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Low-frequency signal transmission in one-way coupled bistable systems subject to a high-frequency force is
studied. Two cases including the high-frequency force on all sites �case 1� and only on the first site �case 2� are
considered. In these two cases, vibrational resonance induced by the high-frequency force can play an active
role to effectively improve the signal transmission, and undamped signal transmission can be found in a broad
parameter region. The combinative action of injected low-frequency signal, high-frequency driving, and cou-
pling is of importance. Our findings suggest that high-frequency signal could be properly used in low-
frequency signal transmission, and especially the implementation of high-frequency force simply on the first
site for case 2 is meaningful for its simplicity and high efficiency.
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I. INTRODUCTION

Recently, one of the great progresses in the study of non-
linear science is the finding of stochastic resonance �1–6�,
which reveals that noise effect is not always nuisance and
noise can play a rather positive role. For example, an optimal
quantity of noise can improve signal detection by a nonlinear
system. Although the phenomenon with the maximal signal
output at optimal strength of noise has been termed stochas-
tic resonance, it is fundamentally different with the usual
concept of �frequency� resonance in physics, which describes
the tendency of a system to oscillate with larger amplitude at
some resonant frequencies than at others. Due to its simplic-
ity and robustness, stochastic resonance has attracted inter-
disciplinary interest and has been extensively found in a va-
riety of systems �7–11�. In spatially extended systems, the
remarkable impact of noise on signal transmission has also
been investigated, such as noise enhanced propagation �12�,
noise sustained propagation �13�, noise supported traveling
wave in subexcitable media �14�, and noise-induced propa-
gation in monostable media �15�. In particular, Lindner et al.
used noise to extend signal propagation in one- and two-
dimensional arrays of two-way coupled bistable oscillators
and demonstrated that moderate noise significantly extends
the propagation of the periodic signal input �12�. Löcher et
al. established the constructive role of noise on the signal
transmission properties of spatially extended metastable me-
dia by studying an experimental system comprised of
coupled nonlinear resonators �13�. Moreover, Zhang et al.
�16� studied noise effect on signal transmission in one-way
coupled bistable systems and found that at optimal noise
intensity undamped signal transmission is possible due to the
appearance of stochastic resonance. Except for these, the
similar problems have already been studied by many other
research groups. See, e.g., Refs. �17–19�.

Analogous to noise in stochastic resonance, high-
frequency signal can play a similar role �20–23�. With an
optimal intensity of high-frequency signal, the system’s re-

sponse to a weak low-frequency signal can also become
maximal. This phenomenon, called vibrational resonance,
was first reported by Landa and McClintock in 2000 �20�.
Since then, vibrational resonance has been intensively stud-
ied in excitable �24–27�, bistable �28–31�, and spatially ex-
tended systems as well �32,33�. Importantly, Chizhevsky et
al. provided the first experimental evidence of vibrational
resonance in a bistable vertical cavity laser system �34�. It is
noteworthy that biharmonic signal in the context of the vi-
brational resonance has already been used in nature and
many engineering fields. For instance, the significance of
two frequency bands in long-distance vocal communication
in the green treefrog �Hyla cinerea� was discovered several
decades ago �35�. A simple two-frequency laser consisting of
a laser, a half-wave plate, and an electro-optic modulator was
constructed and shows high stability, easier operation, and
high efficiency �36�. The nonlinear response of a gas bubble
to an acoustic field consisting of a high-frequency imaging
wave and an audio pumping wave was investigated by Mak-
simov �37�. The two-frequency coherence effect for high-
frequency narrow-band pulse propagation in the fluctuating
ionosphere was numerically studied �38�. Moreover, bihar-
monic signal transmission has been a standard technique
even in the positioning and navigation in the global position-
ing system �39�.

