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Dielectric properties of classical and quantized ionic fluids
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We study time-dependent correlation functions of classical and quantum gases using methods of equilibrium
statistical mechanics for systems of uniform as well as nonuniform densities. The basis for our approach is the
path integral formalism of quantum mechanical systems. With this approach the statistical mechanics of a
quantum mechanical system becomes the equivalent of a classical polymer problem in four dimensions where
imaginary time is the fourth dimension. Several nontrivial results for quantum systems have been obtained
earlier by this analogy. Here, we will focus upon the presence of a time-dependent electromagnetic pair
interaction where the electromagnetic vector potential that depends upon currents, will be present. Thus both
density and current correlations are needed to evaluate the influence of this interaction. Then we utilize that
densities and currents can be expressed by polarizations by which the ionic fluid can be regarded as a dielectric
one for which a nonlocal susceptibility is found. This nonlocality has as a consequence that we find no
contribution from a possible transverse electric zero-frequency mode for the Casimir force between metallic
plates. Further, we establish expressions for a leading correction to ab initio calculations for the energies of the

quantized electrons of molecules where now retardation effects also are taken into account.

DOLI: 10.1103/PhysRevE.81.061114

I. INTRODUCTION

Feynman found that the partition function of a quantum
mechanical particle can be represented as a path integral in
imaginary time that stretches from time O to time B=1/kgT
where kg is the Boltzmann constant and 7 is temperature [1].
With this a particle system in 3 dimensions becomes a “clas-
sical” polymer problem in 4 dimensions where the fourth
dimension is imaginary time. The polymers are periodic in
the fourth dimension such that end points at times 0 and S8
are tied together. To take the statistics or symmetry proper-
ties of fermions and bosons into account the end points of
different polymers are tied together to form polymer coils.
The path integral can also be regarded as a random walk
problem whose properties has been studied and analyzed,
and functional integration of it has been used to solve prob-
lems in statistical mechanics [2].

It was realized by Hgye and Stell and by D. Chandler et
al. that the polymer or a random walk picture could be uti-
lized to evaluate the equilibrium properties of a fluid of
quantized polarizable particles using methods of classical
statistical mechanics [3,4]. Brevik and Hgye then considered
a pair of polarizable particles to evaluate their net attraction
known as the Casimir force or van der Waals force [5] using
methods of classical statistical mechanics as an alternative to
the usual field theoretical approach to this problem. It was
found that time dependent or retarded potentials could be
used by this approach too. Further this approach was ex-
tended to the evaluation of the Casimir force between a pair
of parallel dielectric plates to recover the well known Lif-
shitz result [6]. Later, this statistical mechanical derivation
also gave new insight into a controversy with an ambiguity
in the Lifshitz result for metallic surfaces [7]. This contro-
versy has been heavily debated in later years [7,8]. In one
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way a zero-frequency transverse electric (TE) mode remains
by which there is almost no temperature dependence of the
Casimir force for low temperatures or small plate separa-
tions. By the statistical mechanical approach such a mode is
clearly not present during derivations. To illustrate this ab-
sence of the TE mode a simple harmonic oscillator model
with two oscillators interacting with a third one was studied
in Ref. [7]. The absence of the TE mode is also supported by
the works by Jancovici and Samaj [9] and by Buenzli and
Martin [10-12]. But the results of these latter works are re-
stricted to the classical limit 83— 0. As a model for the metal
plates they consider a classical Coulomb gas or plasma of
free electrons where classical Debye-Hiickel theory is used.
The recent results by Hgye [13] for ionic systems for more
general densities and by Hgye and Brevik [14] for dielectric
plates with free charges are consistent with this.

In Ref. [12], the fully quantized version with the magnetic
interactions of radiation included was also considered. With
magnetic interactions it was found that the zero-frequency
TE mode is still absent. The new feature of the present work
in this respect is that the same result is derived for all tem-
peratures.

However, recent experiments by Decca et al. seem to ex-
clude the absence of the zero-frequency TE mode with high
confidence [15]. More details on the experimental situation
can be found in the review by Klimchitskaya er al. [16].
Thus there is a contradiction between experimental results
and various theoretical results for media with free charges
such as metals. This shows a need for further investigations
on this issue.

Chandler and Wolynes considered the path integral for-
mulation of fermion and boson fluids noting a very general
isomorphism with a classical system of interacting polymers
[17]. Further studies of boson and fermion fluids based on
this isomorphism were made by Hgye and Stell [18] where
the equivalence of the path integral of quantized fermion and
boson systems with classical polymer problems was noted.
Due to the symmetry requirements of such fluids (exchange
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of identical particles) the equivalent polymers will be linked
into polymer coils. With no pair interaction these coils form
an ideal gas from which the well known pressures of the
ideal fermion and boson gases are recovered.

