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The appearance of the fluid-rich phase in saturated porous media under the effect of an external pressure is
investigated. For this purpose we introduce a two field second gradient model allowing the complete descrip-
tion of the phenomenon. We study the coexistence profile between poor and rich fluid phases and we show that
for a suitable choice of the parameters nonmonotonic interfaces show up at coexistence.
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I. INTRODUCTION

When a porous medium is plunged in an infinite fluid
reservoir, the solid matrix absorbs fluid until an equilibrium
state is reached. Many interesting features of this swelling
phenomenon have been demonstrated experimentally. The
amount of swelled fluid can be controlled via different exter-
nal parameters such as the fluid pressure in the reservoir
�1,2�, that is via its chemical potential, the fluid velocity �3�,
or a mechanical pressure exerted on the solid �4–6�.

The solid-fluid segregation in consolidation is seen when,
depending on the external pressure acting on the porous ma-
terial, phases differing in fluid content are observed. This
problem has been addressed �5� by the authors in the frame-
work of continuum mechanics adopting in particular a first
gradient model; the existence of two different phases de-
pending on the external pressure has been proved. In that
context the interesting question of the coexistence of the two
phases could not be posed for the first gradient nature of the
model. In this paper, we propose a more general two field
one-dimensional second gradient model to study the profiles
connecting two coexisting phases and the formation of criti-
cal droplets, if any, of one phase into the other.

The adopted approach in modeling the behavior of porous
continua is essentially based on a pure solid Lagrangian de-
scription of motion, referring kinematics to the reference
configuration of the porous skeleton �see Sec. II�. The con-
stitutive model is purely phenomenological, which means
that the overall potential energy, regarded as a function of the
strain of the skeleton and the fluid mass density �per unit
volume, in the solid reference configuration�, is built up in
such a way to describe the existence of two states of equi-
librium: the solid-rich and the fluid-rich phase. Thus no re-
fined description of solid grain connectivity, as well as con-
nection among regions with different porosity is available in
such a model. Conversely the constitutive state parameters
are selected so as to describe the showing up of the fluid-rich
phase, which is possibly associated to the occurrence of fluid
segregation.

II. POROMECHANICS SETUP

Let Bs�R be the reference configurations for the solid
and fluid components �7�. The solid placement is a
C2-diffeomorphism �s�· , t� :Bs→R such that �s�Xs , t� is the
position occupied at time t by the solid particle Xs in the
reference configuration Bs. Consider �8� ��· , t� :Bs→R such
that ��Xs , t� is the fluid particle which at time t occupies the
same position of the solid particle Xs. Assume also ��· , t� to
be a C2-diffeomorphism, thus the map ��· , t� associate
univocally a solid particle to a fluid one and vice versa. The
fluid placement map �f�· , t� :R→R, giving the position of a
fluid particle Xf, is defined as �f�Xf , t�ª�s��−1�Xf , t� , t�. The
current configuration �s�Bs , t� at time t is the set of positions
of the superposed solid and fluid particles.

Let Js�Xs , t�ª ���s�Xs , t� /�Xs� be the Jacobian of the
placement map �s�· , t� measuring the ratio between current
and reference volumes of the solid component; we let
��Xs , t�ª �Js�Xs , t�2−1� /2 be the strain field. Let �0,��X��
with �=s , f, be the solid and fluid reference densities;
we define the fluid mass density field m�Xs , t�
ª�0,f���Xs , t�����Xs , t� /�Xs. Assuming that the mass is
conserved, it is not difficult to prove �8� that the field m can
be interpreted as the fluid mass density measured with re-
spect to the solid reference volume.

Assume, now, that the Lagrangian density
L��̇s , �̇ ,�s� ,�� ,�s� ,�� ,�s ,�� of the system is in the form

L = T��̇s,�̇,�s,�� − ���s�,��,�s�,��,�s,�� , �1�

where T is the kinetic energy density and � is the overall
potential energy density accounting for both the internal and
the external forces. In Eq. �1�, we have denoted with the dot
the derivative taken w.r.t. time and with the prime the deriva-
tive w.r.t. the solid reference space variable. The equation of
motion for the two fields �s and � can be derived assuming
that the possible motions of the system in an interval of time
�t1 , t2��R are those such that the fields �s and � are station-
ary profiles for the action functional

A��̇s, . . . ,�� ª �
Bs

dXs�
t1

t2

dtL��̇s, . . . ,�� �2�

in correspondence of the independent variations of the two
fields �s and � on Bs� �t1 , t2�. In other words any possible
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motion of the system in the considered interval is a solution
of the Euler-Lagrange equations associated to the variational
principle �A=0.