Although vibrational resonance resembles the usual sto-
chastic resonance, there are some essential differences be-
tween them. The noise effect in stochastic resonance is usu-
ally described by a stochastic differential equation and
characterized by stochastic process in mathematics, whereas
the high-frequency signal effect in vibrational resonance is
deterministic. According to a recent theoretical study
�21,22�, the peak in vibrational resonance is contributed by a
high-frequency-signal-induced phase transition for the sys-
tem switching from bistable to monostable. In contrast, sto-
chastic resonance has long been believed to be contributed
by the match of two time scales: the periodic injected signal
and the Kramers rate �6�. This assumption is widely ac-
cepted, but it is in contradiction with many known numerical
results and stochastic resonance in monostable systems as
well. Recently, a rigorous theory of stochastic resonance was
developed by Landa et al. �40,41�, based on the fact that*Corresponding author; zhanmeng@wipm.ac.cn
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small noise in stochastic resonance or high-frequency vibra-
tion in vibrational resonance may essentially change effec-
tive system parameters with respect to slow motions. As a
result, both the stochastic and vibrational resonances can be
considered in a unique framework. On the other hand, vibra-
tional resonance by a biharmonic force with very different
frequencies is different with the usual frequency resonance
for the coincidence of the frequency of external force with
one of the natural frequencies of the system. The finding of
vibrational resonance demonstrates that an unusual reso-
nance phenomenon is still possible even if these two fre-
quencies are sufficiently distinct.

In this work, motivated by the above-mentioned extensive
engineering applications of biharmonic signal transmission
and its theoretical value, we will study signal transmission in
a nonlinear medium represented by one-way coupled bistable
systems subject to a high-frequency signal. Similar work
subject to uncorrelated noise was performed by Zhang et al.
�16�. We are interested in the problem how the high-
frequency signal influences the signal transmission, namely,
how the down string sites of the one-way coupled systems
respond to an excitation applied at an upper string site when
a low-frequency signal is injected into the first site of the
systems. Two different cases including the high-frequency
force on all sites �case 1�, similar to the work of Zhang et al.,
and only on the first site �case 2� will be treated. In these two
cases, the high-frequency signal indeed contributes to signal
transmission greatly and undamped signal transmission can
be observed broadly, while the signal damps monotonically
with spatial distance without high-frequency signal. The
similarity and difference between cases 1 and 2 will be com-
pared and analyzed.

The paper is organized as follows. In Secs. II and III, we
will give numerical results for case 1 and case 2, respec-
tively. Section IV is devoted to theoretical analyses for these
phenomena. Finally, a conclusion is presented in Sec. V.

II. CASE 1

First let us consider one-way coupled bistable systems
with the first site driven by a low-frequency signal and each
site forced by an identical high-frequency signal,

ẋ1 = x1 − x1
3 + A cos��t� + B cos��t + �1� , �1a�

ẋi = xi − xi
3 + �xi−1 + B cos��t + �i�, i = 2,3, . . . ,N ,

�1b�

where A cos��t� indicates a low-frequency signal with am-
plitude A �A�1� and B cos��t+�i� indicates a high-
frequency signal of amplitude B, ���, and the one-way
coupling strength is represented by �. �i� �−� ,��. Without
losing generality, we first consider �i=0 for all i’s. The pa-
rameter set A=0.025, �=0.1, �=5.0, and N=100 is chosen
and fixed, and the parameters B and � are free. In the nu-
merical simulations, the standard fourth-order Runge-Kutta
integration algorithm with the fixed time step �t=0.01 is
used.

It is well known that the bistable media can support front
propagation and it is of great significance for many processes

in realistic systems �42�, such as the propagation of an action
potential along the axon of a nerve or the propagation of a
grass fire on a prairie. Recently, front propagation under pe-
riodic forcing in reaction-diffusion systems has been studied
�43,44�. Different with all of these studies, in the present
work we are interested in how the additional high-frequency
� signal influences the transmission of the low-frequency �
signal.

A quantity Qi chosen for describing the signal transmis-
sion in the bistable medium is defined by

Qi = �Qsi

2 + Qci

2 /A ,

Qsi
=

2

nT
�

T0

T0+nT

xi sin��t�dt ,

Qci
=

2

nT
�

T0

T0+nT

xi cos��t�dt , �2�

where T= 2�
� . A sufficiently large T0 is chosen to discard

transient processing, and n=200 is selected. Clearly Qi char-
acterizes the signal output of element i at low frequency �.
Other similar definitions of the response �including the spec-
tral measurement� do not change the results.

