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We consider the infinite-range spin glass in which the spins have m�1 components �a vector spin glass�.
Applying a magnetic field which is random in direction, there is a de Almeida-Thouless �AT� line below which
the “replica symmetric” solution is unstable, just as for the Ising �m=1� case. We calculate the location of this
AT line for Gaussian random fields for arbitrary m and verify our results by numerical simulations for m=3.
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I. INTRODUCTION

The infinite-range Ising spin glass, first proposed by Sher-
rington and Kirkpatrick �1�, has been extensively studied. It
was found by de Almeida and Thouless �2� �hereafter re-
ferred to as AT� that the simple “replica symmetric” �RS�
ansatz for the spin-glass state becomes unstable below a line
in the magnetic field-temperature plane, known as the AT
line. While the Ising spin has m=1 components, the
m-component vector spin glass for m�1 has received less
attention. de Almeida et al. �3� �hereafter referred to as
AJKT� found an instability in zero field but did not consider
the effects of a magnetic field. The effects of a uniform field
on a vector spin glass were first studied by Gabay and Tou-
louse �GT� �4�. They found a line of transitions �the GT line�,
which is of a different nature from the AT line. In a uniform
field, a distinction has to be made between spin components
longitudinal and transverse to the field, and the GT line is the
spin-glass ordering of the transverse components, and these
are effectively in zero field �5,6�. The AT line is different
from the GT �4� line since it is a transition to a phase with
replica symmetry breaking �RSB� but with no change in spin
symmetry. The existence of the AT line is perhaps the most
striking prediction of the mean field theory of spin glasses.
The GT line occurs at a higher temperature than the putative
AT line, which becomes a crossover �5,6� for a vector spin
glass in a uniform field.

The main point of the present work is to argue that one
should consider not a uniform field but a field which is ran-
dom in direction �it will also be convenient to make it ran-
dom in magnitude though this is not essential� and that, in
this case, there is an AT line also for vector spin glasses. We
will determine the location of this line for an arbitrary num-
ber of spin components.

The Hamiltonian is given by

H = − �
�i,j�

JijSi · S j − �
i

hi · Si, , �1�

where the Si
�, ��=1, . . . ,m� are m-component spins of length

m1/2, i.e.,

�
�=1

m

�Si
��2 = m , �2�

the interactions Jij between all distinct pairs of spins �i , j� are
independent Gaussian random variables with zero mean and
variance given by

�Jij
2 �av =

J2

N − 1
, �3�

and the hi
� are independent Gaussian random fields, uncorre-

lated between sites, with zero mean and which satisfy

�hi
�hj

��av = hr
2�ij���. �4�

The notation �¯ �av indicates an average over the quenched
disorder. The normalization of the spins in Eq. �2� is chosen
so that the zero-field transition temperature is

Tc = J �5�

for all m.
Consider first the Ising case �m=1�. The spin-glass order

parameter is

q �
1

N
�

i

��Si�2�av, �6�

where �¯ � denotes a thermal average. From linear response
theory, if we make small additional random changes, �hi, in
the random fields, uncorrelated with each other and the origi-
nal values of the fields, the change in �Si� is given by

��Si� =
1

T
�

j

�ij�hj , �7�

where the linear response function �ij is given by

�ij = �SiSj� − �Si��Sj� , �8�

and for convenience, we have separated out the factor of
1 /T. Hence the change in q is given by

�q =
1

T2

1

N
�
i,j,k

��ij�ik�av��hj�hk�av �9�

=
1

T2�SG�hr
2, �10�
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�SG =
1

N
�
i,j

��ij
2 �av

=
1

N
�
i,j

���SiSj� − �Si��Sj��2�av �11�

is the spin-glass susceptibility.
The corresponding results for vector spins are easily ob-

tained. The change in the spin-glass order parameter,

q �
1

N
�

i

1

m�
�

��Si
��2�av, �12�

is given by

�q =
1

T2

1

N
�
i,j,k

1

m �
�,�,�

��ij
���ik

���av��hj
��hk

��av �13�

=
1

T2�SG�hr
2, �14�

where now

�SG =
1

N
�
i,j

1

m�
�,�

���ij
���2�av �15�

=
1

N
�
i,j

1

m�
�,�

���Si
�Sj

�� − �Si
���Sj

���2�av.

�16�

For the Ising case, the sign of the field can be “gauged
away” by the transformation Si→−Si, and Jij→−Jij for all j.
Hence the only difference between a uniform field and a
Gaussian random field is that the latter varies in magnitude,
and these magnitude fluctuations turn out to have only a
minor effect �7�. However, for the vector case, the random
direction of the Gaussian random field does make a big dif-
ference because there is no longer a distinction between lon-
gitudinal and transverse, and so there is no longer a GT line
to preempt the AT line. As for the Ising case, there is only a
small difference in the location of the AT line depending on
whether the magnitude of the field is fixed or allowed to
vary.

In zero field, �SG diverges at the transition temperature Tc
given in Eq. �5�, which is expected since �SG is the suscep-
tibility corresponding to the order parameter. Surprisingly,
AT showed for the Ising case �m=1� that it also diverges in a
magnetic field �either uniform, as originally considered by
AT, or random, as considered later by Bray �7�� along the AT
line in the field-temperature plane. Below the AT line, �SG
goes negative in the RS solution, indicating that the RS so-
lution is incorrect and has to be replaced by the Parisi �8,9�
RSB solution.

In this paper we calculate �SG for a vector spin glass in
the presence of a random field and show that it also becomes
negative below an AT line in the hr−T plane, whose location
we calculate. This fact does not appear to be widely recog-
nized. Although a field which is random in direction can
presumably not be applied experimentally, we feel that there

is theoretical interest in our result because a random field can
be applied in simulations. Whether or not an AT line exists in
finite-range spin glasses, is a crucial difference between the
RSB picture �8–11� of the spin-glass state, where it does
occur, and the droplet picture �12–15�, where it does not. It
has been found possible to simulate Heisenberg spin glasses
for significantly larger sizes �16–18� than Ising spin glasses,
so our results may give an additional avenue through which
to investigate numerically the nature of the spin-glass state.