If one is interested to find equilibrium profiles �s�Xs� and
��Xs� of the system, namely, the solutions of the equations of
motion independent of time, since the kinetic energy associ-
ated to those profiles is equal to zero, the Lagrangian density
reduces to minus the potential energy density. In this case the
action is given by Eq. �2� where the time integral gives a not
essential multiplicative constant, and the variational principle
associated to such an action gives the seeked for equilibrium
profiles.

Assume, now, that the effect of the internal forces ex-
changed by the solid and fluid particles and that of the con-
servative external fields can be described via a potential
energy density ��m� ,�� ,m ,�� depending on the kinematic
fields �s and � only through the strain and the fluid mass
density fields. Note that the strain depends only on �s and the
fluid mass density only on �, hence the independent varia-
tions of those primitive fields reflect on independent varia-
tions of � and m. Thus, limiting the study to boundary value
problems expressed in terms of the fields � and m, we can
treat the fields � and m as primitive, consider their indepen-
dent variations and look for the equilibrium profiles ��Xs�
and m�Xs� starting from the variational principle

��
Bs

dXs��m��Xs�,���Xs�,m�Xs�,��Xs�� = 0. �3�

Finally, we can derive, starting from Eq. �3�, the equations
governing the equilibrium profiles � and m. By computing
the variation of the action functional on Bs= ��1 ,�2�, with
�1 ,�2�R, we get the Euler-Lagrange equations

��

��
−

d

dXs

��

���
= 0 and

��

�m
−

d

dXs

��

�m�
= 0, �4�

with boundary conditions ensuring that

� ��

���
�� +

��

�m�
�m�

�1

�2

= 0, �5�

where �� and �m are, respectively, the variations of the
strain and fluid mass density fields. For instance Dirichelet
boundary conditions would do the job, since we would have
����1�=����2�=0 and �m��1�=�m��2�=0. But for potential
energy densities � at least quadratic in the derivatives �� and
m� even Neumann boundary conditions would be acceptable.
In the sequel we shall refer to any solution of the Euler-
Lagrange Eq. �4� with suitable boundary conditions as an
equilibrium profile of the system corresponding to the chosen
boundary conditions.

The model Eq. �3� is called a first gradient model if the
potential energy density � does not depend on the first de-
rivatives of the strain and of the liquid density, otherwise the
model is said a second gradient model. This way of classi-
fying the models is related to the fact that both � and m
depends, by definition, on the gradient of the primitive ki-
netic fields �s and �.

Second gradient theories are suitable to be developed for
modeling stress/strain concentration due, for instance, to the
presence of geometrical singularities �crack propagation in
fracture mechanics �9�� or phase transitions as in the case of
wetting �10,11�. In particular, second gradient poromechan-
ics has been recently formulated �8,12� extending the stan-
dard arguments of the Biot theory �13�. Such a model ad-
dresses the description of those deformation phenomena
which occur at the same length scale as that where high
gradients in deformation can be detected. Classical porome-
chanics �7� is not able to describe these phenomena: the mac-
roscopic model is regarded in that case as the average of a
microscopic one where a kind of stationarity assumption �14�
�spatial ergodicity� on the random field which characterizes
the microscopic mechanical properties of the material has
been formulated. This allows for replacing ensemble aver-
ages with volume averages insofar as the characteristic size
of the heterogeneities is much smaller than the typical length
scale of the reference volume element �RVE�. If this is no
more the case, the classical assumptions of uniform strain
�stress� or periodic boundary conditions, for every reference
volume, are no more valid, but, conversely, macroscopic
strain gradient plays a crucial role in specifying the state of
stress/strain inside the RVE itself.

The goal, here, is to formulate a second gradient porome-
chanical model for describing the transition from the stan-
dard Biot-like equilibrium, associated to a compacted solid,
versus the fluid-segregated phase describing duct thinning in
the matrix and, consequently, fluid mass concentration in the
pores. Thus, we consider a model with total potential energy
density in the form

��m�,��,m,�� = K�m�,��,m,�� + 	�m,�� , �6�

where K is a polynomial quadratic function of �� and m�, 	
is a differentiable function positively diverging along any
radial direction in the plane �−m, having at least a local
minimum, and whose stationary points are isolated. Since K
is quadratic, we have that a constant solution of the Euler-
Lagrange problem Eq. �4� must necessarily satisfy the equa-
tions 	�=0 and 	m=0; in other words a constant profile
must be constantly equal to an extremal point of the first
gradient part 	 of the total potential energy.

We then let a phase of the model to be a constant equi-
librium profile equal to one of the local minima of the func-
tion 	. Note that the Euler-Lagrange problem Eqs. �4� and
�5� for the first gradient model associated to Eq. �6�, namely,
the one obtained for K=0, is the system of algebraic equa-
tions 	m=0 and 	�=0. Since the stationary points of the
two variable function 	 are isolated, we have that the equi-
librium profiles for such a model are necessarily constant
functions of Xs�Bs equal to the values of the stationary
points of 	.

