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Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices.

II. Numerical analysis
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In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two
general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-
form expressions for the critical frontier with applications to various lattice models. For the triangular-type
lattices Wu'’s result is exact, and for the kagome-type lattices Wu’s expression is under a homogeneity assump-
tion. The purpose of the present paper is twofold: First, an essential step in Wu’s analysis is the derivation of
lattice-dependent constants A, B, C for various lattice models, a process which can be tedious. We present here
a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a
finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and
critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we
analyze the g-state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n
Xn):(nXn), n=4, for which the exact solution is not known. Our numerical determination of critical prop-
erties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds.
To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for
which the exact critical frontiers are known. The comparison of numerical and exact results shows that our
numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant
digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5
decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on

kagome-type subnet lattices (1 X 1):(nXn) for 1 =n=6.
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I. INTRODUCTION

The g-state Potts model [1,2] is a very important model in
the study of phase transitions and critical phenomena. The
critical frontier, or the loci of critical points, of the Potts
model was first determined by Potts [1] for the square lattice.
The critical exponents of the Potts model are obtained by
conjectures on the basis of numerical evidence and by using
Coulomb gas theory [3-7]. According to the universality hy-
pothesis [8], the Potts model on different lattices belongs to
the same universality class. But the determination of the
critical frontier of the g-state Potts model in general, which
includes the g=1 bond and site percolation, is still an out-
standing challenge. Particularly, the threshold of site perco-
lation has remained largely unresolved.

In the preceding paper [9], hereafter referred to as I, one
of us (F. Y. Wu) considered the Potts model on two classes of
very general two-dimensional lattices, the triangular-type
and kagome-type lattices shown in Fig. 1. The Boltzmann
weights W of the hatched triangles denote interactions in-
volving 3 spins 7y, 7, 73=1,2,...,g surrounding a triangle,
and are given by

Wa(1,2,3) =A + B(815+ dy3+ 031) + Cn3,

Wy(1,2,3)=A" + B (85 + &3+ 831) + C' 3, (1)

where 5U= 5KI(T1’TJ)’ 5123=‘512523.5313 and A, B, C, A’, B,, C’
are constants. Spin interactions within the hatched areas can
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be either two- or three-site couplings. The hatched triangles
can have internal structures such as the stack-of-triangle sub-
nets, which are of recent interest [10,11], shown in Fig. 2.
We refer to these structures as subnet networks. These stack-
of-triangle lattices are called subnet lattices. Examples of
triangular subnet lattices and kagome-type subnet lattices are
shown in Figs. 2 and 3 of I. The 1 X 1 subnet lattices are the
triangular and kagome lattices themselves. We shall call a
kagome-type lattice with m X m down-pointing and n X n up-
pointing subnets an (m X m):(nXn) subnet lattice.

In paper 1[9], Wu derived closed-form expressions for the
critical frontier of the g-state Potts model for the 2 types of
lattices in Fig. 1. For the triangular-type lattices the critical
frontier is exact, but for the kagome-type lattices the critical
frontier is obtained under a homogeneity assumption.

The purpose of this paper is twofold. First, an essential
step in Wu’s analysis is the derivation of relevant lattice-
dependent constants A, B, C for subnet networks. The deriva-
tion, while elementary, is tedious. Here, we use a computer
algorithm to evaluate them. Details of the algorithm are de-
scribed in Sec. III.

(@ (b)

FIG. 1. (Color online) (a) Triangular-type lattice. (b) Kagome-
type lattice.
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FIG. 2. (Color online) Subnet networks. (a) 1X 1 subnet. (b) 2
X 2 subnet. (c) 3 X3 subnet. (d) 4 X4 subnet. The dots denote tri-
angles with three-site interactions.

Second, we determine the critical frontier numerically and
examine the accuracy of the homogeneity assumption. Spe-
cifically, we carry out a finite-size scaling analysis based on
transfer matrix calculations to numerically determine the
critical frontier for several lattice models, including the Potts
model on the 3—-12 and kagome-type (n X n):(nXn) subnet
lattices, for which the exact thresholds are not known. To
assess the accuracy of the numerical determination, we also
apply the procedure to models for which the exact critical
thresholds are known. These include the Ising model and site
percolation on the 3—12 lattice and kagome-type (1X1):(n
X n) subnet lattices, n=6. Comparison of numerical and
known exact results shows that our numerical procedure is
accurate to 7 or 8 decimal places. This in turn infers that the
critical frontier determined using the homogeneity assump-
tion [9] of 1 is accurate to 5 decimal places or higher.

Our paper is organized as follows: The main findings of
paper I [9] are summarized in Sec. II. We describe in Sec. 11T
the algorithm we use to obtain the expressions of A,B, C for
the Potts model with pure two- and/or three-site subnet in-
teractions. The resulting expressions of A,B,C are listed in
the Appendix. In Sec. IV, we describe the transfer matrix
technique and the finite-size scaling method. Numerical re-
sults of our transfer matrix calculations and finite-size scal-
ing analysis are given in Sec. V. New exact thresholds are
also given in Sec. V for site percolation on kagome-type (1
X 1):(n X n) subnet lattices for n up to 6. We summarize our
main findings in Sec. VL.

II. MAIN RESULTS OF I

We summarize in this section the main results of paper I
[9]. For the triangular-type lattice shown in Fig. 1(a), the
partition function is

q
Zui(q:AB,C) = 2, [T Wali.ji.k), (2)
T,-=1 A

where the products are taken over the up-pointing triangles.
Wu [9,12] showed that, in the regime
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FIG. 3. (Color online) Site percolation on the kagome lattice.
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FIG. 4. (Color online) Site percolation on the (1X1):(2X2)
kagome-type subnet lattice.