The plan of this paper is as follows. In Sec. II we compute
the nonlinear susceptibility for the Ising spin glass following
the lines of AT. In Sec. III we do the corresponding calcula-
tion for the vector spin glass. This is followed in Sec. IV by
a numerical evaluation of the AT line for several values of m
and a confirmation of the results by Monte Carlo simulations
for the Heisenberg spin glass, m=3. We summarize our re-
sults in Sec. V. Many of the technical details are relegated to
appendices. A somewhat longer version of this paper, with
technical details on the calculation of the eigenvalues of the
matrix Z in Eq. �B1� below, has been posted on the archive
�19�.

II. SPIN-GLASS SUSCEPTIBILITY FOR ISING SPIN
GLASSES

In this section we review the calculation of the AT line for
the Ising case. In the next section we shall use this approach
to derive the AT line for vector spin glasses.

The standard way of averaging in random systems is the
replica trick, which exploits the result

ln Z = lim
n→0

Zn − 1

n
. �17�

Applying this to the Ising �m=1� version of the Hamiltonian
in Eq. �1�, one has

�Zn�av = Tr exp	 ��J�2

2N
�
�i,j�

�
	,�

Si
	Sj

	Si
�Sj

�

+
��hr�2

2 �
i

�
	,�

Si
	Si

�
 . �18�

We denote averages over the effective replica Hamiltonian in
the exponential on the right-hand side �RHS� of Eq. �18� by
�¯ �. Following standard steps, see, e.g., Refs. �1,20�, one
obtains �omitting an unimportant overall constant�

�Zn�av = �
−



 �

�	��

� N

2�
�1/2

��J�dq	��
� exp�− N

��J�2

2 �
�	��

q	�
2 ��Tr exp L�q	���N,

�19�

where L�q	�� is given by

L�q	�� = �2 �
�	��

�J2q	� + hr
2�S	S�, �20�

the trace is over the spins S	, 	=1, . . . ,n, and �	�� denotes
one of the n�n−1� /2 distinct pairs of replicas.
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We take the RS saddle point, where all the q	� are equal
to the same value q. The spin traces at the RS saddle point
are evaluated by writing

Tr eL = Tr exp	�2 �
�	��

�J2q + hr
2�S	S�


= Tr exp��2

2
�J2q + hr

2�	��
	

S	�2
− n
�



1

�2�
�

−





e−z2/2dz

	=1

n

�Tr e��J2q + hr
2�1/2zS	

� , �21�

where, in the last line, we omitted the constant factor exp
�−��2 /2��J2q+hr

2�n�, and decoupled the square in the expo-
nential using the identity

1
�2�

�
−





e−z2/2+azdz = ea2/2. �22�

Consequently the replica spins S	 �without site label� are
independent of each other and feel a Gaussian random field
�the same for all replicas� with zero mean and variance given
by

�2 � �2�J2q + hr
2� . �23�

We denote an average over the Gaussian random variable z
in Eq. �21� by �¯ �z, i.e.,

�f�z��z =
1

�2�
�

−





e−z2/2f�z�dz . �24�

It is straightforward to evaluate averages over the S	 since
they are independent, so we will now express averages over
the real spins Si in terms of S	 averages.

One can show, see, e.g., Ref. �20�, that each separate ther-
mal average corresponds to a distinct replica, so, for ex-
ample,

��SiSj��Sk��Sl��av = �Si
	Sj

	Sk
�Sl

�� �25�

for 	, � and � all different. To evaluate averages of the form
in the RHS of Eq. �25� we add fictitious fields �	� which
couple the replicas �20�, so Eq. �18� becomes

�Zn�av = Tr exp� ��J�2

2N
�
�i,j�

�
	,�

Si
	Sj

	Si
�Sj

� +
��hr�2

2 �
i

�
	,�

Si
	Si

�

+ �
�	��

�	��
i

Si
	Si

�� . �26�

Taking derivatives with respect to �	�, one has, for n→0,

�
i

�Si
	Si

�� =
�

��	�

�Zn�av, �27a�

�
i,j

�Si
	Si

�Sj
�Sj

�� =
�2

��	����

�Zn�av. �27b�

Now setting the �	� to zero we get, from Eq. �26�, in the
n→0 limit,

q �
1

N
��Si�2�av =

1

N
�

i

�Si
	Si

�� = ��S	S���z, �28�

for 	��. We emphasize that, in the final average �� . . . ��z,
the inner brackets refer to averaging over the spins in a fixed
value of the random field z in Eq. �21�, and the outer brack-
ets, �¯ �z, refer to averaging over z according to Eq. �24�.
Equation �28� leads to the well-known self-consistent expres-
sion �1,20� for the spin-glass order parameter q:

q = ��S	S���z = �tanh2����J2q + hr
2�1/2z�z

=
1

�2�
�

−





e−z2/2 tanh2

����J2q + hr
2�1/2z�dz . �29�

It will be useful to express the average in Eq. �27a� in a
different way. Including the fictitious fields �	� in the deri-
vation which led from Eq. �18� to Eqs. �19� and �20� one
finds an extra term, ��	���	�S	S�, in L�q	��. Defining new
integration variables by �20�

q	� + ��J�−2�	� → q	�, �30�

then �	� no longer appears in L, only in the quadratic term
in Eq. �19�. Using Eqs. �27�, one then gets

q =
1

N
�

i

�Si
	Si

�� = �q	�� , �31a�

1

N
�
i,j

�Si
	Si

�Sj
�Sj

�� = N�q	�q��� − ��J�−2��	��,����. �31b�

Hence the spin-glass susceptibility, defined in Eq. �11�, is
given by �20,21�

�SG = N���q	�
2 � − 2��q	��q	�� + ��q	��q���� − ��J�−2,

�32�

where all replicas are different, and �q	� is defined by

q	� = q + �q	�. �33�

We now expand Eq. �19� about the saddle point to qua-
dratic order in the �q	�. The result is that the exponential in
Eq. �19� becomes

exp�− Nf�q� − N
��J�2

2 �
�	��,����

A�	��,�����q	��q��� ,

�34�

where f�q� is the value of the exponent at the saddle point.
To obtain the elements of the 1

2n�n−1� by 1
2n�n−1� matrix A

we take the logarithmic of Eq. �19� and write the coefficients
in the expansion of ln Tr eL in powers of the �q	� in terms of
spin averages, evaluated by the decoupling in Eq. �21�. The
result is

A�	��,���� = ��	������ − ��J�2���S	S�S�S���z

− ��S	S���z��S�S���z� . �35�
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Equation �34� is the weight function used for averaging
over the �q	� in Eq. �32�. Performing these Gaussian inte-
grals gives