As one of main results, Fig. 1 shows the phase diagram on
the �� ,B� plane for the undamped signal transmission region,
which is determined by Q100	Q1. From this figure, we can
see that the region is well surrounded by two critical curves
Bc1

and Bc2
���, and Bc1

�Bc2
���� is independent �dependent�

of �. Bc1
�3.92 for our parameter setting, and undamped

signal transmission exists only if B	Bc1
. We also find that,

as � increases from zero over a critical value �c, the un-
damped signal transmission appears first at the optimal B
�Bc1


B
Bc2
����, and then the B range becomes larger by

further increasing �. These features are very similar to those
of noise effect on signal transmission �16�, with B substituted

FIG. 1. Case 1 for high-frequency signal on all sites. The phase
diagram for the undamped signal transmission region is surrounded
by two critical �solid� curves Bc1

and Bc2
���. The curves are deter-

mined by the calculation of the gain factor in Eq. �2� relying on the
information measure. The calculation and comparison based on the
spectral measure give the nearly same results, as shown by the plus
signs in the figure. The two dashed lines for Bc1

=3.92 and Bc2
���

�Eq. �15�� come from analyses. The parameters are A=0.025, �
=0.1, �=5.0, N=100, and �i=0 �i�1�.
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by the noise intensity D. The peak height of power spectrum
at frequency � for each site, Pi, was also calculated. The
critical curves may also be determined by P100= P1 with the
result depicted by plus signs in the figure. From these results,
we cannot see any significant difference. Note that the rela-
tion between spectral and information measures is contradic-
tory in some situations especially in the regime of nonlinear
response �45–47�. Therefore, below we will always use the
gain factor in Eq. �2� to characterize the efficiency of the
signal transmission.

Figures 2�a� and 2�b� illustrate the values of Qi for each
site without high-frequency signal �B=0, �=0.4� and with
high-frequency signal �B=4.5, and from bottom to top �
=0.1, 0.2, 0.3, and 0.4�, respectively. For B=0, the signal
transmission is local and it damps monotonically with re-
spect to space distance from the first site. For B�Bc1

, how-
ever, the signal transmission can be global and undamped if
� is larger than a certain threshold.

In Fig. 3, we show Qi versus B for i=1, 2, 3, and 100;
�=0.4. For the first site, the usual vibrational resonance is
obvious. For the down string sites, the resonance peaks be-
come sharper and the values of Qi increase and quickly satu-
rate �comparing these four curves�. As a result, undamped
signal transmission occurs within a window for optimal
value of B and it is clearly connected with the propagation of
vibrational resonance.

To proceed further, we plot the time series of x1, x2, x3,
and x100 in Figs. 4�a�–4�d�, respectively. A parameter set �B
=4.5, �=1.5� is arbitrarily chosen within the undamped sig-
nal transmission region. In all these figures, the low-
frequency periodic signal with the period T �T= 2�

� �62.8� is
modulated by a high-frequency signal with the period T�
�T�= 2�

� �1.3�. The amplitude of the high-frequency signal is
constant. However, that of the low-frequency signal in-

creases rapidly with the increase in i; this finding accords
with the observations in Figs. 2�b� and 3. Therefore, we
know that in certain conditions the high-frequency force con-
tributes to signal transmission and plays a similar construc-
tive role as noise.

Finally, the effect of additional initial phases �i’s in Eqs.
�1a� and �1b� is studied. Clearly the addition of �1 in Eq. �1a�
does not change the dynamics of x1 as A is small compared
to B. However, the addition of �i in Eq. �1b� does change the
dynamics of xi �i�2� due to the input of the �xi−1 term in the
equation. In Figs. 5�a�–5�c�, we show the phase diagrams for
the undamped signal transmission region, after we consider
three different sets of random values of �i �−���i���.
The critical �solid� curves, same as in Fig. 1 for �i=0, are
also superimposed. They are different, especially for larger
values of �, indicating that the effect of additional initial
phases is significant. Next the effect of the rational or irra-
tional ratio � /� is studied. The results are shown in Fig.
5�d�, where—from bottom to top—the critical curves are for
three different values of �: �=2�2, 4, and 5, respectively.
�=0.1 is fixed; �i=0 �i�1�. They can be viewed as trans-
lated in the ordinate; this point can be well predicated by our
following theories. From these plots, we cannot see any sig-
nificant change for irrational ratios except for a scale change.