The pair correlation function of free fermions and bosons
in space and imaginary time can thus be evaluated using the
polymer picture, and pair interactions can be taken into ac-
count. In Ref. [18] these were considered to be weak and of
long range, and y-ordering, where vy is the inverse range of
interaction, was considered [19,20]. For Helmholtz free en-
ergy the leading order contribution beyond mean field theory
is then the sum of ring graphs. The corresponding contribu-
tion to the correlation function or structure factor is the sum
of chain graphs. These statistical mechanical methods have
close relations to those developed by Alastuey, Ballenegger,
Cornu, and Martin [21] who consider cluster expansions in
terms of Mayer graphs and perform the resummation needed
to replace the Coulomb potential with its shielded version.
There is also some relation to the work by Alastuey and
Martin who also note the classical analogy [22]. Finally,
there is certain similarity to the recent work by Samaj who
considers current-current correlation functions in media
coupled to radiation [23]. However, the formalism he uses is
different and is based upon previous works by Rytov by us-
ing a macroscopic theory of thermal fluctuations of the elec-
tromagnetic field in conductors and dielectric media [24].

In a recent work, we investigated how dynamic properties
in the linear response regime could be described by applying
the methods of classical statistical mechanics upon the path
integral [25]. One feature is that dynamic properties, that
otherwise require kinetic theory, are kept even after the clas-
sical limit has been taken. This was verified by comparing
with known results of kinetic theory of which the ideal gas
free motion is the most simple. Then the gas particles were
perturbed by a pair interaction like the electrostatic Coulomb
interaction, and the y-ordering mentioned above was applied.
Results based upon the Vlasov equation for a classical
plasma was recovered in this way [26]. Also the correspond-
ing version with quantized electrons was in full agreement
with an earlier result for small wave vectors [27]. Based on
this and previous knowledge from use of y-ordering on clas-
sical fluids there was reason to expect that these methods
would work well when applied to quantum mechanical sys-
tems more generally. Thus energy corrections to ab initio
computations of molecular energies with the Hartree-Fock
(HF) or density-functional theory (DFT) [28] as basis were
established too for systems of nonuniform density with static
or time independent interactions.

In this work results of Ref. [25] will be extended to the
non-trivial situation with radiating electromagnetic interac-
tion between charged particles. Due to the electromagnetic
vector potential it is clear that current correlations are needed
in some way [12]. Here, we are able to incorporate these
correlations in the statistical mechanical formalism. Further
the ionic fluid is identified with an equivalent polarizable
fluid with a nonlocal dielectric tensor. With this we find there
is no contribution to the Casimir force between metallic
plates from a possible zero-frequency TE mode. Further the
results of Ref. [25] for the energy correction to molecular
energies are extended to the situation with radiating electro-
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magnetic interaction where retardation effects are present.
This energy correction can be regarded as a Casimir energy
due to non-local correlations throughout the system since
this energy is like the one that creates the Casimir force
between dielectric or metallic plates.

In Sec. 11, it is demonstrated by a simple example how the
integrand of the path integral for a vector potential is deter-
mined by the Lagrangian of the system as expected. In Sec.
III, the radiating electromagnetic interaction between
charged particles is considered and explicit expressions for
this interaction is established.

In Sec. IV, the polarization is introduced, and particle den-
sities and currents are related to it. In this way an equivalent
polarizable fluid is obtained. Further the interaction between
charges through the electromagnetic scalar and vector poten-
tials is replaced by the radiating dipole-dipole interaction.

In Sec. V, density, current, and polarization correlations of
an uniform ideal classical gas are studied. Then the correla-
tion functions of the components of the polarization vector
can be directly related to the susceptibility tensor of the sys-
tem, and explicit expressions are obtained. The susceptibility
becomes nonlocal in space, and thus it does not support the
presence of a zero-frequency TE mode.

In Sec. VI, the corresponding quantum mechanical corre-
lation functions are obtained for fermions and bosons, and
general expressions for nonuniform systems are considered.
Then the correlation functions can be constructed from the
one-particle eigenstates that can be obtained by the HF or
DFT methods.

In Sec. VII, the quantum mechanical expressions are con-
sidered for a uniform system. Then Fourier transform in
space can be used, and simpler expressions are obtained. In
the limit #—0 these expressions can be identified in a
straightforward way with the classical ones of Sec. V.

In Sec. VIII, a leading energy correction to molecular
energies by ab initio computations is established. This en-
ergy contribution can be regarded as a bulk Casimir energy.
The results of this section extends those of Ref. [25] where
only electrostatic interactions and density correlations were
used. In Sec. VIII, radiating dipole interaction and polariza-
tion correlations are used, but for electrostatic interactions
the results are the same as those of the reference.

II. VECTOR POTENTIAL AND PATH INTEGRAL

According to Ref. [1] the action that forms the exponent
of the integrand in the path integral is determined by the
Lagrangian of the system. This also holds with the electro-
magnetic vector potential. We want to demonstrate this ex-
plicitly by considering a simple one dimensional example
with Lagrangian

1
=—x’+XA. 1
SX A (1)

The generalized momentum is p=dJL/dx=x+A by which the
Hamiltonian becomes
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. 1
H=px—L=5(p—A)2- (2)
With imaginary time 7=it the corresponding Schrodinger
equation becomes (with Zi=1 and m=1)

110 2 Iy
“(==-a) p=-= 3
2( i ox ) 4 aT 3)
Its solution with ¢/(x)=8(x) for 7=0 is

1
W= ———exp(rL) )
\N2TT

provided 7 is small (or A is constant). This is in accordance
with Eq. (1), which can be written

2 2
=%<’_C) +)_CA=1<—;—+ixA>. (5)

t T T

In general there are other terms in L. However, for a small
step 7—0 in imaginary time, expression Eq. (4) is still the
solution.