�SG =
1

��J�2 �G�	��,�	�� − 2G�	��,�	�� + G�	��,���� − 1� ,

�36�

where G is the matrix inverse of A, i.e.,

GA = I , �37�

where I is the identity matrix. Defining

G�	��,�	�� = G1, �38a�

G�	��,�	�� = G2, �38b�

G�	��,���� = G3, �38c�

we have

�SG =
1

��J�2 �Gr − 1� , �39�

where

Gr = G1 − 2G2 + G3 �40�

is called the “replicon propagator” �22�.
The matrix inverse of A is evaluated in Appendix A. Ac-

cording to Eq. �A6� we can express Eq. �39� as

�SG =
1

��J�2� 1

�3
− 1� , �41�

where

�3 = P − 2Q + R , �42�

and the quantities P, Q and R are defined in Eq. �A1�. The
eigenvalues of A were first worked out by AT and it turns out
that �3 is an eigenvalue of A. We evaluate the relevant spin
averages needed to determine �3 in Appendix C, and Eq.
�C22� gives

�3 = 1 − ��J�2�SG
0 , �43�

or equivalently, from Eq. �41�,

�SG =
�SG

0

1 − ��J�2�SG
0 , �44�

where �SG
0 is a single-site spin-glass susceptibility, given for

the Ising case by

�SG
0 = ���SS� − �S��S��2�z

=��1 − �S�2�2�z

=��1 − tanh2���J2q + hr
2�1/2z��2�z

=1 − 2q + r , �45�

where q is given by Eq. �29� and r is given by

r =
1

�2�
�

−





e−z2/2 tanh4���J2q + hr
2�1/2z�dz . �46�

Hence, according to the RS ansatz, �SG is predicted to di-
verge where

��J�2�SG
0 = 1, �47�

which describes the location of the AT line. In particular, for
small fields the AT line is given by

�hr

J
�2

=
4

3
�Tc − T

Tc
�3

�m = 1� , �48�

see Eq. �C34�. In fact, �SG turns out to be negative below this
line since �3 is negative in this region, see Eq. �C33�. These
results were first found by AT. At low temperatures we get

hr�T → 0�
J

=� 8

9�

J

T
�m = 1� , �49�

see Eq. �C37�, in agreement with Bray �7�. A plot of the AT
line for m=1, obtained numerically, is shown in Fig. 1.

Although the derivation of Eq. �44� is rather involved, we
note that the final answer is quite simple and has a familiar
mean field form, i.e., a response function � is equal to
�0 / �1−K�0�, where �0 is the noninteracting response func-
tion, and K �=��J�2 here�, is a coupling constant. In the next
section, we will see that �SG has precisely the same mean
field form for the vector �m�1� case.

FIG. 1. �Color online� The solid lines indicate the location of the
AT line for m=1, 3, and 10, according to Eq. �71�, and �SG

0 given by
Eq. �C24�. For m→
 the AT line collapses on to the horizontal
axis. The dashed lines are the approximate form given in Eq. �62�,
which is valid close to T=Tc=J. Note that this approximation works
remarkably well for the Heisenberg case, m=3, even down to quite
low temperatures. Also shown are Monte Carlo results for the criti-
cal temperature for hr=0, 0.173, and 0.346 for m=3.
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III. SPIN-GLASS SUSCEPTIBILITY FOR
VECTOR SPIN GLASSES

Here we consider a vector spin glass in which the Ising
spins are replaced by vector spins with m components. The
fluctuations in zero field were first considered by AJKT and
Ref. �23� and our approach follows closely that of the latter
reference. However, we shall see that there are some differ-
ences between our results and those of AJKT and Ref. �23�.
The derivation follows the lines of that for the Ising case in
the previous section but with the burden of additional indices
for the spin components. Hence we will not go through the
details but just indicate the main steps and the results.

To avoid confusion in notation, we will use the Greek
letters 	 ,� ,� ,� ,� for replicas and � ,� ,� ,� for spin indices.
The auxiliary variables q will now involve four indices
�	�� ,��, in which the order of the replica pair �	�� is un-
important, i.e., ��	� is the same as �	��, but the order of the
spin indices does matter because S	

�S�
� is not the same as

S	
�S�

�. Another new feature which appears when we deal with
vector spins is the appearance of terms with both replicas
equal, �		�. These do not appear for the Ising case because
�S	�2 is equal to 1, a constant. However, �S	

��2 is not a con-
stant for m�1 and so we now need to include �		� terms in
the analysis although they will not enter the final result for
�SG.

The analogs of Eqs. �19� and �20� are

�Zn�av = �
−



 	 

�	��,�,�

� N

2�
�1/2

��J�dq	�
��


�	 

	,�,�

� N

2�
�1/2

��J�dq		
��


� exp�− N
��J�2

2 	 �
�	��,�,�

�q	�
���2 + �

	,�,�
�q		

���2
�
��Tr exp L�q	�

��,q		
����N, �50�

where L�q	�
�� ,q		

��� is given by

L�q	�
��,q		

��� = �2 �
�	��,�,�

�J2q	�
�� + hr

2����S�
	S�

�

+
��J�2

�2
�

	,�,�
q		

��S�
	S�

	, �51�

where we ignored a term 1
2 ��hr�2��,	�S�

	�2 since it is a con-
stant.

We take the RS saddle point, where

q	�
�� = q���, q		

�� = x���. �52�

We then have, ignoring overall constant factors,

eL 
 Tr exp	�2 �
�	��,�,�

�J2q + hr
2�S�

	S�
�


= Tr exp��2

2
�J2q + hr

2��
�
	��

	

S�
	�2
 − nm�


 �
−



 �

�

dz�

�2�
�e−��z�

2 /2

	=1

n

�Tr e��J2q + hr
2�1/2��z�S�

	� ,

�53�

where, to get the last line, we decoupled the square in the
exponent using Eq. �22�. As for the Ising case, we denote an
average over the Gaussian random variables z� by �¯ �z.

