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We investigate the effects of anisotropy on the finite-size scaling of connectivity and conductivity of con-
tinuum percolation in three dimensions. We consider a system of size X�Y �Z in which cubic bodies of size
a�b�c are placed randomly. We define two aspect ratios to request anisotropy then we expect that the
displacement of average connected fraction P �averaged over the realizations�, about the isotropic universal
curves will be a function of the two aspect ratios. This is accounted by considering an apparent percolation
threshold in each direction which leads to 50% of realizations connecting in that direction. We find the aspect
ratios’ dependency of the apparent threshold and investigate the finite-size scaling transformations for the mean
connected fraction and its associated fluctuations. Moreover, we apply a single phase pressure solver to
determine the conductivity of various realizations of the system. Finally we apply the same idea to account for
the effect of anisotropy on the conductivity scaling.
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I. INTRODUCTION

The connectivity of permeable objects in space is impor-
tant from flow point of view in many practical cases includ-
ing in study of the oil recovery from channel reservoirs
where essentially the connection of channels controls the
flow.

The usual percolation theory was developed for infinite
systems �1�. However, all systems are finite, and finite-size
scaling has been proposed to deal with finite boundaries.
Moreover continuum percolation has been found to be more
appropriate in many approaches. Consider oil reservoirs that
are very complex with geological heterogeneities appear on
all scales. Continuum percolation theory is able to evaluate
the connectivity and conductivity of these heterogeneities
that is of great importance for decision making on various
possible development scenarios including infill drilling
projects.

There are numerous literatures on applying percolation
theory to evaluate the connectivity and conductivity. For ex-
ample, Balberg �2� considered universal percolation thresh-
old for continuum systems. King �3� studied the connectivity
and conductivity of overlapping sandbodies. Sahimi �4� de-
scribed different applications of percolation theory including
petroleum reservoirs. Lin and Hu �5� studied universal finite
scaling of three dimensional lattices. Baker et al. �6� found
percolation threshold of continuum systems for interpenetrat-
ing objects in two and three dimensions. Lee and Torquato
�7� worked on correlated continuum percolation and found
universal curves and percolation threshold of the system.
Also connectivity was considered on fracture systems.

Berkowitz �8� analyzed the connectivity of fracture net-
works. Adler and Thovert �9� studied the connectivity of
fracture systems and fractured networks. Berkowitz �10�
characterized the flow behavior of fractured geological me-
dia. Masihi et al. �11� worked on the fast estimation of con-
nectivity in fractured reservoirs. Watson and Leath �12� and
Pike and Seager �13� studied the conductivity behavior of the
two-dimensional site percolation problems. Masihi et al. �14�
worked on the conductivity of two-dimensional and three-
dimensional lattice systems and found the universal exponent
of percolation theory. Sadeghnjad et al. �15� analyzed the
conductivity behavior of two-dimensional continuum sys-
tems in petroleum reservoirs.

Usual finite-size scaling assumes isotropic property for
the system, whereas in most cases we need to deal with
anisotropic reservoirs. Consequently, there is a need to ex-
tend the applicability of finite-size scaling to anisotropic sys-
tems. There are few studies on the anisotropic behavior in
percolation theory. All of studies are related to two dimen-
sions and to lattice systems. Monetti and Albano �16� per-
formed Monte Carlo simulations to obtain the dependency of
the horizontal and vertical finite-size percolation threshold to
the aspect ratio of the two-dimensional lattice systems. Hovi
and Aharony �17� used the renormalization-group theory and
duality arguments to propose a correction to the scaling of
spanning probability for aspect ratio in two-dimensional rect-
angular systems. The dependency of their corrected function
to the aspect ratio of the system is in line with Cardy’s ana-
lytical expression �18� derived from the conformal field
theory. Marrink and Knackstedt �19� assumed an elongated
lattice as a series of linked isotropic lattices to derive the
effective percolation threshold. Watanabe et al. �20� studied
the scaling behavior of the existence probability on the two-
dimensional rectangular domains of different aspect ratios.
Masihi et al. �21� investigated the effects of anisotropy on
finite-size scaling of site percolation in two dimensions.
They have defined an apparent percolation threshold and
showed that standard finite-size scaling applies if one uses
the proposed apparent threshold.
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In this paper we extend the idea of using apparent thresh-
old in standard finite-size scaling of continuum systems in
three dimensions. In particular, we extend the applicability of
the percolation theory to study the connectivity and conduc-
tivity behavior of overlapping sand bodies. We show how the
effect of anisotropy on the finite-size scaling of mean con-
nected sand fraction P and mean conductivity K �averaged
over the realizations� can be handled. Moreover, we find an
appropriate finite-size scaling for the fluctuations about these
average values.