III. ELECTROMAGNETIC INTERACTION

With electromagnetic scalar and vector potentials ®(r,7)
and A(r,7) the contribution to the Lagrangian from interac-
tion with particles at positions r; is

1
L, = qz =P, +—v;- Ar,1) |, (6)
i C

where ¢ is particle charge, v;=¥; is velocity of particle i, and
c is velocity of light. Here Gaussian units are used.

The free electromagnetic field also contributes to the La-
grangian. But it is bilinear in the field by which it is equiva-
lent to a set of harmonic oscillators. Thus as has been im-
plicitly understood earlier, these degrees of freedom can be
integrated out explicitly [5-7]. The net result is that the free
field contribution is unaffected by the presence of the par-
ticles while L;,, will be a sum of pair interactions mediated
by the electromagnetic field. In addition there can be external
static fields such as the electrostatic one from atomic nuclei.
With external fields that vary in space, the system will be
non uniform such as the electron clouds of molecules.

The fields in Eq. (6) (apart from external ones) are created
by the charged particles of the system. (Possible contribu-
tions from magnetic moments are disregarded here.) These
fields are obtained by solving Maxwell’s equations of elec-
tromagnetism

VE=4mp

1B
VXE=-—-——

PHYSICAL REVIEW E 81, 061114 (2010)

VB =0, (7)

where E, B, p, and j are electric field, magnetic field, charge
density, and current density respectively. In terms of the elec-
tromagnetic potentials one further has

1 0A
E=-V0-—
c Jt

B=V XA. (8)

With this one obtains the usual wave equations

(VZ_ii>A:_4iTj (9)
Cc c

provided the Lorentz gauge condition

1 od

——+VA=0 (10)

c ot
is used. We find it convenient to use this gauge to get the
solution for the fields on a simple form. However, one may
use a different gauge by adding contributions —c~' /ot and
Vx to the fields ® and A respectively where y is a scalar
function. By partial integration and use of the condition of
charge conservation given by Eq. (14) below, it is seen that
this will not change the total interaction given by Eq. (20) in
the next section.

By Fourier transform in both time and space one finds the

solution

Dk, ) = ik, 0)p

A I .
A(k,w)=;¢(k,w)j, (11)

where the hat denotes Fourier transform with respect to time

(k=|k]|), and where
A 4
kw)=—>—""3. 12
Pk, w) 12— (/) (12)
In r-space the ¢ becomes (r=|r])
. —i(w/c)r
Pr,w) = (13)
r

for Im(w) < 0. It can be noted that this solution also fulfills
the gauge condition Eq. (10) due to the condition of charge
conservation

ap
— +Vj=0. 14
PAY (14)

The l,Ab(r,-j,co) will be the Fourier transform of the interac-
tion between a pair of unit charges located at positions r; and
r; with r;=|r;—r;|. According to Eq. (6) the current also
contributes to the interaction. The current density from a
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charge density p(r)=gd(r-r) is j=gvd(r-r,). Thus the full
pair interaction becomes (V=r)

o(12,1) = qzz/f(rlz,ﬂ(l - r"c'fz). (15)

With the path integral imaginary time is used. However,
we only need its Fourier transform which according to Eq.
(A8) in Appendix immediately follows from Eq. (13) by re-
placing w with K=ifiw. Thus

e—Kr/(ﬁc)

W(r.K) = (16)

-
where K=27m/ 8 with n integer. However, in Eq. (16) the K
should be interpreted as K=|K| (along the real axis). The
reason is that one can put K=(g?+K?)"? with £ — 0 and then
take the continuation of this function when passing between
the branch points K= * ie [5]. Further, for a uniform system
the Fourier transform Eq. (12) can be used with K=ifiw to
get

ik, K) = p (17)

S
2+ K (he)*

IV. EQUIVALENT POLARIZABLE FLUID

By vy-ordering the leading contribution to the pair corre-
lation function beyond the reference system is given by the
chain graphs with potential bonds and hypervertices [19,20].
The contribution to the free energy is given by the corre-
sponding ring graphs. In both cases the vertices of the graphs
are hypervertices commonly formed by the density-density
correlation function of a reference system. However, in the
present case velocities are involved in the pair interaction.
We will find that the classical polymer picture of the path
integral can be extended to this situation. By this both
density-current and current-current correlations will be
needed to obtain all contributions from the vertices of the
graphs. This will give a 4 X 4 matrix of correlation functions
to be used at each vertex. However, this can be simplified.
On physical grounds there is reason to expect an ionic sys-
tem to be essentially a dielectric one. We will show that this
is actually the situation with a dielectric constant that in gen-
eral is a nonlocal tensor.

A dielectric fluid can be described by the polarization P
=P(r, ). From Maxwell’s equations for dielectric media one
finds that induced charge density p and current density j can
be expressed as

aP
=—VP and j=—. 18
p and j =" (18)

It is easily seen that these relations fulfill Eq. (14) for charge
conservation.

With relations Eq. (18) it will be possible to relate the
various correlation functions to a susceptibility tensor of the
system. This will be considered in the following sections.
Below in this section we will show that the ionic interaction
can be replaced with the one of a dielectric fluid.
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On the microscopic level the charge and current densities
can be written (r;=r;(z))

p(r,0) =g 8r—r;) and j(r,)=q> v;6(r-r,).