Hence, in the case of a first gradient model it is not pos-
sible to discuss phase coexistence, since there exist only con-
tinuous constant equilibrium profiles. On the other hand, in
second gradient models, different �not constant� equilibrium
profiles can exist. This fact allows us to pose the problem
of the coexistence of two existing phases. Suppose that
the model exhibits the two phases �m1 ,�1� and �m2 ,�2�; a
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connection �15� between those phases is an equilibrium pro-
file m ,� of the action functional on Bs= �−
 ,+
� satisfying
the boundary conditions m�−
�=m1, m�+
�=m2, ��−
�
=�1, and ��+
�=�2. We say that the two considered phases
coexist if and only if a connection does exist.

III. MODEL

We study, now, a particular poroelastic model and in that
framework we discuss the existence of the consolidation
phase transition and prove the coexistence of the two phases
for a particular value of the external pressure. More precisely
we consider the poroelastic system with overall potential en-
ergy density Eq. �6� with

K�m�,��� ª
1

2
�k1����2 + 2k2��m� + k3�m��2� , �7�

with k1 ,k3�0, k2�R such that k1k3−k2
2�0, and

	�m,�,p� ª
�

12
m2�3m2 − 8b�m + 6b2�2� + 	B�m,�,p� ,

�8�

where

	B�m,�;p� ª p� +
1

2
�2 +

1

2
a�m − b��2 �9�

is the Biot potential energy density �13�, a�0 is the ratio
between the fluid and the solid rigidity, b�0 is a coupling
between the fluid and the solid component, p�0 is the ex-
ternal pressure, and ��0 is a material parameter responsible
for the showing up of the additional equilibrium. We remark
that the condition k1k3−k2

2�0 ensures that the second gradi-
ent part K of the overall potential energy density is convex.
Under this assumption there exists a minimizer for the action
functional

�
�1

�2

dXs��m�,��,m,��

on a bounded domain. As we will see later to ensure the
existence of a connection profile, which is a Dirichelet prob-
lem on an unbounded domain, it will be necessary to assume
k1k3−k2

2�0; in the limiting case k1k3−k2
2=0 the existence of

the connection will depend on the choice of the parameter k1,
k2, and k3.

We have already studied �5� the associated first gradient
model with overall potential energy density 	 and we have
proven the existence of a phase transition driven by the
external pressure p. More precisely it has been shown that
there exists a critical pressure pc= pc�� ,a ,b� such that for
0 p� pc the system admits the single standard phase
�ms�p� ,�s�p��, while a second fluid-rich phase �mf�p� ,�f�p��,
appears for p� pc. The standard phase is similar to the
unique phase described by the model with potential energy
density �13� 	B. In Fig. 1 the standard and the fluid–rich
phases are depicted for p� pc and for a particular choice of
the physical parameters � ,a ,b.

IV. COEXISTENCE

The second gradient model has the same phases as the
associated first gradient model. The main result of this paper
is the existence of pco= pco�� ,a ,b�� pc, called coexistence
pressure, such that the standard and the fluid-rich phases
coexist at the pressure p= pco and do not coexist at p� pc and
p�pco. The proof will be achieved in two steps: first we
shall show that there exist a unique value of the pressure
such that the total potential energy densities evaluated at the
two phases are equal; the second step will consist in proving
the existence of the connection, that is the equilibrium profile
connecting the two phases.

A. Coexistence pressure

We first review some of the results in the previous paper
�5,6�; there we have studied the equations 	�=0 and 	m
=0 looking for the minima of the function 	.

We have shown that the standard phase �ms�p� ,�s�p�� is
the solution of the two equations m=b� and p= f1���, for any
p�0, where f1���ª−�−�b4�3 /3.

On the other hand the fluid-rich phase �mf�p� ,�f�p�� is the
solution, with the smallest value of �, of the two equations
m=m+��� and p= f+���, where

m+��� =
b

2
�� +	�2 −

4a

�b2�
and

f+��� ª − � + ab�m+��� − b�� − �b2�m+
2��� +

2

3
�bm+

3��� .

For ��−2 / �b	� /a� the function f+��� is positive, diverging
to +
 for �→−
, and has a minimum at �c such that
f+��c�= pc; this explains why the fluidized phase is seen only
for p� pc. Moreover it has been proven that for any p� pc
the point �mf�p� ,�f�p�� is a minimum of the two variable
potential energy 	�m ,� , p� with p fixed, while it is a saddle
point for p= pc.