FIG. 2. �Color online� �a� and �b� Qi vs i for the parameters
�B=0, �=0.4� and �B=4.5, from bottom to top, �=0.1, 0.2, 0.3,
and 0.4�, respectively.

FIG. 3. �Color online� Qi vs B for i=1, 2, 3, and 100; �=0.4.
Vibrational resonance enhanced signal propagation is clear at opti-
mal value of B.

FIG. 4. �a�–�d� The time series of x1, x2, x3, and x100, respec-
tively, showing an increasing low-frequency signal amplitude, with
a constant amplitude modulation of high-frequency signal. B=4.5
and �=1.5 within the undamped signal transmission region.

SIGNAL TRANSMISSION BY VIBRATIONAL RESONANCE… PHYSICAL REVIEW E 81, 061129 �2010�

061129-3



III. CASE 2

In this section, we will study the same problem as in Sec.
II, but with only the first element driven by a high-frequency
force. The equations become

ẋ1 = x1 − x1
3 + A cos��t� + B cos��t + �1� , �3a�

ẋi = xi − xi
3 + �xi−1, i = 2,3, . . . ,N . �3b�

Obviously different values of �1 do not change the dynamics
of x1 as A is small compared to B; below we will set �1=0
for simplicity. Figure 6 shows the undamped signal transmis-
sion region, which is surrounded by several critical �heavy
solid� lines. The two critical �thin� lines for case 1 are also
superimposed. One may intuitively believe that case 2 with
only the first element driven by a high-frequency force
should have a weaker effect on signal transmission, com-
pared to case 1 with all elements driven by a high-frequency
force, or even cannot support signal transmission. The pat-
tern in Fig. 6, however, gives a completely opposite result.

Instead, case 2 shows a much larger undamped signal trans-
mission region. The region expands tremendously to larger
values of B, with the same unchanged lower threshold Bc1
�Bc1

�3.92� and a larger �c. Meanwhile, the edge of region
becomes complicated, showing a maplelike shape. It is no-
table that if only the first element is driven by noise, no
undamped signal transmission exists for any D and �.

Figures 7�a� and 7�b� plot Qi versus i for the parameters
within the undamped signal transmission region �from left
to right: �B=9, �=2.5�, �B=18, �=2.8�, and �B=31, �
=3.4�, as shown by the three circles in Fig. 6� and out of the
region �from left to right: �B=9, �=2.0�, �B=18, �=2.5�,
and �B=31, �=3.0�, as shown by the three squares in Fig.
6�, respectively. Different with the monotonic increase or
decrease in Qi, in Fig. 2�b� for case 1, a slight increase for
the first several sites is discernible from both Figs. 7�a� and
7�b�. Note that these two panels have very different scales in
their ordinates.

Further, we plot Qi vs B for �=1.0, 2.0, 2.5, and 4.0 in
Figs. 8�a�–8�d�, respectively. In Fig. 8�a�, Q100 vanishes as �
is smaller than the threshold. In contrast, the patterns of vi-
brational resonance with a monopeak �Fig. 8�b��, bipeak
�Fig. 8�c��, and plateau �Fig. 8�d�� for B	Bc1 are clear. In
the inset of Fig. 8�b�, the part of the damp of the second
resonance peak is enlarged. In Figs. 8�c� and 8�d�, the
regions of undamped signal transmission become much
larger. All of them look quite different with those for case 1
in Fig. 3.

Finally, the time series of xi for �=2.0 and 4.0 are dis-
played in Figs. 9�a� and 9�b�, respectively. B=5.0 is the
same. In Fig. 9�a�, from bottom to top, the five curves cor-
respond to i=2, 3, 4, 5, and 100. Different with the vanishing

FIG. 5. �Color online� �a�–�c� The phase diagrams �black points�
for the undamped signal transmission region, considering the effect
of additional initial phases �i’s in Eq. �1b�. For different random
values of �i �−���i���, they are different with each other and
all of them are different with the phase diagram �solid lines� for
�i=0 as in Fig. 1. �d� The critical curves for �=2�2, 4, and 5 �from
bottom to top�. �=0.1 is fixed; �i=0 �i�1�.

FIG. 6. Phase diagram for case 2 with high-frequency signal on
the first site only. The maplelike shape of critical curves �heavy
solid lines� is clear. In contrast, the two critical curves �thin lines�
for case 1 at small B are superimposed.