Proceeding as in Sec. II, the spin-glass susceptibility, de-
fined in Eq. �16�, is given by

�SG =
N

m��
�,�

��q	�
���q	�

�� � − 2��q	�
���q	�

�� � + ��q	�
���q��

����
− ��J�−2 �54�

�with 	, �, � and � all different�, where the averages over the
�q are with respect to the following Gaussian weight �analo-
gous to that in Eq. �34� for the Ising case�:

exp�− N
��J�2

2 � �
�	��,����

Z�	��,����
��,�� �q	�

���q��
��

+ �
	,����

Z�		�,����
��,�� �q		

��

�2
�q��

�� + �
	,�

Z�		�,����
��,�� �q		

��

�2

�q��
��

�2
��
�55�

and

Z�	��,����
��,�� = ��	������������ − ��J�2���S�

	S�
�S�

�S�
���z − ��S�

	S�
���

���S�
�S�

���z� . �56�

Note that the annoying factors of 1 /�2 and 1/2 in Eq. �55�
can be removed simply by incorporating a factor of 1 /�2
into the q		

��. Doing the averages in Eq. �54� using the Gauss-
ian weight in Eq. �55� gives

�SG =
1

��J�2� 1

m
�
�,�

�G�	��,�	��
���� − 2G�	��,�	��

���� + G�	��,����
���� � − 1� ,

�57�

where G=Z−1. Using the definitions in Eqs. �B7�, we have

�SG =
1

��J�2 �Gr − 1� , �58�

where the “replicon” propagator is given by

Gr = G1L + �m − 1�G1T − 2�G2L + �m − 1�G2T�

+ G3L + �m − 1�G3T. �59�

The matrix inverse of Z is evaluated in Appendix B. Accord-
ing to Eq. �B10�, we can express Eq. �58� as
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�SG =
1

��J�2� 1

�3S
− 1� , �60�

where

�3S = PL + �m − 1�PT − 2�QL + �m − 1�QT� + RL + �m − 1�RT.

�61�

The eigenvalues of Z are evaluated in the longer version of
this paper on the archive �19�, where it is shown that �3S is
an eigenvalue.

From Eq. �C22�, we see that Eq. �58� can be written in the
same form as for the Ising case, Eq. �44�, where, for the case
of general m, the single-site spin-glass susceptibility �SG

0 is
evaluated in Appendix C, and given by Eq. �C24�.

The AT line is where ��J�2�SG
0 =1. Near Tc this is given by

�hr

J
�2

=
4

m + 2
t3, �62�

see Eq. �C34�. The same expression was obtained by Gabay
and Toulouse �4� but for a uniform field, in which case it
refers to a crossover rather than a sharp transition. Note that
hr=0 for m=
, as expected since AJKT showed that the
replica symmetric solution is stable in this limit. In the op-
posite limit, T→0, we find that the value of the AT field is
finite for m�2,

hr�T = 0�
J

=
1

�m − 2
�m � 2� , �63�

see Eq. �C36�, while hr�T→0� diverges for m�2. The loca-
tion of the AT line, obtained numerically, is plotted in Fig. 1
for several values of m.

Below the AT line, �SG is predicted to be negative, see Eq.
�C33�, which is impossible and shows that the RS solution
�which we have assumed� is wrong in this region.

For hr=0, Eq. �C33� gives �3S=−4t2 / �m+2�, which dis-
agrees with the unstable eigenvalue −8t2 / �m+2�2 given by
AJKT and Ref. �23�. However, we note that the replicon
propagator in Eq. �59� corresponds precisely to Eq. �3.5� of
Ref. �24�, and Eq. �62� also appears in the paper by Gabay
and Toulouse �4�, so we are confident that Eq. �C33� is cor-
rect. Note too that we obtained the spin-glass susceptibility,
the divergence of which indicates the AT line, directly from
the inverse of the matrix Z, the calculation of which is fairly
simple, see Appendix B. The extra information that �SG is
related to an eigenvalue, �3S, is not strictly needed to locate
the AT line.

IV. NUMERICAL RESULTS

We have determined the location of the AT line numeri-
cally for m=1, 3, and 10. For a given T and assumed value of
hr we solve for q self-consistently from Eq. �C18� and sub-
stitute into Eq. �C24� which gives �3S from Eq. �C22�. The
value of hr is then adjusted until �3S=0. The results are
shown by the solid lines in Fig. 1. Also shown, by the dashed
lines, is the approximate form in Eq. �62� which is valid
close to the zero-field transition temperature. For m=3 this

approximation actually works well down to rather low tem-
peratures.

If the spins are normalized to have length 1 rather than
m1/2 one divides the horizontal scale in Fig. 1 by m and the
vertical scale by 1 /m1/2, so the zero-field transition tempera-
ture would be Tc=J /m and the zero temperature limit of the
AT field would be hr=J /�m�m−2�, for m�2 �compare with
Eq. �63��.

We have also checked these results by Monte Carlo simu-
lations for the Heisenberg case, m=3. The method has been
discussed elsewhere �16,18�, so here we just give a few sa-
lient features. We use three types of moves: heatbath, over-
relaxation, and parallel tempering �25,26�. We perform one
heatbath sweep and one parallel tempering sweep for every
ten over-relaxation sweeps. The parameters of the simula-
tions are given in Table I. In calculating the spin-glass sus-
ceptibility in Eq. �16�, each thermal average is run in a sepa-
rate copy of the system to avoid bias. Hence we simulate
four copies at each temperature.

When the quenched random disorder variables are Gauss-
ian, as here, the following identity is easily shown to hold by
integrating by parts the expression for the average energy U
with respect to the disorder variables �16,17�,

−
U

m
�

��H��av

m
=

J2

2T
�qs − ql� +

hr
2

T
�1 − q̄� , �64�

where

qs =
1

Nm
�
i�j

���Si · S j�2��av, �65�

ql =
1

Nm
�
i�j

��Si · S j�2�av, �66�

q̄ =
1

Nm
�

i

��Si� · �Si��av, �67�

in which q̄ is the expectation value of the spin-glass order
parameter and ql is called the “link” overlap.

