k,m

eik�j−m�−i	 sin ke−i�kt�m �A6�

cj
†�t� =

1

N
�
k,m

e−ik�j−m�+i	 sin kei�kt�m
† . �A7�

APPENDIX B: TIME EVOLUTION IN THE XX MODEL
STARTING FROM INITIAL DOMAIN WALLS OF

DIFFERENT HEIGHTS

Antal et al. have considered more general domain walls
�7� in which the homogeneous magnetization on either side
of the wall is taken to be �m0, where 0�m0�1 /2. They
have studied the time evolution of the domain wall under the
influence of the XX Hamiltonian. In this section we will ex-
tend their results by studying how the transverse spin corre-
lation function evolves in time.

A domain wall of height m0 may be constructed as fol-
lows �7�,

��m0
� = 


k=−k−

k−

Rk
† 


k=−k+

k+

Lk
†�0� , �B1�

where

Rk =
1

�N
�
j�0

e−ikjcj , �B2�

Lk =
1

�N
�
j�0

e−ikjcj , �B3�

and k�=
� 1
2 �m0�. Due to the XX Hamiltonian H

=−J�kcos�k�ck
†ck, the operators cj, evolve as

cj�t� = �
m

im−jJm−j�Jt�cm�0� , �B4�

In order to compute any correlation function, the contraction
we need is
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�cj
†�t�cj+n�t�� = �

s,m
is−m−nJm−j�Jt�Js−j−n�Jt� � �cm

† �0�cs�0�� .

�B5�

where,

�cs
†�0�cm�0�� =�

0 if s · m � 0

sin�	


2
+ 
m0
�s − m��

�s − m�

if s,m � 0

sin�	


2
− 
m0
�s − m��

�s − m�

if s,m � 0

.

�B6�

Thus,

�cj
†�t�cj+n�t�� = �

m,s�0
is−m−nJm−j�Jt�Js−j−n�Jt�

�

sin�	


2
+ 
m0
�m − s��

�m − s�

+ �
m,s�0

is−m−nJm−j�Jt�Js−j−n�Jt�

�

sin�	


2
− 
m0
�m − s��

�m − s�

. �B7�

We write both terms as sums over positive m, s, �i.e., letting
m ,s→−m ,−s, in the second term�, and rewrite �m,s�0
→�m�0�l=−�

� with l=s−m, and use the identity

�
m�0

Jj+m�x�Jj+n+m�x� =
x

2n
�Jj+1�x�Jj+n�x� − Jj�x�Jj+n+1�x�� .

�B8�

Next we employ the asymptotic expansion for large argu-
ments, Jn�x��� 2


xcos�x− 

2 n− 


4 � to find the following non-
equilibrium steady state expressions,

lim
Jt→�

�cj
†�t�cj+n�t��

� �
l=−�

� �il−n

sin�	


2
− 
m0
l�sin�


2
�l − n��


2l�l − n�

+ il+n

sin�	


2
+ 
m0
l�sin�


2
�l + n��


2l�l + n�
.� �B9�

Examining the limit of m0= 1
2 , we recover exactly the values

in Eqs. �28� and �29�. We use Eq. �B9� in the evaluation of
the determinant in Eq. �23� required for computing the trans-
verse spin correlation function. We recover a spatial period
of oscillation in Cxx�j , j+n , t→�� that increases with smaller
m0 �see Fig. 5�.
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