We now prove the first step of the above stated co-
existence result. For any p� pc, we let 	s�p�
ª	�ms�p� ,�s�p� , p� and 	f�p�ª	�mf�p� ,�f�p� , p� and
prove that
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FIG. 1. From the bottom to the top the graphs of �f�p�, ms�p�
=b�s�p�, and mf�p� for a=0.5, b=1, and �=100.
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	s�p� � 	f�p� for p � pco

	s�p� = 	f�p� for p = pco

	s�p�  	f�p� for pco � p � pc, �10�

that is the overall potential energy density of the standard
and the fluid-rich phases are equal only at the coexistence
pressure. This statement has been tested on numerical
grounds, see Fig. 2 where the graphs of the functions 	s�p�
and 	f�p� are depicted for a given set of physical param-
eters.

In order to prove Eq. �10� we first compute the derivative
of the two functions 	s�p� and 	f�p� �with respect to p�; by
using Eq. �8�, the chain rule, and the fact that �ms�p� ,�s�p��
and �mf�p� ,�f�p�� are solutions of the equations
	m�m ,� , p�=0 and 	��m ,� , p�=0, we have that 	s��p�
=�s�p�, 	f��p�=�f�p�, 	s��p�=�s��p�, and 	f��p�=�f��p�.

Now, since �s�p� and �f�p� are negative functions of the
pressure, we have that both 	s�p� and 	f�p� are decreasing
functions of the pressure on the interval �pc ,+
�. Moreover,
noted that both f1 and f+ are decreasing functions �of the
strain� on �−
 ,�c�, we have that �s�p� and �f�p� decrease
when p increases. It then follows that �s��p� and �f��p� are
negative and therefore 	s�p� and 	f�p� are concave on the
interval �pc ,+
�.

Since the two functions 	s�p� and 	f�p� are decreasing
concave functions on the interval �pc ,+
�, in order to prove
Eq. �10� it is sufficient to show that 	s�pc�	f�pc� and
	s�p��	f�p� for some p sufficiently large. The proof of
the first remark is easy: at p= pc the two variable function
	�m ,� , pc� has just the two stationary points �5�
�ms�pc� ,�s�pc�� and �mf�pc� ,�f�pc��. Since �ms�pc� ,�s�pc�� is
a local minimum of 	�m ,� , pc�, which tends to +
 along
every direction on the plane m−�, the single local minimum
must be the absolute minimum; hence, 	s�pc�	f�pc�. The
second remark follows from the asymptotic behavior of the
two functions 	s�p� and 	f�p�; as proven in the Appendix
A, for p→
 we have

	s�p� = −
3

4
31/3
 1

�b4�p4/3 + O�p2/3� �11�

and

	f�p� = −
1

1 + ab2 p2 +
1

2�1 + ab2�
p2 + O�p�

= −
1

2
�1 + ab2�p2 + O�p� . �12�

By comparing the two asymptotic formulas �11� and �12� we
get immediately that for p large enough 	s�p��	f�p�.

B. Connection profile

It is worth remarking that the variational problem Eq. �3�
for profiles with fixed values at the end points �1 and �2 of
the interval Bs, is nothing but the Hamilton principle for a
two degree of freedom mechanical system with Lagrangian
coordinates � and m, kinetic energy T and potential energy U
respectively given by

T�m�,��� =
1

2
�k1����2 + 2k2��m� + k3�m��2� �13�

and

U�m,�� = − 	�m,�� , �14�

and the space variable Xs interpreted as time. In other words,
the function � defined by Eqs. �6�–�8� is the Lagrangian for
such a two degree of freedom equivalent mechanical system.

It is important to remark that the mechanical interpreta-
tion is correct only when T is a positive definite quadratic
form. It is easy to prove that this is the case provided k1k3
−k2

2�0. In the limiting case k1k3−k2
2=0 the form T is posi-

tive semidefinite, indeed if we substitute k1=k2
2 /k3 in Eq.

�13� the function T becomes

T�m�,��� = K�m�,��� =
1

2
k3�k�� + m��2, �15�

where we have set kªk2 /k3, and is equal to zero when
k��+m�=0.

We study now the case k1k3−k2
2�0 and postpone the de-

generate k1k3−k2
2=0 to the following section. Let us denote

Xs by t and the derivative taken with respect to t by the dot.
By using Eq. �4� with �=T−U and recalling Eq. �13�, we
have that the equations of motion are

k2m̈ + k1�̈ = −
�U

��
and k3m̈ + k2�̈ = −

�U

�m
. �16�

We note that the mechanical energy of the associated me-
chanical problem E�ṁ , �̇ ,m ,��ªT�ṁ , �̇�+U�m ,�� is a con-
stant of the motion.