While Eq. �64� is true in equilibrium, it is not true before
equilibrium is reached, and indeed, the two sides of the equa-
tion approach the equilibrium value from opposite directions
�16,27�. Hence we only accept the results of a simulation if
Eq. �64� is satisfied with small error bars. �Note that this
equation refers to an average over samples; the connection
between the energy and the spin correlations is not true
sample by sample.�

According to finite-size scaling the spin-glass susceptibil-
ity in a finite, infinite-range system, should vary as �28–31�

�SG = N1/3X̃�N1/3�T − Tc�hr��� , �68�

so plots of �SG /N1/3 should intersect at the transition tem-
perature Tc�hr�. Data for �SG /N1/3 for m=3 for random field
values hr=0, 0.173, and 0.346 are shown in Figs. 2–4. The
data do indeed intersect, indicating a transition, although the
data for different sizes do not intersect at exactly the same
temperature which indicates the presence of corrections to
finite-size scaling.
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There are both singular and analytic corrections to scal-
ing. In the mean field limit the leading correction to �SG is
analytic �32�, in fact just a constant, so we replace Eq. �68�
by

�SG = N1/3X̃�N1/3�T − Tc�hr��� + c0. �69�

We compute the intersection temperature T��N ,2N� between
data for �SG /N1/3 for sizes N and 2N. It is then easy to see
from Eq. �69� that the T��N ,2N� converge to the transition
temperature like

TABLE I. Parameters of the simulations for different values of hr. Here Nsamp is the number of samples,
Nsweep is the number of over-relaxation Monte Carlo sweeps, Tmin and Tmax are the lowest and highest
temperatures simulated, and NT is the number of temperatures.

hr N Nsamp Nsweep Tmin Tmax NT

0 64 8000 256 0.30 1.50 40

0 128 8000 512 0.30 1.50 40

0 256 8000 1024 0.30 1.50 40

0 512 8000 2048 0.30 1.50 40

0 1024 2078 4096 0.30 1.50 40

0.173 64 8000 1024 0.30 1.50 40

0.173 128 8000 2048 0.30 1.50 40

0.173 256 8000 4096 0.30 1.50 40

0.173 512 4279 8192 0.30 1.50 40

0.173 1024 1494 16384 0.39 1.50 40

0.346 64 8000 1024 0.15 1.20 40

0.346 128 8000 2048 0.15 1.20 40

0.346 256 8000 4096 0.15 1.20 40

0.346 512 4293 8192 0.15 1.20 40

0.346 1024 3037 16384 0.15 1.20 40

FIG. 2. �Color online� Zero-field Monte Carlo data for the spin-
glass susceptibility for the m=3 �Heisenberg� infinite-range spin
glass, divided by N1/3, for different sizes. According to finite-size
scaling, the data should intersect at the transition temperature Tc in
the absence of corrections to scaling. Allowing for the leading cor-
rections, the inset shows intersection temperatures T��N ,2N� for
sizes N and 2N and the extrapolation to N=
 according to Eq. �70�.
This leads to the estimate Tc=0.9987�0.0036 �see Table II�, which
agrees well with the exact value of 1, shown as the dashed line in
the inset.

FIG. 3. �Color online� Same as Fig. 2 but for random field
strength hr=0.173. The final estimate of Tc�hr� is 0.685�0.019
which is to be compared with the exact value of 0.6652, see Table
II, which is shown as the dashed line in the inset.
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T��N,2N� − Tc�hr� =
A

N2/3 , �70�

where the constant A is related to c0 and X̃��0�. We determine
T��N ,2N� by a bootstrap analysis and show the results both
in Table II and in the insets to Figs. 2–4. Fitting a straight
line through T��N ,2N� against N−2/3 according to Eq. �70�
gives estimates of Tc which shown both in Fig. 1 and Table
II.

We see that, in zero field, the numerics accurately gives
the exact value for Tc of 1, and for nonzero hr, the numerics

gives the correct answer to within about one sigma. Hence
our analytical predictions for the AT line in Heisenberg spin
glasses are well confirmed by simulations.

V. CONCLUSIONS

We have emphasized that the appropriate symmetry
breaking field for a spin glass is a random field and that, for
a vector spin glass, the crucial ingredient is the random di-
rection of the field. Incorporating a random field, there is a
line of transitions �AT line� in vector spin glasses, just as
there is in the Ising spin glass, a fact which does not seem to
be widely recognized. The AT line is different from the GT
�4� line since it is a transition to a phase with replica sym-
metry breaking but no change in spin symmetry.

The location of the AT line for vector spin glasses with
Gaussian random fields is given by

�T

J
�2

= �SG
0 , �71�

where �SG
0 is given by Eq. �C24�. For the important case of

the Heisenberg �m=3� spin glass, the simpler expression for
�SG

0 is given in Eq. �C26�. We have plotted the AT line nu-
merically for several values of m in Fig. 1 and confirmed
these results numerically by simulations for the case of m
=3.

For the Ising case, we note that Bray and Moore �33� have
obtained Eq. �44� for the spin-glass susceptibility without
replicas, starting from the local mean-field equations of
Thouless, Anderson, and Palmer �34� �the TAP equations�. It
would be interesting to see if one could derive, along similar
lines, a more straightforward and nonreplica calculation of
�SG for the vector spin case too.

Although it is not possible experimentally to apply a field
which is random in direction to a vector spin glass, so the AT
line seems to be experimentally inaccessible �except for the
Ising case�, one can detect the AT line for vector spin glasses
in simulations. Whether or not at AT line exists in finite-
range spin glasses, it is a crucial difference between the rep-
lica symmetry breaking �RSB� picture, where it does occur,
and the droplet picture, where it does not. It has been found
possible to simulate Heisenberg spin glasses for significantly
larger sizes �16–28� than Ising spin glasses, so our results
may give an additional avenue through which to investigate
the nature of the spin-glass state.
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APPENDIX A: MATRIX INVERSE FOR ISING CASE

Because the theory is invariant under permutation of the
replicas, there are only three distinct values for the matrix
elements:

FIG. 4. �Color online� Same as Fig. 2 but for random field
strength hr=0.346. The final estimate of Tc�hr� is 0.497�0.023 to
be compared with the exact value of 0.4706, see Table II, which is
shown as the dashed line in the inset.

TABLE II. Intersection temperatures T��N ,2N� and extrapolated
values of Tc�hr� determined from fits to Eq. �70�. Also shown is the
exact value for Tc�hr� obtained as described in the text.

hr N T��N ,2N� Tc�hr� Tc�hr� �exact�

0 64 0.9478�61�
0 128 0.9709�32�
0 256 0.9832�22�
0 512 0.9837�29�
0 
 0.9987�36� 1

0.173 64 0.633�13�
0.173 128 0.634�13�
0.173 256 0.668�15�
0.173 512 0.680�18�
0.173 
 0.679�19� 0.6652

0.346 64 0.473�19�
0.346 128 0.447�29�
0.346 256 0.485�19�
0.346 512 0.498�21�
0.346 
 0.497�23� 0.4706
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A�	��,�	�� = P , �A1a�

A�	��,�	�� = Q , �A1b�

A�	��,���� = R , �A1c�

in which 	, �, � and � are all different. Recall that �	��
takes n�n−1� /2 distinct values, i.e., the pair ��	� is the same
as the pair �	��.