(19)

By integration of Eq. (6) over imaginary time 7(=it/%) the
total interaction of polymer pairs in the path integral is ob-
tained. With Eqgs. (11), (13), and (19) this can be written

B B B B
U=—f J L,»mdrlde:f f jf p1i(rintin)ps
0o Jo 0 Y0
1

- ?j1lﬂ(rlz,hz)jz}dl'1d1'2d7'1d7'27 (20)

where p;=p(r;,1;), j;=j(r;,t;) (i=1,2), rj;=r;-r}, and 1,
=t,—t,. Here it should be noted that the time dependence in
imaginary time is very different from the one in real time.
However, their Fourier transforms are the same as mentioned
in connection with Eq. (16) [5]. Thus for simplicity we here
keep the same notation for functions in real and imaginary
time.

By use of Eq. (18) the charge and current densities in
expression Eq. (20) can be substituted by the polarization.
Partial integrations then give

B B ale
BR[E-
o Jo dx1; I Xy

17

2ot dt,

Pl . P2:|dr1dr2d71d72, (21)

where summation convention is used (E,-j,i ,j=1,2,3). With
this expression for U the total interaction is written in terms
of the radiating dipole-dipole interaction integrated together
with the polarization. Thus for a pair of dipole moments s,
and s, this will represent a pair interaction

P 1 &y

iSoi— 5 T——8S;S,. 22
1i92j Cz(?l‘latzlz ( )

12,t,) = K
o( 12) 19)51,'!9)52_/

Its Fourier transform with respect to (relative) time is

&
¢(12,w) = —lps
(9)(:11‘ (9)(:2]‘

2
1082 — (%) sy - Sy (23)

For uniform systems the Fourier transform with respect to
space is used. One finds

® 2
¢(12,w) = @(k,w)[(ksl)(ksz) - (z) S| '52]~ (24)

With ¢ given by Eq. (12) this expression is precisely the
Fourier transform of the radiating dipole-dipole interaction
as given by Eq. (6.3) in Ref. [6]. To evaluate the leading
contributions from chain graphs and ring graphs we need the
susceptibility tensor related to dipole-dipole correlations.
With Eq. (18) these correlations can be related to density and
current correlations.
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V. CLASSICAL CASE

In this section, we will obtain the susceptibility for the
situation where the reference system is an ideal classical gas.
To do so, we utilize the well-known dynamical properties for
this situation where different particles are uncorrelated. Thus
we are left with the self-correlation. For free particle motion
this will be

n(t,r) = pf S(r —vi)fo(v)dv, (25)

where f,(v) is Maxwell’s velocity distribution

31
folv) = (f_Z) e, (26)

Note that here and below, we find it convenient to redefine p
to mean particle density with corresponding redefinitions of
current and polarization.

In this section, we will further limit ourselves to the uni-
form case, and Fourier transform of Eq. (25) gives

i(t,k)=p f foe™idv. (27)

According to Kubo the corresponding response function is
given by (1>0) [29]

d(t,k) =— B(%ﬁ(t,k) =—pBp f ikvfe™®™dv.  (28)

Finally, Fourier transform with respect to time gives
[Im(w) < 0]

ikvfodv

iw—ikv

e
__ZBP w-kv w+ kv fodv

f (kv)*fodv
= (kv)?’

Plw,k) = J G(1,k)edr =~ Bp f
0

(29)

where the symmetry of the Maxwell distribution f is uti-
lized.

The velocity-velocity correlation function is now obtained
by multiplying the integrand of Eq. (25) with v,v; where
v(i=1,2,3) is the component of the velocity in direction i.
Its Fourier transform is

ﬁlj(tsk) = Pf Uivjfoeikvzdv' (30)

To obtain the appropriate response function it now turns
out that a subtle and delicate problem arises at £=0. Consider
the Hamiltonian Eq. (2) with —pF(z) as perturbing term [i.e.,
F(t)=A]. According to Kubo [29] and thus from Eq. (Al) in
Appendix this term will again perturb p by an amount
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(Ap) = f Bpp(t =1 )F(t')dt, (31)

where the ¢, is the momentum-momentum response func-
tion. However, for F(1)=0 (no perturbation) the momentum
is the same as the velocity by which ¢,, in accordance with
Eq. (A7) will be the derivative of Eq. (30) (for £=0). It turns
out that we need the function that gives the perturbation in
velocity, i.e., we need (Ax)=(Ap)—F(z) [see above Eq. (2)].
This will also be consistent with the quantum mechanical
path integral. The required modification is then obtained by
including a J-function at r=0. This J-function would also be
the derivative of the jump in 77;; at t=0 if 72;; were put equal
to zero for <<0. Thus the sought response fU.IlCthIl is

(%[J(l‘,k) =- ﬂ%ﬁlj(t,k) - Bﬁ,j(t’k) 5(t)

=- ,Bpf vivj[ikveikv’+ 8(t)1fodv. (32)

Fourier-transformed with respect to ¢ it becomes

$ij(w,k)=—ﬁpwfmz—lﬁpwﬂ :
w—Kkv 2

w—kv
V,fedv
+w+k }vv}fodv— ,BpwJ k)

(33)

The response function Eq. (33) can be directly related to
the corresponding function P;; for the polarization, which
with interaction Eq. (24) is proportional to the susceptibility
Xij [30]. In Ref. [30] the dipolar interaction is modified with
a parameter ® to create a family of mean field results for the
dielectric constant. Interaction Eq. (24) corresponds to ©
=1. One finds

Xij=47q° Py, (34)

where ¢ is the electric charge of each particle. From Eq. (18)
one can conclude

d
Py, k) = 2¢,,(wk) ~Bp f DoV a5

~ (kv)*’

which also is consistent with the other relation @(w,k)
=El~jk,-kj13,»j with ¢ given by Eq. (29). (These relations follow
from Fourier transforms with r=r,-r; and t=r,—1,.)