Let first look at the definition of anisotropy. By anisotropy
we mean that there will be an easy direction for connected
paths to be formed an intermediate and a difficult direction.
Consider an arbitrary external cubical region with size X
�Y �Z in which a number of cubical bodies of size a�b
�c are placed independently and uniformly. The effective
system size is now defined by three dimensionless lengths in
the X, Y, and Z directions as

Lx =
X

a
, Lx =

Y

b
, and Lz =

Z

c
. �1�

We expect many of the two-dimensional rules to be directly
transferable to three dimensions and so a similar approach
can be used �21�. However, the computations would have
been very time consuming.

The same idea of apparent threshold dependence on the
aspect ratio is used to account for the effects of anisotropy in
three dimensions. However, there is an extra degree of free-
dom available. There are two aspect ratios �1=Lx /Ly and
�2=Lx /Lz. We shall consider a simple case where the two
aspect ratios are the same �i.e., b=c�. This enables us to
compare the x-direction connectivity to the y-direction con-
nectivity. We define the anisotropy of the system by the new
aspect ratio �=�1�2. As in two dimensions we expect that
the main effect of anisotropy is to make the system no longer
symmetric and so the connectivity and conductivity in each
direction will be different. We only studied the impact of a
moderate aspect ratio for large systems. As the aspect ratio
increases, the system behaves as one dimensional system and
we would expect to see a crossover to one-dimensional be-
havior. Under such extreme case the universal scaling expo-
nents will be changed.

For simulation purposes free boundary conditions in the x,
y, and z directions are considered and various clusters are
identified using standard algorithms �22�.

In order to determine the conductivity, we solve the single
phase flow equation ��K�P=0� on a fine grid covered on
the system. The reader is referenced to Masihi et al. �14� and
Sadeghnejad et al. �15� for the details. Then we use simula-
tion using various realizations of the model to investigate
connectivity and conductivity of the entire system as a func-
tion of the occupancy probability p. We fix the aspect ratios
and investigate finite-size scaling using the effective system
size �now defined by Lx�. If �1�1 then X direction is the
shortest direction and we expect that connectivity is achieved
faster in that direction in comparison with other directions.
Then we repeat the calculations �from simulations� at differ-
ent aspect ratios to study the impact of anisotropy. Having
collected the necessary statistics from simulations, we ana-

lyze the effects of aspect ratio in anisotropic systems on the
mean connected fraction P, mean conductivity of the system
K, and their associated uncertainty �P and �K.

II. ASPECT RATIOS DEPENDENCY OF APPARENT
PERCOLATION THRESHOLD

To examine the impact of aspect ratios on the apparent
percolation threshold, we generated a relatively large number
of realizations of various system sizes at four aspect ratios
�i.e., five different sizes for each aspect ratio�. The occu-
pancy probability p, which leads to 50% of realizations con-

necting in the x direction we call the apparent x threshold P̃c
x,

with a similar definition in the other directions. This implies
a special significance that the spanning probability of an in-
finite size system at the threshold pc is equal to 0.5.

For anisotropic cases, we observed different apparent
thresholds �when the system is for the first time spans in that
direction� in each direction.

As in two dimensions �21�, an effective threshold can be
defined which we would expect to be dependent on both the
system size and the two aspect ratios,

p̃c
i ��1,�2,L� − pc

� = �i��1,�2�Lx
−1/�, �2�

where i denotes the x, y, or z direction and pc
� is the infinite

percolation threshold in three dimensions �pc
�=0.274 �Ref.