Consider the matrix G which is the inverse of A, i.e.,

AG = I , �A2�

where I is the identity matrix. We assume that G has the
same structure as A and define, see Eq. �38�,

G�	��,�	�� = G1, �A3a�

G�	��,�	�� = G2, �A3b�

G�	��,���� = G3. �A3c�

Evaluating the �	�� , �	��, the �	�� , �	��, and the
�	�� , ���� elements of Eq. �A2� gives, respectively,

PG1 + 2�n − 2�QG2 +
1

2
�n − 2��n − 3�RG3 = 1, �A4a�

QG1 + �P + �n − 2�Q + �n − 3�R�G2

+ 	�n − 3�Q +
1

2
�n − 3��n − 4�R
G3 = 0, �A4b�

RG1 + �4Q + 2�n − 4�R�G2

+ 	P + 2�n − 4�Q +
1

2
�n − 4��n − 5�R
G3 = 0.

�A4c�

Taking 1� �A4a�−2� �A4b�+1� �A4c� gives

�P − 2Q + R��G1 − 2G2 + G3� = 1, �A5�

so the “replicon propagator” is given by

Gr � G1 − 2G2 + G3 =
1

P − 2Q + R
. �A6�

The spin-glass susceptibility is determined from Gr accord-
ing to Eq. �39�. Note that Eqs. �A5� and �39� determine �SG
without needing to diagonalize the matrix A. However, since
the diagonalization has been done by AT, it is instructive to
see that Gr is the inverse of the replicon eigenvalue �3, see
also Ref. �19�.

If we accept that �3 is an eigenvalue, then Eq. �A6� is
obvious since the eigenvectors of A and G are the same, and
the corresponding eigenvalues are the inverses of each other.
Furthermore, since the inverse matrix G has the same struc-
ture as that of the original matrix A, the expressions for the
eigenvalues of A in terms of the parameters P, Q, and R, are
the same as the expressions for the eigenvalues of G in terms
of the corresponding parameters G1, G2, and G3.

APPENDIX B: MATRIX INVERSE FOR VECTOR CASE

We now have additional indices for the spin components,
and to avoid confusion in notation, we will use Greek letters
	 ,� ,� ,� ,� for replicas and � ,� ,� ,� for spin indices. A row
or column of the matrix will then involve four indices
�	�� ,��, in which the order of the replica pair �	�� is un-
important, i.e., ��	� is the same as �	��, but the order of the
spin indices does matter because S	

�S�
� is not the same as

S	
�S�

�.
Another new feature which appears when we deal with

vector spins is the appearance of terms with both replicas
equal, �		�. These do not appear for the Ising case because
�S	�2 is equal to 1, a constant. However, �S	

��2 is not a con-
stant for m�1 and so we now need to include �		� terms in
the analysis.

Hence we shall inverse of a matrix Z of size 1
2n�n+1�m2

whose elements are given by

Z�	��,����
��,�� = ��	������������ − ��J�2���S�

	S�
�S�

�S�
���z − ��S�

	S�
���

���S�
�S�

���z� . �B1�

Ignoring for now the spin indices �which will be put back
later� we consider the following matrix of dimension 1

2n�n
+1��

1
2n�n+1�,

Z = � A B

BT C
� , �B2�

in which A is the matrix of dimension 1
2n�n−1��

1
2n�n−1�

with rows and columns labeled by two distinct replicas �	��
defined in Eq. �A1�, C is an n�n matrix with rows and
columns labeled by a single replica �		�, and B is a matrix
with 1

2n�n−1� rows and n columns.
We now discuss each of these matrices in turn.
�i� The elements of A are given by Eq. �A1�.
�ii� The elements of B are

B�	��,�		� = S , �B3a�

B�	��,���� = T , �B3b�

in which 	, � and � are all different.
�iii� The elements of C are

C�		�,�		� = U , �B4a�

C�		�,���� = V , �B4b�

in which 	 and � are different.
Now we add the Cartesian spin indices. The result is that

each element of the matrix Z in Eq. �B2� becomes an m2

�m2 matrix with rows and columns labeled by a pair of spin
component indices � and �, each of which runs over values
from 1 to m.

A simplification is that the only nonzero elements are
those where each Cartesian spin component occurs an even
number of times �combining the row and column indices�.
Hence each m2�m2 matrix breaks up into different blocks.
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There is one m�m block, ��� ,���, where �=1, . . . ,n , �
=1, . . . ,m, and m�m−1� /2 blocks of size 2, ��� ,��� and
��� ,���, where � and ����� are fixed.

Consider, for example, one of the elements in A with
value P, see Eq. �A1�. This is now expanded into an m2

�m2 matrix which is block diagonalized into:
�i� One m�m matrix, with rows and columns labeled by

����=1, . . . ,m�,

�
PL PT ¯ PT

PT PL ¯ PT

] ] � ]

PT PT ¯ PL

� , �B5�

where the diagonal elements �to which we give the subscript
L� are different from the off-diagonal elements �to which we
give the subscript T�.

�ii� m�m−1� /2 identical matrices of size 2�2, with rows
and columns labeled by �� and �� �for fixed � and � with
����,

�P1 P2

P2 P1
� , �B6�

in which we give the subscript “1” to the �equal� diagonal
elements and the subscript “2” to the off-diagonal elements.

The R, S, T, U, and V elements of the replica matrix, in
Eqs. �A1�, �B3�, and �B4�, expand out into the same block
structure in spin-component space.

For Q, there are some differences involving the Q1 and Q2
elements �19�, but these will not be needed here.