Expression Eq. (35) together with Eq. (34) gives the sus-
ceptibility of the ionic fluid. Due to its k-dependence the y;;
is clearly nonlocal. It is now of interest to investigate its
small w properties in view of the extensive discussions about
the possible contribution from of a TE zero mode (w=0) to
the Casimir force between metallic plates at finite tempera-
tures [8]. First of all with =0 we have the electrostatic
situation where only the first term of the interaction Eq. (24)
is present. Then only the response function

061114-5



JOHAN S. HOYE

&(O,k) = E kikjﬁij = BPI Jodv (36)
i
is needed. This gives a longitudinal susceptibility

2P0k K
2

X(k) = 4mq =z (37)
where « is the inverse Debye shielding length with
K= 477[3pq2, (38)

This is nothing but the electrostatic result obtained earlier
[13,14].

However, for nonzero frequencies this is modified. If the
k-dependence is neglected one from Egs. (34) and (35) easily
finds [with (vi}: 1/(mpB)]

2
ATP4T (39
m

: 2
Xox = Xyy = Xez =~ ,  with w, =

g, |;€N

This is the well-known susceptibility of the plasma model
where w, is the plasma frequency. A problem with this result
is that it suggests that the last term of the interaction Eq. (24)
also may contribute for w=0 since it then stays finite in the
limit w— 0. This again is the basis for the extensive discus-
sion about the possible contribution from a TE zero mode to
the Casimir force. Thus for small £ we will consider the
integral Eq. (35) more closely in the limit K=ifiw—0

With polar coordinates one has v,=v cos 6, and with new
variable of integration x=cos 6 we with Eq. (35) will get the
integral (with z axis along k)

! dx 1 mla, a— ®©
I= ——— =—arctan a — , (40)
S 1+(ax)” a I, a—0

where a=fkv/K. With this we can obtain the average of the
diagonal elements of the polarizability tensor as (K=ifiw)

o’ {l/wk, w/(kv) — 0

I »

=~ (X + Xoy + Xz2) = —51 ’
X= 30t Xoy * X = 51 2 k) s o0
(41)

where v will be an average velocity of magnitude v
~(Bm) 12~ T2,

Result [Eq. (41)] is similar to the Drue model for metals
where y~ 1/(w’+iyw). Thus, we can conclude that there
will be no zero frequency TE mode contribution. Of course
there might be a contribution for k=0, but if so, this would
be of measure zero. Now at 7=0 the v=0 for a classical gas.
But, in the quantum mechanical case, v >0 also at 7=0 for
fermions. For bosons in the condensed phase one will again
have v=0 at T=0. On the other hand there is also a self-
interaction upon the particles due to the radiation reaction
[30,31]. The damping of oscillations due to the latter has not
been accounted for above.

VI. QUANTUM MECHANICAL CORRELATION
FUNCTIONS

As mentioned before the path integral of the quantum
mechanical problem at thermal equilibrium is equivalent to a
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classical polymer problem. Considered as a polymer problem
the Schrodinger equation solves in imaginary time the ran-
dom walks formed by the polymers in the resulting external
field. Here we will consider the general situation of nonuni-
form systems such as the electron clouds of molecules.

By using HF or DFT one can form the density-density
correlation function along closed polymers and polymer coils
(due to exchange effects for bosons and fermions) in terms of
one-particle eigenfunctions. As in Ref. [25] it is given by

S()\vrl»rZ)zngmanmnO\srlsr2)’ (42)
where
F(N,r,1)) = ¢m(r1)€_(ﬁ_)\)Em¢;(r2)¢n(r2)€_}\E’l¢:(r1),
(43)
f,= _ and (= ePH (44)
T x e PEY '

The w is the chemical potential. The plus sign in Eq. (44) is
for fermions, while the minus sign is for bosons. The f,
factors include the sums of path integral polymers that are
tied into coils. Expression Eq. (43) is the product of quantum
mechanical propagators (for states n and m) from position r,
to position r, in imaginary time A and then back to r; in
imaginary time B8—\. Note the S(\,r,,r,) is the correlation
function for particles with equal spins as ideal fermions with
different spins are uncorrelated before particle interactions
are included. It may further be noted that compared with Ref.
[25], the terms of the right hand side of expression Eq. (43)
are arranged in opposite order. This is made in view of Eqs.
(A4)—(A8) in Appendix where a previous mistake is cor-
rected. Then operators when utilized in expression Eq. (43)
will act in the usual way from left to right.

If one now first assumes that the perturbing pair interac-
tion is the one given by Eq. (15) without its velocity-
dependent part, then further evaluations to obtain the result-
ing correlation function and free energy change will be as
given by Egs. (5.8)—(5.16) in Ref. [25] except for replacing
the static interactions i(r) or (Z(k) with tAﬁ(r,K) or &(k,K)
which are given by Egs. (16) or (17).