First note that the two points �ms�p� ,�s�p�� and
�mf�p� ,�f�p��, with p� pc, are maxima of the potential en-
ergy U�m ,�� of the equivalent mechanical system. The prob-
lem of the existence of a connection between the standard
and the fluid-rich phase can be rephrased as follows: look for
a solution of the Eqs. �16�, namely, a motion �mp�t� ,�p�t��
of the equivalent mechanical system, on R connecting
the phase space point �mp�−
� ,�p�−
��= �ms�p� ,�s�p��
and �ṁp�−
� , �̇p�−
��= �0,0� to the phase space point

0.230 0.235 0.240 0.245 0.250 0.255
�0.023

�0.022

�0.021

�0.020

�0.019

p

�
�s�p�

� f �p�

FIG. 2. Graph of the overall potential energy 	s�p� and 	f�p�
for a=0.5, b=1, and �=100.
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�mp�+
� ,�p�+
��= �mf�p� ,�f�p�� and �ṁp�+
� , �̇p�+
��
= �0,0�. The connection we are seeking for is an heteroclinic
solution of the equation of motion tending to two fixed
points in the phase space for t→−
 and t→+
.

Recall that the mechanical energy E is a constant
of the motion and remark that at the equilibrium points
it is equal to E�0,0 ,ms�p� ,�s�p��=−	�ms�p� ,�s�p�� and
E�0,0 ,mf�p� ,�f�p��=−	�mf�p� ,�f�p��. From the results in
Sec. IV it follows that those two energies are equal only for
p= pco. This remark yields that for any p� pc and p�pco the
standard and the fluid-rich phases do not coexist.

We are left with the case p= pco. In principle an hetero-
clinic solution can exist, but to prove its existence is an
highly not trivial problem which has been solved, under suit-
able hypotheses on the potential energy, in the recent paper
�15� whose main results have been summarized in the Ap-
pendix B. Since in the not degenerate case the form T is
positive definite, it is possible to find an orthogonal transfor-
mation of the coordinates in the plane m−�, which diagonal-
ize the form itself. Then, performing this transformation and
subtracting to the potential energy U of the equivalent me-
chanical system the constant term U�ms�pco� ,�s�pco��
=U�mf�pco� ,�f�pco��, the problem of finding a connection be-
tween the standard and fluid-rich phase is transformed in a
problem in the form Eq. �B1� with n=2 and W replaced by
−�U−U�ms�pco� ,�s�pco���. Since this function satisfies the
hypotheses of the Theorem 3.6 by Alikakos and Fusco �15�
�see the Appendix B� we can then conclude that in the case
p= pco there exists a connection between the standard and the
fluid-rich phase and hence the two phases coexist.

V. DEGENERATE CASE

Consider the case k2= �	k1k3 and the change of variables

x ª
m + k�

	1 + k2
and y ª

− km + �

	1 + k2
,

where we recall k=k2 /k3= �	k1 /k3, which amounts to per-
form a rotation of the Cartesian reference system in the plane
m−�. Using the new variables the two functions T and U
become respectively

K�ẋ, ẏ� = T�ṁ�ẋ, ẏ�, �̇�ẋ, ẏ�� =
1

2
k3�1 + k2�ẋ2 �17�

and

V�x,y� = U�m�x,y�,��x,y�� �18�

where we have used Eqs. �15� and �14� with

m =
x − ky
	1 + k2

and � =
kx + y
	1 + k2

.

The expression Eq. �18� of V is awful, but this will not be a
problem since V is precisely the two variable functions −	,
which we have already deeply studied �5�, written via a ro-
tation of the Cartesian reference system.

We apply, now, the variational principle Eq. �3� to
the total poroelastic potential energy density L�ẋ , ẏ ,x ,y�

ªK�ẋ , ẏ�−V�x ,y� and get the analogous �indeed it is a par-
ticularization� of the Eqs. �4�

�L
�x

−
d

dt

�L
� ẋ

= 0 and
�L
�y

= 0 �19�

which must be solved with the boundary conditions Eq. �5�.
By using the definition of L the above equations become

k3�1 + k2�ẍ = −
�V

�x
�x,y� and

�V

�y
�x,y� = 0. �20�

We remark that the second of the equations above is an al-
gebraic equation involving the two variable x and y; pro-
vided it can be solved w.r.t. y, the first one becomes a second
order ordinary differential equation in the unique unknown
function x. More precisely, the root locus of �V�x ,y� /�y=0
is made of a certain number of maximal components such
that each of them is the graph of a function x�R→y�x�
�R; for each of them the first of the two Eq. �20� becomes a
standard one dimensional conservative mechanical system
with potential energy V�x ,y�x��.