As for the Ising case, we assume that G, the matrix in-
verse of Z, has the same structure as Z itself. In particular, we
define

G�	��,�	��
��,�� = G1L, G�	��,�	��

��,�� = G1T�� � �� , �B7a�

G�	��,�	��
��,�� = G2L, G�	��,�	��

��,�� = G2T�� � �� , �B7b�

G�	��,����
��,�� = G3L, G�	��,����

��,�� = G3T�� � �� , �B7c�

G�	��,�		�
��,�� = G4L, G�	��,�		�

��,�� = G4T�� � �� , �B7d�

G�	��,����
��,�� = G5L, G�	��,����

��,�� = G5T�� � �� , �B7e�

where 	, �, �, and � are all different. Considering various
matrix elements of both sides of ZG= I we get

PLG1L + �m − 1�PTG1T + 2�n − 2��QLG2L + �m − 1�QTG2T�

+
1

2
�n − 2��n − 3��RLG3L + �m − 1�RTG3T� + 2�SLG4L

+ �m − 1�STG4T� + �n − 2��TLG5L + �m − 1�TTG5T� = 1,

�B8a�

PLG1T + PTG1L + �m − 2�PTG1T + 2�n − 2��QLG2T + QTG2L

+ �m − 2�QTG2T� +
1

2
�n − 2��n − 3��RLG3T + RTG3L

+ �m − 2�RTG3T� + 2�SLG4T + STG4L + �m − 2�STG4T�

+ �n − 2��TLG5T + TTG5L + �m − 2�TTG5T� = 0, �B8b�

QLG1L + �m − 1�QTG1T + �PL + �n − 2�QL + �n − 3�RL�G2L

+ �m − 1��PT + �n − 2�QT + �n − 3�RT�G2T + 	�n − 3�QL

+
1

2
�n − 3��n − 4�RL
G3L + �m − 1�	�n − 3�QT +

1

2

��n − 3��n − 4�RT
G3T + 2�SLG4L + �m − 1�STG4T�

+ �n − 2��TLG5L + �m − 1�TTG5T� = 0, �B8c�

QLG1T + QTG1L + �m − 2�QTG1T + �PL + �n − 2�QL

+ �n − 3�RL�G2T + �PT + �n − 2�QT + �n − 3�RT�G2L

+ �m − 2��PT + �n − 2�QT + �n − 3�RT�G2T

+ 	�n − 3�QL +
1

2
�n − 3��n − 4�RL
G3T + 	�n − 3�QT

+
1

2
�n − 3��n − 4�RT
G3L + �m − 2�	�n − 3�QT +

1

2

��n − 3��n − 4�RT
G3T + 2�SLG4T + STG4L

+ �m − 2�STG4T� + �n − 2�

��TLG5T + TTG5L + �m − 2�TTG5T� = 0, �B8d�

RLG1L + �m − 1�RTG1T + �4QL + 2�n − 4�RL�G2L + �m − 1�

��4QT + 2�n − 4�RT�G2T + 	PL + 2�n − 4�QL +
1

2
�n − 4�

��n − 5�RL
G3L + �m − 1�	PT + 2�n − 4�QT +
1

2
�n − 4�

��n − 5�RT
G3T + 2�SLG4L + �m − 1�STG4T� + �n − 2�

��TLG5L + �m − 1�TTG5T� = 0, �B8e�

RLG1T + RTG1L + �m − 2�RTG1T + �4QL + 2�n − 4�RL�

�G2T + �4QT + 2�n − 4�RT�G2L + �m − 2��4QT + 2

��n − 4�RT�G2T + 	PL + 2�n − 4�QL +
1

2
�n − 4�

��n − 5�RL
G3T + 	PT + 2�n − 4�QT +
1

2
�n − 4�

��n − 5�RT
G3L + �m − 2�	PT + 2�n − 4�QT +
1

2
�n − 4�
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��n − 5�RT
G3T + 2�SLG4T + STG4L + �m − 2�STG4T�

+ �n − 2��TLG5T + TTG5L + �m − 2�TTG5T� = 0. �B8f�

Forming appropriate linear combinations of Eqs. �B8�
gives

��G1L + �m − 1�G1T� − 2�G2L + �m − 1�G2T� + �G3L + �m

− 1�G3T�� � ��PL + �m − 1�PT� − 2�QL + �m − 1�QT�

+ �RL + �m − 1�RT�� = 1, �B9�

so the “replicon” propagator is given by

Gr � �G1L + �m − 1�G1T� − 2�G2L + �m − 1�G2T�

+ �G3L + �m − 1�G3T�

= ��PL + �m − 1�PT� − 2�QL + �m − 1�QT�

+ �RL + �m − 1�RT��−1. �B10�

APPENDIX C: AVERAGES OVER SPIN DIRECTIONS

To evaluate the spin-glass susceptibility we need to com-
pute averages over spin directions. Consider, for example,

Z =� d�m exp�H · e� , �C1�

where the integral is over the surface, �m, of a sphere of unit
radius, e is a unit vector whose direction is to be integrated
over, and H is a fixed vector.

Working in polar coordinates, with the polar axis along
the direction of the fixed vector H, the integral in Eq. �C1�
can be expressed entirely in terms of the polar angle � since
exp�H ·e�=exp�H cos �� and �d�m=Cm�0

�sinm−2 � for a con-
stant Cm. To determine Cm we note the following results
�35,36�:

�m �� d�m =
2�m/2

��m

2
� , �C2�

�
0

�

sinm−2 �d� = ��

��m − 1

2
�

��m

2
� , �C3�

where � is the usual Gamma function, which gives

Cm =
2��m−1�/2

��m − 1

2
� . �C4�

Hence Z can be written as

Z =
2��m−1�/2

��m − 1

2
��0

�

exp�H cos ��sinm−2 �d� . �C5�

The integral is given in terms of a modified Bessel function
�36�, and we have

Z = �2��m/2 Im/2−1�H�
Hm/2−1 . �C6�

Of greater interest are averages of the spins. Consider first

�S�� = m1/2�e�� �C7�

=m1/2 1

Z

�Z

�H� �C8�

=m1/2 1

Z

H�

H

�Z

�H
. �C9�

Using �36�

d

dx
	 Im/2−1�x�

xm/2−1 
 =
Im/2�x�
xm/2−1 , �C10�

we get

�S�� = m1/2H�

H

Im/2�H�
Im/2−1�H�

. �C11�

We shall also need

�S�S�� = m
1

Z

H�

H

�

�H
�H�

H

�Z

�H
� �C12�

=
m

Im/2−1�H�	���

Im/2�H�
H

+
H�H�

H2 Im/2+1�H�
 , �C13�

in which we again used Eq. �C10�.
To apply these results, we note that, in the presence of a

external random field, the replica symmetric solution pre-
dicts that H is given by