FIG. 7. �Color online� �a� and �b� Qi vs i for the parameters
within and out of the undamped signal transmission region, respec-
tively. In �a�, from left to right, the three curves correspond to
�B=9.0, �=2.5�, �B=18.0, �=2.8�, and �B=31.0, �=3.4�, In
�b�, from left to right, �B=9.0, �=2.0�, �B=18.0, �=2.5�, and
�B=31.0, �=3.0�. These parameters are denoted by filled circles
and open squares in Fig. 6, respectively.
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of low-frequency signal in Fig. 9�a�, in Fig. 9�b� the propa-
gation of low-frequency signal has been established and be-
come undamped. We also find that now the high-frequency
signal fades with the propagation, which is essentially differ-
ent with that in case 1 �comparing x100 in Fig. 9�b� and that
in Fig. 4�d��.

In Ref. �24�, Ullner et al. reported vibrational resonance
and vibrational propagation in excitable systems by studying
an excitable electronic circuit and the FitzHugh-Nagumo
model. In their studies, every oscillator in the chain is driven
by an identical high-frequency signal, which corresponds to
case 1 �not case 2� in our model study. The phenomena for
the signal propagation are quite similar. Except for the dif-
ferent systems, some other distinctions are clear. For in-

stance, their report on resonant vibrational propagation is
brief with only a single example, whereas our studies will
rely on not only numerical observations but also theoretical
analyses.

All the differences between cases 1 and 2 need an expla-
nation and the underlying mechanisms of undamped signal
transmission for these two cases should be elucidated clearly
by theoretical analyses. This is exactly the objective of our
next section.

IV. THEORETICAL ANALYSES

The vibrational resonance in single bistable systems has
been well analyzed in �21,22�, based on the method of iner-
tial approximation �23�. The basic idea behind this method is
that the system variable under the condition of high-
frequency signal force can be decomposed into a slow mo-
tion and a fast motion. Thus, in the bistable systems, the
high-frequency signal changes the dynamics of the slow mo-
tion and gives rise to a system transition from bistable to
monostable, which further makes the amplitude of the slow
component �signal� of the output of the systems at the tran-
sition point become maximal.

In this work, we generalize this method for the study of
signal transmission in one-way coupled bistable systems.
Since the effect of additional initial phase �i’s in Eq. �1b� for
case 1 is very complicated, as shown in Figs. 5�a�–5�c�, in
the following analyses we will only consider �i=0 �i�1�.
For the first site, x1�t� in Eq. �1a� �or in Eq. �3a�� can be
decomposed into a slow motion X1�t� with frequency � and
a fast motion 1�t� with frequency �,

x1�t� = X1�t� + 1�t� . �4�

Substituting this equation into Eq. �1a�, we obtain the fol-
lowing evolution equations for X1�t� and 1�t�:

Ẋ1 − X1 + X1
3 + 3X11

2 + 1
3 = A cos��t� , �5a�

̇1 − 1 + 3X1
21 + 3X1�1

2 − 1
2� + 1

3 − 1
3 = B cos��t� ,

�5b�

where the overbar denotes time integral within a period T�
�T�=2� /��.

Remembering that 1 is a rapidly changing force, we
have

̇1 � 1,1
2,1

3, �6�

which leads to

̇1 = B cos��t� , �7�

and further

1 =
B

�
sin��t� . �8�

Taking into account that 1
3=0 and 1

2=B2 /2�2, Eq. �5a�
becomes

FIG. 8. �Color online� �a�–�d� The plots of Qi vs B for �=1.0,
2.0, 2.5, and 4.0, respectively. The vibrational resonance propaga-
tion shows some new features with that for case 1 in Fig. 3. The
inset of �b� shows the zoomed-in part of the damp of the second
resonance peak.