A. Degenerate case: heteroclinic

The function V is obtained by flipping the sign of the
function 	 and rotating the coordinate axes. This implies
that the function V, at p= pco, has the two absolute maximum
points

�xs�p�,ys�p�� = �ms�p� + k�s�p�
	1 + k2

,
− kms�p� + �s�p�

	1 + k2 �
and

�xf�p�,yf�p�� = �mf�p� + k�f�p�
	1 + k2

,
− kmf�p� + �f�p�

	1 + k2 �
corresponding, respectively, to the standard and to the fluid-
rich phases.

Since �ms�p� ,�s�p�� and �mf�p� ,�f�p�� satisfy the equa-
tions 	m�m ,��=0 and 	��m ,��=0, we have that the two
points �xs�p� ,ys�p�� and �xf�p� ,yf�p�� are solutions of the
constraint equation �V�x ,y� /�y=0 and hence they belong to
the constraint curve.

We consider, now, the case in which at p= pco the two
points above fall on the same maximal component of
the constraint equation �see Fig. 3 and 4�. Using the conser-
vation of the mechanical energy of the equivalent one dimen-
sional conservative system allows for reducing the compu-
tation of the coexistence profile �heteroclinic� to the eva-
luation of a definite integral. Since the function V has
two isolated absolute maximum points which, by hypothesis,
belong to the same maximal component of the constraint
curve, we have that the function V�x ,y�x�� of the real func-
tion x has two absolute isolated maxima in xs�pco� and xf�pco�
�see Fig. 5�. Consider the motion of the equivalent one di-
mensional system corresponding to the energy level Vmax
ªV�xs�pco� ,ys�pco��. The conservation of the mechanical en-
ergy implies
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1

2
k3�1 + k2�ẋ2 + V�x,y�x�� = Vmax.

Hence, the heteroclinic connecting the two maxima is given
by

t = �
x0

x 	 k3�1 + k2�
2�Vmax − V�x�,y�x���

dx�, �21�

for any x� �min�xs�pco� ,xf�pco�� ,max�xs�pco� ,xf�pco�� and
for some fixed x0 in the same interval. By changing x0 it is
found a family of heteroclinic orbits which are the same
curve up to a time translation.

Results are depicted in the Fig. 6. The � coexistence
profile shows a bump �17,18� close both to the standard
and the fluid-rich phase. This behavior is due to the
two-dimensionality of the problem: in Fig. 7 we have de-
picted the heteroclinic on the graph of the function U�m ,��
=−	�m ,��. From the picture it is clear that the optimal path

climbs the two hills going around the hills themselves. In
other words the existence of the bump in the connecting �
profile is due to the shape of the constraint curve in the plane
m−�. Since the problem has been reduced to the computa-
tion of the heteroclinic of a one dimensional conservative
mechanical system in the x variable, it is obvious that no
bump can exist in the x profile. On the other hand by looking
closely at the picture in Figs. 3 and 4, it emerges that the
constraint curve is monotonic w.r.t. y and m; this implies the
monotonicity of the y and m profiles. However, it is possible
to find values of the parameters such that the y profile pre-
sents a bump.

In Sec. IV B, we have proven that in the not degenerate
case the connecting profile does exist for any proper choice
of the parameters. A similar result does not hold true in the
degenerate case, indeed it is possible to find the connection if
and only if the two maxima of the function U lie on the same
maximal component of the constraint curve. We have that
this is not the case for k�0 large enough, see the dashed
curve in Fig. 8, which is associated to the value k=1.9. It is
immediate to remark that the two maxima do not lie on the
same connected component, hence in this case it is not pos-
sible to find a connection between the fluid-rich and the stan-
dard phase. It is worth remarking that no evidence of this
patologic behavior is found in the case k0; see Fig. 9
where the constraint curve and the stationary point of U are
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FIG. 5. Function V�x ,y�x�� in the case a=0.5, b=1, �=100,
k3=1, k=1, and p= pco=0.24218.

�20 �10 0 10 20

�0.20
�0.19
�0.18
�0.17
�0.16
�0.15

t

x

�a�

�20 �10 0 10 20

�0.160

�0.155

�0.150

�0.145

�0.140

t

Ε

�c�

�20 �10 0 10 20
�0.08

�0.06

�0.04

�0.02

0.00

t

y

�b�

�20 �10 0 10 20
�0.14

�0.12

�0.10

�0.08

�0.06

�0.04

t

m

�d�

FIG. 6. Heteroclinic �coexistence profile� in the case a=0.5, b
=1, �=100, k3=1, k=1, and p= pco=0.24218. Time �space in the
original model� on the horizontal axis and x, y, �, and m on the
vertical axis, respectively, in �a�, �b�, �c�, and �d�.