However, with the velocity dependent part of the electro-
magnetic interaction Eq. (15) present one will find that ve-
locity or current correlations will be needed. Also velocity-
density correlations will be needed. But the latter can be
avoided by using the polarization of Sec. IV. Thus a correla-
tion function for polarizations is needed. It can be obtained
by starting with the density-density correlation function Eq.
(42) as basis. Then the velocity operators ¥, and r, are in-
serted in expression Eq. (43), and in the path integral x
means

X —xlt=(x,—x)/t=ih(xy—x)/7, 7T—0 (45)

as expressed by Eq. (5) (where =1 was used). In the short
time interval 7 the evolution of the path integral is dominated
by solution Eq. (4) (with A=0) independent of other pertur-
bations. Thus we have (A=1, m=1)
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T i (1,
T

—o \N2TT

Gu(x)ih,(x) —

(46)

where u=x,—x,. Further with x,=x+u/2 and x;=x-u/2 we
can expand

u 7
¢(x * 5) =plx) £ 2" W)+ ... (47)

by which we find (7—0)

&0, (x) — 2ll.[¢:‘:,(x) B0 - B W DW]. (49)

This is the standard expression for the velocity in quantum
mechanics. So when 7 and the particle mass m are reintro-
duced, and the ith component of the velocity is considered
one finds

jimn(r) = ¢:1(-x)-x¢)n(x)

N J .
=E ¢m(r)a_xi¢n(r)_¢n(r)a_xi¢m(r) . (49)

This combined with expressions Egs. (42) and (43) yields the
velocity-velocity correlation function along the path integral
polymer as

-BE,, \A
Sij()\vrl’rZ) = 2 Jijmne A me

mn

where

Jijmn = gfnfmjinm(rl)jjmn(r2) and Amn = Em - En' (50)

As discussed in connection with Eq. (32) in the classical
case one again encounters a problem for =0, i.e., for A=0,
where a S-function will be needed. Here, we find it conve-
nient to solve this problem by first establishing the corre-
sponding correlation function for polarizations. It is obtained
by integrating Eq. (50) twice with respect to A and then
multiply with 42 to obtain

e_BEme)‘Amn

P (\,ry,ry) = n22 Jijmn A2 (51)

If the eigenfunctions can be made real, as we will assume

in this section, one notes that j;,,(r) =—j;,.(r). Then Eq. (51)
can be symmetrized to be written as

) BEme)‘Amn + e_BEne_)‘Anm
Pii(\,rp,r)) = > Jijmn A2

mn mn

(52)

The current-current correlation function is now found by the
second derivative of expression Eq. (52) with respect to £,
and t, with N=i(t,~#,)/h. Noting that §;; is periodic in A
with period B (closed polymers) one gets a S-function at A
=0 to obtain
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1
Synrr) =3 J,-,»mn[ S(EEneN 1 ¢ Bng M)

mn

— L (e_ﬁEn

A — ¢ PEm) 5(>\)} . (53)

mn

This relation between current and polarization correlations is

like relation Eq. (35) a consequence of relations Eq. (18).
From Egs. (42), (43), (52), and (53) the Fourier trans-

forms with respect to imaginary time are easily obtained

(w?==(K/1)%),

(e PEn—¢ ﬁEm)

AZ

X ﬁ71f11¢m(r1)¢fn(r2) an(l'z)(ﬁ;:;(l']), (54)

S(K,r11ry) = {2 B

S,-j(K,rl,rz)=a)2]3ij(K,r1,r2), (55)

Pi(K,xyr0) =22 J; —————.
Y mn v Amn(Afnn + Kz)

Result Eq. (54)) is Eq. (5.14) of Ref. [25]. while Egs. (55)
and (56) are new results. To obtain Eq. (54), the symmetry of
Eq. (52) is also utilized in Eq. (42).

We can now show that P;; is consistent with the density-
density correlation function S. From relation Eq. (18) be-
tween density and polarization (per unit charge) one should
have

(56)

- LP,j, (E ) (57)

ﬁx“é’xzj ij

With Eq. (49) we then have derivatives

ii( LI )
im o b ¢n ¢naxi¢m
A P 7 by ) 1
_2im<¢mz9x,-z9x _d)nﬁx dx; it B b
(58)

which follow from the one-particle Schrodinger equation.
Here, it can be noted that this does not quite hold for the
Hartree-Fock equation due to its exchange term. However,
current correlations can only influence radiation corrections
that are expected to be small anyway, so we will disregard
this inaccuracy. Thus with Egs. (49)-(52), (54), and (55) it is
found that S as given by Eq. (42) is recovered.