FIG. 9. �Color online� �a� and �b� The time series of xi for the
parameters ��=2.0, B=5.0� within and ��=4.0, B=5.0� out of the
undamped signal transmission region. In �a�, from bottom to top,
i=2, 3, 4, 5, and 100. In �b�, with the increase in i, the amplitude of
low-frequency signal increases and that of high-frequency signal
decreases.
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Ẋ1 = �1 −
3B2

2�2	X1 − X1
3 + A cos��t� . �9�

Clearly the high-frequency signal intensity B has come into
the linear term of the equation and will change the low-
frequency signal output. For convenience, Eq. �9� can be
rewritten in the following form:

Ẋ1 = aX1 − X1
3 + A cos��t� , �10�

where

a = 1 −
3B2

2�2 . �11�

Under the condition A=0, the system of X1 is bistable
with two symmetric equilibria �X1= ��a� if a	0, or it is
monostable with only one equilibrium at the origin �X1=0� if
a
0. Immediately, we may have prediction of a transition
point ac=0 and, equivalently, Bc=��2�1−ac� /3=��2

3 . As
�=5.0, Bc=4.08	Bc1

�3.92.
For a small but nonzero A, X1 will show a periodic oscil-

lation with small amplitude and frequency � around one
equilibrium �X1=�a or X1=−�a� if the system is bistable, or
around the origin �X1=0� if the system is monostable. In Fig.
10, we plot the bifurcation diagram of the maximal and mini-
mal values of X1�t� �Eq. �10�� with the change in a. A
=0.025 and �=0.1. A critical ac exists, indicative of a tran-
sition of system behavior from monostable to bistable, and
also from symmetric to asymmetric. Here, ac=0.078�0, due
to the influence of a small A. Based on this observation, now
we have a more precise estimation: Bc=��2�1−ac� /3
=3.92, which is equal to Bc1

. Therefore, we know that the
monostablitity �or symmetricity� of the first site X1 is one of
the necessary conditions for the undamped signal transmis-
sion down the string, and the bistability �or asymmetricity�
of X1 can only spoil the signal transmission. This is right; the
phase diagrams for both cases 1 and 2 in Fig. 6 prove this
point well.

Furthermore, eliminating the third-order term in Eq. �10�
and solving X1, we explicitly have

X1�t� =
A cos��t − �1�

��2 + a2
, �12�

with �1=arctan�
a , under the conditions B	Bc1

and A�1.
For case 1, we may further apply the approximation method
for variable decomposition �x1�t�=X1�t�+1�t�� to all down
sites and obtain

Ẋi = aXi − Xi
3 + �Xi−1, �13a�

i =
B

�
sin��t�, i = 2, . . . ,N , �13b�

under the condition ��1.
Comparing Eq. �13a� for i=2 and Eq. �10� for i=1 and

considering the solution of X1 in Eq. �12�, we have if

�A
��2 + a2

� A , �14�

then Q2�Q1. If this inequality is satisfied, we may even
have Qi�Qi−1 for all i�2. Therefore, from Eq. �14� the
other critical curve for the undamped signal transmission in
Fig. 1 should be determined by

Bc2
��� = ��2�1 + ��2 − �2�

3
. �15�

The agreement of the dashed line from this equation with
the solid line from the data is well verified in Fig. 1. Besides,
the minimum �c=�=0.1 is clear. Now it is also quite natural
to understand the monotonic increase in Qi in Figs. 2�b� and
3, for the parameters � and B chosen within the undamped
signal transmission region. Moreover, from Eq. �13b�, the
phenomenon of undamped high-frequency signal amplitude,
as shown in Fig. 4, is easy to understand.

Next let us analyze case 2. Compared to case 1, the un-
damped signal transmission region for case 2 becomes
greatly enlarged in the B direction. Therefore, we have to
reconsider the similar problem but with much larger value of
B. Some approximation relations do not exist, e.g., Eq. �6�.
From Eq. �5b�, eliminating the crossing terms �based on B
�A�, we have

̇1 = 1 − 1
3 + B cos��t� . �16�

Supposing that the form of 1�t� is

1�t� = C1 sin��t − �1� , �17�

we further obtain that the value of C1 should be determined
by

C1� = B cos��1� , �18a�

C1 − C1
3 = B sin��1� . �18b�

Consequently,

FIG. 10. �Color online� Bifurcation diagram of X1�t� �Eq. �10��
for the maximal �square points� and minimal �circular points� val-
ues. A=0.025 and �=0.1. In the presence of A �A�1 but A�0�, a
critical ac �ac�0.078�0� exists, indicative of a transition of sys-
tem behavior from monostable to bistable, and also from symmetric
to asymmetric. From this figure, we obtain a more precise estima-
tion: Bc1