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3

�0.5

0.0

0.5

m

Ε

FIG. 3. Graph of the constraint curve in the plane m−�. The
three disks represent the fluid-rich phase, the standard phase and the
saddle �gray disk� of the potential energy 	. Parameters: a=0.5,
b=1, �=100, k3=1, k=1, and p= pco=0.24218.
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FIG. 4. Graph of the constraint curve in the plane x−y. The
three disks represent the fluid-rich phase, the standard phase and the
saddle �gray disk� of the potential energy 	. Parameters: a=0.5,
b=1, �=100, k3=1, k=1, and p= pco=0.24218.
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depicted for a=0.5, b=1, �=100, k3=1, k=−0.3,−0.4,−1.0,
and p= pco=0.24218. This case is the most interesting one
from the physical point of view, indeed for k20 the cou-
pling between �� and m� is negative, hence the preferred
states are such that the two fields ��Xs� and m�Xs� are both
increasing or decreasing.

B. Degenerate case: homoclinic

Consider the degenerate model and suppose that the pres-
sure p is larger than pc but different from pco. Suppose that
the two local minima of the potential energy 	 lie on the
same connected component of the constraint curve whose
equation is Eq. �20�. Consider the function V�x ,y�x�� as in
Sec. V A and note that the two local maxima are not equal.

We consider the homoclinic solution corresponding to the
lowest maximum x̄. In analogy with the discussion of the

above section, the homoclinic equilibrium profile can be
found, see Fig. 10, by computing the integral

t = � �
x̂

x	 k3�1 + k2�
2�V�x̄,y�x̄�� − V�x�,y�x���

dx� �22�

for any x� �min�x̂ , x̄ ,max�x̂ , x̄� with x̂ the unique �inver-
sion� point in the interval �min�xst ,xf ,max�xst ,xf� such that
V�x̄ ,y�x̄��=V�x̂ ,y�x̂��.

The homoclinic solution corresponding to the lowest
maximum is often interpreted as a “critical nucleus.” In the
sense that, if a dynamic evolution would be taken into ac-
count, one would expect that an initial condition close to the
critical nucleus would evolve into the standard or the fluid-
rich phase �subcritical and supercritical behavior�. This be-
havior depends on the size of the droplet in the neighborhood
of t=0. Indeed in t=0 the profile has the value x̂ which, for
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FIG. 7. Graph of the function U�m ,�� and the heteroclinic con-
necting the two maxima. Parameters: a=0.5, b=1, �=100, k3=1,
k=1, and p= pco=0.24218.
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FIG. 8. The constraint curves and the points representing the
fluid-rich phase, the standard phase and the saddle �gray disk� of the
potential energy 	. Parameters: a=0.5, b=1, �=100, k3=1, k
=0.7,1.9 �solid, dashed�, and p= pco=0.24218.
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FIG. 10. Homoclinic profile �critical nucleus� in the case a
=0.5, b=1, �=100, k3=1, k=1, and p= pco−10−2pco �left� and p
= pco+10−2pco �right� with pco=0.24218. Time �space in the original
model� on the horizontal axis and x ��a� and �b�� and � ��c� and �d��
on the vertical one.
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FIG. 9. The constraint curves and the points representing the
fluid-rich phase, the standard phase and the saddle �gray disk� of
the potential energy 	. Parameters: a=0.5, b=1, �=100, k3=1, k
=−0.3,−0.4,−1.0 �solid, dashed, dotted�, and p= pco=0.24218.
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p close to pco, is a good approximation of the phase corre-
sponding to the largest maximum of the function V. In other
words the critical nucleus can be seen as a droplet of the
phase corresponding to the smallest value of the potential
energy 	 plunged into the other phase.

VI. CONCLUSIONS

In conclusion, we have studied the phase transition be-
tween the fluid poor and rich phases in the context of con-
solidating completely fluid saturated porous media. A second
gradient model to study the existence of such a transition has
been proposed. Moreover, coexistence between the two
phases at the pressure pco, defined as the pressure such that
the total potential energy of the two phases is the same, has
been established. We have also shown that at different values
of the pressure the two phases cannot coexist. For a particu-
lar choice of the parameters of the model it is possible to
reduce the problem of finding the coexistence profile to the
computation of a definite integral. We have studied the co-
existence profile for different values of the physical param-
eters of the model and shown that nonmonotonic interfaces
exist.
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APPENDIX A: ASYMPTOTIC BEHAVIOR
OF POTENTIAL ENERGY

In this appendix we discuss the asymptotic behavior of
the two functions 	s�p� and 	f�p�, see Sec. IV A, for p large
and, in particular, prove the Eqs. �11� and �12�. We first note
that by using ms�p�=b�s�p�, we get

	s�p� = p�s�p� +
1

2
��s�p��2 +

1

12
�b4��s�p��4.