H = �m1/2�J2q + hr
2�z , �C14�

where each component of the variable z is a Gaussian ran-
dom variable with zero mean and standard deviation unity.
To see this, compare Eq. �53� with Eq. �C1� and note that the
spins are of length m1/2 according to Eq. �2�. Hence each
component of H has zero mean and standard deviation given
by

� = �m1/2�J2q + hr
2�1/2. �C15�

As for the Ising case, we denote averages over H or
equivalently over z �H and z are related by Eq. �C14��, by
�¯ �z and so, for example, in situations which only involve
the magnitude of H, we have

�f�H��z = �
−



 �

�

dH�

�2��1/2��e−��H�
2 /2�2

f�H�dH

=
�m

�2��m/2�m�
0




Hm−1 exp�−
H2

2�2� f�H�dH
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=
21−m/2

�m��m

2
��0




Hm−1 exp�−
H2

2�2� f�H�dH

�C16�

=
21−m/2

��m

2
��0




zm−1e−z2/2f��z�dz , �C17�

where we used the result for �m in Eq. �C2�, and � is given
by Eq. �C15�.

Using these results we now calculate the spin-glass order
parameter q, which is given by

q =
1

m
��

�=1

m

�S��2�z

= �
�=1

m
�H��2

H2 	� Im/2�H�
Im/2−1�H�

�2

z

=	� Im/2�H�
Im/2−1�H�

�2

z

=
21−m/2

�m��m

2
��0




dHHm−1 exp�−
H2

2�2�

�� Im/2�H�
Im/2−1�H��

2

=
21−m/2

��m

2
��0




dzzm−1e−z2/2� Im/2��z�
Im/2−1��z�

�2

,

�C18�

where we used Eq. �C11�. Equation �C18�, with � given by
Eq. �C15�, is the self-consistent equation which determines
q. As an example, for m=1, Im/2�H� / Im/2−1�H�=tanh�H�
=tanh��z�, and we recover the result for q in Eq. �29�. For
general m, expanding the Bessel functions for small argu-
ment �36�, we get

q = 	 1

m2H2 −
2

m3�m + 2�
H4 +

5m + 12

m4�m + 2�2�m + 4�
H6

+ O�H8�

z
. �C19�

If we do the Gaussian integrals, set hr=0, and solve for q, we
find

q = t +
1

m + 2
t2 + O�t3�, �hr = 0� , �C20�

where t, the reduced temperature, is given by t= �Tc−T� /Tc,
and the zero-field transition temperature is Tc=J, see Eq. �5�.

Our main goal is to compute the eigenvalue �3S since this
determines the spin-glass susceptibility, the divergence of

which indicates the location of the AT line. From Eqs. �61�,
�B1�, �B2�, and �B5�, we find the fairly simple expression

�3S = 1 − ��J�2 1

m
�
�,�

��S�S��2 − 2�S�S���S���S��

+ �S��2�S��2�z, �C21�

which is instructive to write in the following form:

�3S = 1 − ��J�2�SG
0 , �C22�

where �SG
0 is a single-site spin-glass susceptibility,

�SG
0 =

1

m
�
�,�

���S�S�� − �S���S���2�z. �C23�

Evaluating the spin averages in Eq. �C23� using Eqs.
�C11� and �C13� gives

�SG
0 = m	 1

Im/2−1
2 �H�� m

H2 Im/2
2 �H� +

2

H
Im/2�H�Im/2+1�H�

+ Im/2+1
2 �H�� −

2

Im/2−1
3 �H�� 1

H
Im/2

3 �H�

+ Im/2
2 �H�Im/2+1�H�� + � Im/2�H�

Im/2−1�H��4

z

. �C24�

We recall that the average over H is evaluated according to
Eq. �C16�. For the Ising case, m=1, Eq. �C24� simplifies to

�SG
0 = �1 − 2 tanh2 H + tanh4 H�z, �C25�

in agreement with Eq. �45�. For the Heisenberg case, m=3,
Eq. �C24� becomes

�SG
0 = 3	3 + 2H2 − 4H coth�H�

H4 +
1

sinh4�H�
z
, �C26�

which, together with Eqs. �C16� and �C22�, gives �3S. Equa-
tions �C24� and �C26� appear to be a new results. Expanding
the Bessel functions �36� for small H gives

�SG
0 = 	1 −

2

m2H2 +
5m + 16

m3�m + 2�2H4 + O�H6�

z
. �C27�

Let us evaluate q and �3S near T=Tc�=J�, the zero-field
transition temperature, and for small hr. Using Eqs. �C19�
and �C27�, and doing the Gaussian integrals, we find

q = �̃2 − 2�̃4 +
5m + 12

m + 2
�̃6 + ¯ , �C28�

�3S = 1 − ��J�2	1 − 2�̃2 +
5m + 16

m + 2
�̃4 + ¯
 , �C29�

where

�̃2 �
�2

m
= �2�J2q + hr

2� . �C30�

Combining Eqs. �C29� and �C28� and assuming

hr � t � �Tc − T�/Tc � 1, �C31�

which will be valid at and below the AT line near Tc, we get
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�3S = �hr

J
�21

q
−

4

m + 2
q2. �C32�

In the limits of Eq. �C31�, we have q= t+O�t2�, see Eqs.
�C20� and �C35�, and so

�3S = �hr

J
�21

t
−

4

m + 2
t2, �hr � t� , �C33�

which changes sign for

�hr

J
�2

=
4

m + 2
t3. �C34�

Equation �C34� gives the location of the AT line for an
m-component spin glass near the zero-field transition. The
replica symmetric solution is unstable at lower temperatures
and fields since �3S�0 in that region according to Eq. �C33�.
Note that Eq. �C34� correctly gives the AT result that hr

2

= �4 /3�t3 for m=1 �This is a valid comparison even though

AT used a uniform field since, to lowest order in t, the loca-
tion of the AT line in the Ising case is the same �7� for
random and uniform fields.� On the AT line we find that the
spin-glass order parameter is given by

q = t +
3

m + 2
t2 + O�t3�, �on AT line� . �C35�

In the opposite limit, T→0, we find, using properties of
the Bessel functions, that

hr�T = 0�
J

=
1

�m − 2
�m � 2� , �C36�

while hr�T→0� diverges for m�2. For the Ising case, we get

hr�T → 0�
J

=� 8

9�

J

T
�m = 1� , �C37�

in agreement with Bray �7�.
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