�3.92.
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�C1��2 + �C1 − C1
3�2 = B2. �19�

Relying on the Cardano formula, we solve the above equa-
tion and get

C1 =�2

3
+ �T1 + �D1�1/3 + �T1 − �D1�1/3, �20a�

T1 = −
2��2 + 1�/3 − B2 − 16/27

2
, �20b�

D1 = T1
2 + ��2 − 1/3

3
	3

. �20c�

The numerical result �solid line� for the amplitude of 1
in Eq. �16� and the theoretical �dashed� curve for C1 vs B
from the above equations are shown in Fig. 11�a�. The fit is
good. If B �B
10� is small, both curves show a linear rela-
tion between C1 and B �C1� B

� �. If B becomes larger, how-
ever, a small deviation is clear.

For the slow variable X1, further we have

Ẋ1 = �1 −
3C1

2

2
	X1 − X1

3 + A cos��t� . �21�

The only difference with Eq. �9� for case 1 is that B
� in Eq.

�9� is substituted by C1 now.
For all other sites, similarly Xi and i are controlled by

Ẋi = �1 −
3Ci

2

2
	Xi − Xi

3 + �Xi−1, �22a�

i = Ci sin��t − �i�, i = 2, . . . ,N , �22b�

with

Ci =�2

3
+ �Ti + �Di�1/3 + �Ti − �Di�1/3, �23a�

Ti = −
2��2 + 1�/3 − ��Ci−1�2 − 16/27

2
, �23b�

Di = Ti
2 + ��2 − 1/3

3
	3

, �23c�

and

C0 =
B

�
.

Obviously the key difference between cases 1 and 2 is
that now the evolution equations of Xi and i for all i’s are
determined by the value of Ci �not B

� �. Ci depends on B, �,
and i, and it can only be numerically calculated. The result is
shown in Fig. 11�b�, where the monotonic decrease relation
between Ci and i is clear. B=5.0 and �=2.0. Due to the
complicated form of Ci, we cannot derive more analytical
results as we do for case 1, but we can still obtain some
qualitative results. For instance, Eq. �22b� tells us that the
information of high-frequency signal will damp with the in-
crease in i; this is exactly what we see in Fig. 9�b�. As i
increases, Ci decreases and 1−3Ci

2 /2 increases �1−3Ci
2 /2


0 for the first several i’s�, which will produce a larger
amplitude of Xi, as shown in Fig. 10. Therefore, it is easy to
understand the monotonic increase in Qi for the first several
sites in Figs. 7�a� and 7�b�. When i increases further, a tran-
sition from monostable to bistable for Xi appears and Ci
�0 for all large i’s. From Eq. �22a�, we can predict that a
sufficiently large coupling � may support undamped Qi; the
pattern that a large undamped signal transmission region ex-
ists if �	3.49 and B
50 in Fig. 6 proves this point well.
Prior to ��3.49, the multipeak structure with the maplelike
shape reflects the complicated competition relation between
B and � due to the change in the value of Ci�B ,�� for the first
several sites.

V. CONCLUSION

In conclusion, we have studied signal transmission in a
nonlinear medium described by a classical model of one-way
coupling bistable systems subject to a high-frequency signal.
The numerical results, supplemented by the theoretical
analyses, show that high-frequency signal can contribute to
the transmission of low-frequency signal with the help of
vibrational resonance. Compared to noise in signal transmis-
sion, the high-frequency signal input is deterministic and is
more controllable. Although the study in the paper is based
on a purely abstract consideration, some applications are ex-
pected. Since the technique with a low-frequency signal
modulated by a high-frequency carrier signal has already
been applied in acoustics, neuroscience, laser, electronic cir-
cuits, and many engineering fields �36–39�, we hope that the

FIG. 11. �Color online� �a� C1 vs B. The solid line from numeri-
cal calculation of the amplitude of 1 in Eq. �16� and the dashed
line from theory in Eq. �20a� are compared. �b� Ci vs i, showing a
monotonic decrease relation. B=5.0 and �=2.0. For more details,
see the text.
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findings in the paper are valuable to these fields. Some real-
izations in optical systems and neural networks are the best
candidates. In particular, the scheme with a high-frequency
signal only on the first site could be of great significance for
potential applications due to its simplicity and high effi-
ciency.
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