The equation f1���= p is a cubic equation in the form �3

+��+�p=0, with �=3 / ��b4�; by Cardano’s formula, since
Dª �� /3�3+ ��p /2�2�0, there exists a single real solution
given by

�s�p� = �−
1

2
�p + 	D�1/3

+ �−
1

2
�p − 	D�1/3

= �−
1

2

3

�b4
p +	
1

3

3

�b4�3

+ 
1

2

3

�b4
p�2�1/3

+ �−
1

2

3

�b4
p −	
1

3

3

�b4�3

+ 
1

2

3

�b4
p�2�1/3

.

By using the Taylor series �1+x��=�n=0

 Cn���xn, with

Cn���=���−1�¯ ��−n+1� /n! being the binomial coeffi-
cient, which is convergent for −1x+1, it is not difficult
to prove that �s�p�=−�3 / ��b4��1/3p1/3+ �3 /�b4�2/3�1 / p�1/3 /3
+O�p−5/3� for p large. By inserting this expression in the
expansion for 	s, we get Eq. �11�.

We can perform a similar computation for 	f�p�. Ac-
counting in particular for the qualitative of �f�p�, which
tends to −
 when p is increased, we shall study the
asymptotic behavior of m+��� for �→−
 and that of �f�p�,
which is the solution of the equation f+���= p when p→
.
The result of this analysis will provide us with the
asymptotic behavior of 	f�p�. First of all we note that

m+��� =
1

2
b�� 2a

�b2�2 +
2a2

�2b4�4 + O��−6�� ,

for �→−
. By using Eq. �8� we then have

	f�p� = p�f�p� +
1

2
�1 + ab2���f�p��2 −

a2

2�
+ O���f�p��−2

for p→
, where we have used that �f�p�→−
 for p→
.
The function �f�p� is implicitly defined by the equation
f+���= p which is pretty complicated. By expanding f+ for
�→−
 the equation becomes −��1+ab2�+h���= p with h���
a function having limit 0 for �→−
. Suppose p is large
enough and let �f�p� be the solution of the equation above;
by the qualitative study we get that �f�p�→−
 for p→
. It
is then easy to show that g�p�ª�f�p�− �−p / �1+ab2�� tends
to zero for p→
, indeed, since �f is the solution of the
equation above, we have that

g�p� =
�1 + ab2��f�p� + p

1 + ab2 =
h��f�p��
1 + ab2 → 0,

for p→
, where we have used that h���→0 for �→−
 and
�f�p�→−
 for p→
. By inserting the obtained expression
of �f�p� in the above expansion of 	f�p� we get Eq. �12�.

APPENDIX B: GENERAL RESULT ON THE EXISTENCE
OF CONNECTIONS

In this appendix we briefly review the main results by
Alikakos and Fusco �15� on the existence of connections. Let
W :Rn→R, with n�1, be a C2�Rn� positive function satisfy-
ing the following hypotheses: �1� W has two distinct local
minima a− ,a+�Rn such that W�a−�=W�a+�=0, �2� W�u�
�0 for any u�a− ,a+, �3� lim inf�u�→
W�u��0, and �4� there
exists r0 in the open interval �0, �a−−a+�� such that for any
��Rn such that ���=1 the two maps r�W�a�+r�� have a
strictly positive derivative for every r� �0,r0�. Conditions
�1�–�3� are quite natural and physically obvious; condition
�4� is a mild technical requirement allowing for potential
energies with C
 contact at zeroes.

Consider the ordinary differential equation problem

uxx = �W�u�
u�− 
� = a− and u�+ 
� = a+

�B1�

where u :R→Rn. Solutions to the problem Eq. �B1� are
known in the literature as heteroclinic motions of the me-
chanical system or connection solutions in the context of
phase transitions. The Theorem 3.6 by Alikakos and Fusco
�15� states that, under the hypotheses discussed above, the
problem Eq. �B1� admits a solution. In other words the theo-
rem states the existence of a connection under very general
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and mild requirements on the potential W. The proof of the
theorem is based on a direct variational computation. More
precisely the authors prove the existence of a critical profile
of the action functional

A�u� ª �
−



 �1

2
�u̇�x��2 + W�u�x���dx ,

on the Sobolev space Wloc
1,2�R ,Rn� of functions u :R→Rn

such that u and its weak derivative are in L2�� ,Rn� for any

bounded subsets ��R. Such a critical profile is the solution
of the ordinary differential equation problem Eq. �B1�.

Compared to the standard variational calculus, see for in-
stance the paragraph 8.2 in Evan’s classical book �16�, the
authors have to face the lack of compactness due to the in-
finite domain R on which the solution of the variational
problem is defined. This problem is overcame by using suit-
able constraints that are successively removed. It is also
worth noting that in the Theorem 3.7 the authors state that
the connection is a minimizer of the action functional A�u�.
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