VII. UNIFORM SYSTEM

For a uniform system, i.e., constant density, with ideal gas
as a reference system the wave functions are plane waves

(r) o e®nr (59)

with energy eigenvalues E,=E(k,) where
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Ek) = ﬁ(ﬁk)z (60)

This is to be inserted in Eq. (43) to obtain the correlation
function Eq. (42). Then one can Fourier transform in space
with respect to the relative separation r,—r;, and it is con-
venient to regard Eq. (43) as a product of two functions that
can be transformed separately. The resulting Fourier trans-
form thus becomes a convolution in k-space, and we have
transforms (r=r,-r;)

f &2 (02) ()™ Tdr = K" - K,,)

f bu(r2) y(r ) e™ dr o< Sk’ +K,). (61)

With this the resulting Fourier transform is obtained by the
replacements

k,=k" and k,=—k' (62)
in the exponential terms of Eq. (54). So the Fourier trans-
form becomes

R A?
S(K,k) = f dek'. (63)

where A=E(k")—E(k’) and K"=k-Kk’. Further

L l X-Y
TP AL = X)(1 £ LY)

(64)

where

X=Fg(k') and Y =Fg(k"), with F\(k)=exp(-\E(k)).

(65)

This is the same as Eq. (3.4) in Ref. [25]. except that there
the symmetry in k’ and k” was not utilized.

As in Ref. [25], one may again take the classical limit to
obtain its Eq. (3.6) which is nothing but Eq. (29) (with S
=) if the symmetry of Eq. (52) had been utilized in the
reference too. In the classical limit, Ldk' — Bpfydv and A
——fikv, with v=~AKk'/m.

The results for current and polarization correlations can
now be obtained in a straightforward way. With the plane
wave Eq. (59) the current element Eq. (49) becomes

h \
jimn(r) = 2 (kin + kzm) ¢;1¢n . (66)
m

Here jin=Jjimn» and with E(—k)=E(k) the symmetry used in
Eq. (52) will also hold for the plane waves.

Now comparing expressions Egs. (50) and (51) for P;; and
expressions Eqs. (42) and (43) for S one notes that they
differ only by the product of the factors (f/A,,,)% #(ks,
+kjp)/ (2m), and #i(k;,+k;,,)/ (2m). Further by Fourier trans-
form one has the replacements Eq. (62). Thus in light of
result Eq. (63) the Fourier transform of Eq. (52) in imaginary
time becomes
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f’(Kk)J i(k" k) i(k" k) ﬁ—zLdk’
A 2m ! i 2m 4 T AT K2 ’

(67)
and in view of Eq. (55)
Sii(K.k) = 0’ P(K k). (68)
With k=Kk”+Kk’ one can easily verify that
S(K.k) = kik;P (K K) <2) (69)
ij

consistent with relation Eq. (18) for density and polarization.

As for § above we again find it useful to consider the
classical limit #— 0. Then

!

fi f hik;
— (k! —k])=—(k;j=2k]) — - —=-uv;, (70)
2m 2m m

and A — —fikv. So compared with the limiting procedure of
Eq. (63), the limit of Eq. (67) has the additional factor
v, fi*/ A*=vv;/(kv)?. Thus the classical result Eq. (35) for
f’ij is recovered as it differs from Eq. (29) by this factor.
From the limiting process it is seen that the main differ-
ence between the quantum mechanical treatment and the
classical one for small k is the factor L given by (64) which
in the classical case becomes the Maxwell velocity distribu-
tion f,, (times a constant). But the frequency distribution re-
mains essentially the same. Thus the analysis at the end of
Sec. V in the classical case remains mainly the same in the
quantum mechanical case. So more generally we can con-
clude there is no contribution to the Casimir force between

metallic plates from a possible TE zero frequency mode
[7.,8].

VIII. CASIMIR ENERGY CONTRIBUTION TO AB INITIO
COMPUTATIONS

In Ref. [25], the leading energy correction to molecular
energies by ab initio computations was established. Standard
methods here are the HF and DFT that are used to perform
quantum mechanical computations on interacting electrons
of atoms and molecules [28]. In Ref. [25], the interaction
was assumed to be time-independent like the electrostatic
one. The resulting pair correlation function is then the sum of
chain bond graphs while the corresponding free energy cor-
rection is the sum of ring graphs to a leading order. At T
=0 the free energy correction is just the ground state energy
correction. One can note that this correction is related to
nonlocal correlations which in the classical limit correspond
to Debye-Hiickel theory for ionic fluids or plasmas where
Debye shielding also is taken into account.

With the new results obtained above the results of Ref.
[25] can be extended to incorporate the time-dependent elec-
tromagnetic interaction. It is straightforward to replace the
static charge-charge interaction with a time-dependent one as
that requires no further modification. However, the electro-
magnetic interaction is also an interaction between currents.
In the preceding sections we have seen how the path integral
and its statistical mechanical interpretation as a classical
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polymer problem can include current correlations. Then with
relations Eq. (18) densities and currents can be replaced by
polarization by which the ionic fluid can be regarded as a
polarizable fluid with susceptibility given by Eq. (34). This is
again the correlation function P;; for polarizations which is
given by Eq. (56) for nonuniform systems, and which sim-
plifies to Eq. (67) for uniform systems.