�6���. To find the aspect ratios dependence of the shift in
apparent threshold �i, we expect to see certain symmetries.
For example, keeping Lz fixed and interchanging two lengths
Lx and Ly; �1 goes to 1 /�1 and �2 goes to �2 /�1. This
simply means that we have swapped the labeling of the axes.
Therefore the x-direction connectivity before this inter-
change should be equivalent to the connectivity in the y di-
rection after the interchange, p̃c

x��1 ,�2�= p̃c
y�1 /�1 ,�2 /�1�.

However this does not alter the connectivity in the z direc-
tion, p̃c

z��1 ,�2�= p̃c
z�1 /�1 ,�2 /�1�. Using the scaling rela-

tionship for the apparent threshold, these properties give

�x��1,�2� = �1
1/��y�1/�1,�2/�1� , �3a�

�z��1,�2� = �1
1/��z�1/�1,�2/�1� . �3b�

Using other possible rotations of Lx, Ly, and Lz give the
following symmetry relations:

�x��1,�2� = �2
1/��y��1/�2,1/�2� , �3c�

�y��1,�2� = �2
1/��y��1/�2,1/�2� , �3d�

�x��1,�2� = �x��2,�1� , �3e�

�y��1,�2� = �y��2,�1� . �3f�

In two dimensions, the numerical results have shown that the
apparent thresholds were symmetrically placed about the iso-
tropic case �21�. However, this is not the case in three dimen-
sions as can be seen in Fig. 1.

Moreover, the amount of the finite-size shift in threshold
in two dimensions was negligible �21� in comparison with
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the effect of anisotropy but the numerical results show that
this shift is considerable in three dimensions, with the scal-
ing:

p̃c
isotropic − pc

� � 0.078Lx
−1/�. �4�

Hence, it is not possible to define a single function for the
proportionality coefficient � as in two dimensions. In three
dimensions we have three functions of � which are interre-
lated through Eqs. �3�. By determining one of these � func-
tions, the others can be obtained through the symmetry rela-
tions.

We shall start by determining �x. From Eqs. �3� we ex-
pect that �x is a function of the product of the two aspect
ratios �1 and �2. Note that, it is unlikely for the sum �in
instead of product� to be important as the aspect ratios are
basically defined by the ratios of the lengths. Plotting �x against �=�1�2 which gives a single curve from which we

find the following functional form for �x �Fig. 2�:

�x��1,�2� = a���1�2�b − 1� + c , �5�

where a�0.25, b�0.77, and c�0.1.
Having obtained the aspect ratio dependency of the appar-

ent threshold, we are now able to investigate the finite-size
scaling transformations of such anisotropic system.

III. SCALING OF MEAN CONNECTIVITY
AND ITS ASSOCIATE UNCERTAINTY

So far we have determined how the apparent threshold
varies as a function of system size and the aspect ratios in
three dimensions. We can use this within the usual finite-size
scaling rules instead of infinite threshold. We expect the av-
erage connected fraction P to follow standard finite-size scal-
ing �22� as was observed in two dimensions �21�. If we res-
cale the mean connectivity results P�p ,L� with Lx, we see
that again there is a data collapse in each direction. Plot of
PL	/� and �PL	/� against �p− pc

��1/� for a fixed value of the
aspect ratio of 4 is shown in Fig. 3.

FIG. 2. Illustration of the shift in the apparent threshold, � in
Eq. �5�, as a function of aspect ratio, �=�1�2.

(a)

(b)

FIG. 3. �a� Rescaled horizontal Ph and vertical Pv mean connec-
tivity curves using infinite threshold for the aspect ratio of 4 �b�
with its associated uncertainty, where F and R �dotted lines� are the
isotropic mean connectivity curve and its associated uncertainty
curve, respectively.

FIG. 1. Illustration of apparent threshold, P̃c in Eq. �2�, in the x
and the y �or z� directions as a function of Lx

−1/�.
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However, as can be seen in Fig. 3�b� there is a change in
magnitude of standard deviation of the connectivity �i.e.,
�P=��p− p̄�2� in various directions in addition to the shift of
these curves.

To bring the standard deviation of the connectivity curves
back to the isotropic curve we have to use the finite-size
apparent threshold as discussed above as well as a change in
magnitude, which can be accounted for by rescaling with the
geometric mean length, �LxLy�0.5 �21�. This leads to the fol-
lowing scaling law for the standard deviation in connectivity
as

�P�p,L,�� = �1/2Lx
−	/�

R��p − pc
��Lx

1/�� . �6�

The results of data collapse are shown in Fig. 5, which indi-
cates that this improves the fit in the standard deviation of
connectivity results. These results �Figs. 4 and 5� enable us
to use the same three dimensions isotropic universal curves
�F and R� for predicting the connectivity of anisotropic con-

tinuum systems, which is a good enough approximation for
engineering purposes.

IV. SCALING OF MEAN CONDUCTIVITY
AND ITS ASSOCIATE UNCERTAINTY

For many systems flow is strongly controlled by the con-
nectivity of the flow units. Percolation theory can then be
used to model the conductivity of such systems. Let concen-
trate on the conductivity of such systems by studying how
the flow can move through the spanning cluster. In practice,
we need to setup the flow equations on a fine grid covered on
the continuum system and solve the resulting equations to
find the conductivity of the system. Previous investigations
show that above the threshold pc, connectivity increases rap-
idly whereas the conductivity is extended to increase slowly.
From percolation theory the conductivity of an infinite sys-
tem has a power-law behavior near the threshold �1�,

FIG. 6. Illustration of data collapse of the mean conductivity
results using the finite-size apparent threshold for the aspect ratio of
4 where 
 �dotted line� is the isotropic mean conductivity curve.

FIG. 7. Illustration of data collapse of the standard deviation of
the conductivity results using the finite-size apparent threshold for
the aspect ratio of 4 where � �dotted line� is the isotropic standard
deviation of the conductivity curve.

FIG. 4. Illustration of data collapses of the mean connectivity
results using the finite-size apparent threshold for the aspect ratio of
4 where F �dotted line� is the isotropic mean connectivity curve.

FIG. 5. Illustration of data collapse of the standard deviation of
the connectivity results using the finite-size apparent threshold for
the aspect ratio of 4 where R �dotted line� is the isotropic standard
deviation of the connectivity curve.
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K�p� = �p − pc
���, �7�

where � is a universal exponent called the conductivity ex-
ponent. The numerically reported value of this exponent is
1.3 and 1.8 in two and three dimensions, respectively
�1,14,15�.

The finite-size scaling laws for the conductivity results are
expected to be the same as the scaling of connectivity results
except with new universal exponents of conductivity as

K�p,L,�� = Lx
−�/�
��p − p̃c�Lx

1/�� , �8�

�K�p,L,�� = �1/2Lx
−�/����p − p̃c�Lx

1/�� , �9�

where 
 and � are two universal master curves for respec-
tively the effective permeability and its associated standard
deviation. For computing the conductivity of system we used
an up-scaling method based on renormalization theory �23�.
We used 500 realizations to generate various conductivity
curves for different system sizes. The same approach used to
account for the effect of anisotropy in the connectivity re-
sults can be directly used here to analyze the conductivity
behavior. In Fig. 6 we plot KLx

−�/� against �p− p̃c�Lx
1/� for a

fixed value of the aspect ratio of 4. Figure 7 shows the data

collapse for the fluctuations about the mean conductivity.
The results of data collapse in Figs. 6 and 7 indicate that

using the proposed scaling laws �Eqs. �8� and �9�� is a good
enough approximate which enable us to use the same isotro-
pic universal curves for predicting the conductivity of aniso-
tropic systems.

V. CONCLUSION

It is shown that we can account for moderate anisotropy
in finite-size scaling within percolation by first considering
the apparent threshold in the principal coordinate directions
of the anisotropy in three-dimensional continuum systems.
We then use this within the usual finite-size scaling rules. We
also have shown how the same idea can be extended to the
conductivity results. Moreover, the approximate scaling for
the fluctuations about the mean percolation properties �e.g.,
conductivity� has been investigated.
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