For a polarizable fluid one needs the dipolar interaction
which follows from Eq. (23) or (24) with the dipole moments
sy and s, deleted (since in the present case P;; will replace
the usual dipole correlations p(s;s;) at the hypervertices of
graphs). In the uniform case the Fourier transform Eq. (24)
can be used, and one has the interaction

w 2
¢ij(K,k)=q2,;(k,w){kikj_(;) 55} (71)

with J(k,w) given by Eq. (12) and K=ifiw. In the nonuni-
form case the r-dependent version Eq. (23) is needed. With 1Ap

given by Eq. (13) or (16) one finds for the radiating dipole
interaction

R 1 v
¢i(K,r) = qz[— (E ++ —3>e_’”(3x,»xj - r25,-j)

3
208 4w
+ ;e 6+ ?5(1')5,] , (72)

with v=iw/c=K/(fic) and r=r,—r;. The S-function follows
from V?(1/r)=—4m&(r). One might think that the S-function
could give rise to divergence problems. However, as Eq. (72)
is equivalent to the Coulomb interaction of the ionic system
(for »=0), this should not be the case for the leading contri-
bution considered below. Moreover, as done in Ref. [30] and
indicated above Eq. (34), the &-function may be multiplied
with a parameter 0. Also when solving for instance the well-
known mean spherical approximation for dipolar hard
spheres, the ® will be implicitly defined by the hard sphere
condition and the J-function will be spread out within the
hard sphere diameter.

To obtain the free energy change from the ring graphs one
can now follow the method given in Sec. V of Ref. [25]. This
means replacing the quantities 3’(K ,k) and (k) of the refer-
ence with the matrices f’ij(K .k) and ¢;(K k) given by Egs.
(67) and (71), respectively, in the uniform case. In the non-
uniform case S(K,r,,r,) and ¢(r) are similarly replaced by
matrices 131-j(K ,T1,1;) and ¢;(K,r) given by Egs. (56) and
(72). Due to relations Egs. (57) and (69), it is easily seen that
the above reduces to the situation studied in the reference
when the interaction is electrostatic.

With interactions Egs. (71) or (72) retardation effects are
taken into account. The perturbing free energy correction is
the same as a Casimir free energy contribution to molecular
energies. Then for short separations r between two molecules
it is well known that electrostatic van der Waals forces have
energy «1/r° while for larger separations retardation effects
are important to give energy o 1/7. It is reason to expect that
related behavior will be reflected within large molecules too.
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IX. SUMMARY

Quantum mechanical systems at thermal equilibrium are
through the path integral representation equivalent to classi-
cal polymer problems in four dimensions where the fourth
dimension is imaginary time. Thus, one has correlation func-
tions both in space and imaginary time. In this work we find
that this equivalence also can include current correlations.
These are needed to incorporate the radiating electromag-
netic interaction within the formalism. Then for an ionic fluid
we find it convenient to consider an equivalent polarizable
fluid by introducing polarization. Polarization correlations
and susceptibility are first established for a classical (ideal
gas reference) fluid, and then corresponding results are ob-
tained for the fully quantized fluid. From the non-local sus-
ceptibility obtained one finds that there will be no TE zero-
mode contribution to the Casimir force between metallic
plates, i.e., plates filled with an ionic fluid. Then it is shown
how this can be used to evaluate a leading energy correction
to ab initio computations of molecular energies (for nonuni-
form systems). This energy due to correlations between dis-
tant particles can be regarded as a Casimir free energy con-
tribution to the system as it has the same origin as the
Casimir free energy between separate dielectric or metallic
plates.

APPENDIX: CORRELATION FUNCTIONS AND
RESPONSE FUNCTIONS

Let the Hamiltonian H of a system at thermal equilibrium
be perturbed by an amount —AF(T). This will give a response

0
(AB) = f hpat—1")F(t')dt’ (A1)

of a dynamical quantity B. Here A and B are time indepen-
dent operators, and F(¢) is a time dependent function. The
¢4 is the response function given by Eq. (2.16) on page 139
of Ref. [29]. as

Boal0) = = Tr(p[A, B()) (A2)

where here p is the canonical equilibrium density matrix
[ -BH
p= Ee , Z=Tr(eP").

The B in the commutator is the time-dependent operator

B(1) = MBe ™M (A3)

where \=it/A is imaginary time. Earlier we unfortunately
made a mistake here by defining X with opposite sign [5].
The purpose with imaginary time is that it transforms the
Schrodinger equation to an equation that describes diffusion
for increasing N\. However, this mistake did not influence the
results of previous applications since the operators A and B
were equal (apart from a possible constant). With the change
of sign of \ the correlation function along a polymer formed
by the quantum mechanical paths is given by
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g\\) =Tr(pB(1)A) = %Tr(e_('g_)‘)HBe_)‘HA). (A4)

(With the N used earlier the B(r) and A were interchanged in
this expression.) Further

1 1
Tr(pAB(t)) = ETr(e_BHAeAHBe_}‘H) = ETr(e)‘HBe_(B”‘)HA)

=g(B+M\) (A5)
by which the response function can be written as
1
Ppat) = i_ﬁ(g(ﬁ+ N) —g(N). (A6)

The classical limit #—0 and 8— 0 can now be taken (¢
=—iiN=0),

d d
bpat) = %{58(7\) + ] == (A7)

where n(z) is the real time classical correlation function.
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In Appendix B of Ref. [5]. the crucial identity

bpa = §(K) (A8)
was obtained where now
K =iho, (A9)
and the Fourier transforms are
» B
bpa(w) = fo bpa(t)e™™dt and $(K) = fo e,
(A10)

The g(K) is defined only for K=2mn/ with n integer, but in
relation Eq. (A8) its analytic continuation is used. In general
&(K) is analytic for |[Im(K)| < C with C>0, and the integral
for dya(w) converges for Im(w) <0, i.e., Re(K)>0. Thus
Eq. (A8) is valid where these regions overlap.
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