2B+C>0, 3B+C>0, (3)

in which the ground state of W, is ferromagnetic, the exact
critical frontier is given by

gA=C. (4)

The critical function Eq. (4) yields the exact thresholds of
site percolation on lattices generated from triangular-type lat-
tices. Consider a Potts model on a triangular subnet lattice
with pure three-site interactions in dotted triangles shown in
Fig. 2. Regarding faces of three-spin interactions in an n
X n subnet as sites of a new lattice, the Potts model maps to
a site percolation on a (1X1):(n—1)X (n—1) kagome-type
subnet lattice. The critical frontier Eq. (4) then gives the
exact threshold of the site percolation. Examples of the map-
ping are shown in Figs. 3 and 4 for n=2 and 3.

For kagome-type lattices shown in Fig. 1(b) the partition
function is

q
Ziagl@:AB,C:A"B',C) = Y, [H WA(i,j,k)]
=1 A
x[H Wv(i',j',k'>]. 5)
\

Wu [9] obtained its critical frontier
(?°A+3gB+C)(q?°A’ +3gB' + C') =3(¢gB+ C)(¢gB’ + C")
-(g-2)CC' =0, (6)

under a homogeneity assumption.

The critical point in the case of g=2 computed from Eq.
(6) is exact. Wu [9] also used Eq. (6) to compute Potts
thresholds for the 3-12 and the (mXm):(nXn) kagome-
type subnet lattices for m,n=4 for which the exact thresh-
olds are not known. In addition, Wu deduced the known
exact threshold of site percolation on the 3-12 lattice by
considering the Potts model on the (2X2):(2X2) kagome-
type lattice as shown in Fig. 5. In this case the homogeneity
assumption turns out to give the exactly known critical fron-
tier.

FIG. 5. (Color online) Site percolation on the 3—12 lattice.
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FIG. 6. (Color online) (a) 2 X2 subnet with pure two-site inter-
actions. (b) Bold (red online) bonds are occupied, other bonds are
vacant.

III. EVALUATION OF A, B, C FOR SUBNET NETWORKS

In this section we describe the computer algorithm we use
to evaluate expressions of A,B,C for the Potts model with
two- and/or three-site interactions in subnet networks.

For the Potts model with two-site interactions, consider
the 2 X2 subnet network in Fig. 6(a) as an example. The
Boltzmann weight is

Wa= 2 (1+08 (1 +085)(1 +v84) -, (7)
{4,5,6}

where v=eX-1, K is the two-site coupling of the Potts
model.

Terms in the expansion of the products can be represented
by graphs. As shown in Fig. 6(a), there are 9 bonds in the
subnet. Define two states for each bond, occupied and va-
cant, then there are total 2°=512 graphs corresponding to the
512 terms in the expansion of Eq. (7). For example, Fig. 6(b)
is a graph that corresponds to the term Xy 5606 V66
=q*v?§, , contributing to B with a term ¢*v?.

The 512 graphs are divided into five types according to
following rules:

(1) Type-1, graphs with isolated spins 1, 2, and 3. The
sum of these graphs generates the expression of A.

(2) Type-2, graphs with spins 1 and 2 connected and spin
3 isolated. The sum of these graphs contributes to the expres-
sion of Bdj,. For clarity we denote it as B,.

(3) Type-3, graphs with spins 2 and 3 connected and spin
1 isolated. The sum of these graphs contributes to the expres-
sion of Bd,; and denoted as B,s.

(4) Type-4, graphs with spins 3 and 1 connected and spin
2 isolated. The sum of these graphs contributes to the expres-
sion of Bd;; and denoted as Bs;.

(5) Type-5, graphs with all three spins 1, 2, and 3 con-
nected. The sum of these graphs gives rise to the expression
of C.

For the Potts model with uniform and symmetric interac-
tions, we have Bj,=B,;=B3,=B.

The algorithm of our program is to generate the 512
graphs one by one, compute the weight of each graph, and
classify them into the five types. The graph weight assumes
the form ¢"<v"v, where n,, is the number of occupied bonds in
the graph, and n, is the number of independent clusters iso-
lated from, i.e., not connected to, sites 1, 2, or 3. For ex-
alzngle, the graph in Fig. 6(b) has n,=n,=2 and the weight
qv-.

The algorithm of our program is therefore as follows:

PHYSICAL REVIEW E 81, 061111 (2010)

(b)

FIG. 7. (Color online) (a) 2X2 subnet with pure three-site in-
teractions indicated by dots. (b) Solid (red online) dot denotes the
dot is occupied; open dot denotes it is vacant.

(1) Generate one term, i.e., a graph, by choosing a set of
occupied bonds.

(2) Count the number of independent clusters isolated
from site 1, 2, or 3 as n,.

(3) Count the number of occupied bonds n,.

(4) Assign a term ¢"«v™ to A, B, or C according to the
aforementioned rules.

(5) Go to 1 for another graph until all 512 graphs are
exhausted.

The procedure for the Potts model with pure three-site
interactions M is similar. Take the case shown in Fig. 7(a) as
an example. The dotted up-pointing triangles have pure
three-site interactions and the Boltzmann weight of the 2
X 2 subnet can be written as

Wa= 2 (1+ md se)(1+mdy 6)(1 +mds4s), (8)
(4,5.6}

where m=e"-1.

To obtain an expansion in the form of Eq. (8), we define
two states of the dots as either occupied or vacant. Thus there
are 2°=8 graphs corresponding to the 8 terms in Eq. (8).
However, up to this point, clusters are defined by the con-
nectivity of Potts sites, not by the dotted faces. But the con-
nectivity can be readily translated to that of the dotted faces.
A moment’s reflections shows that the weight contributing to
A, B, or C is simply q"¢m"=, where n, is the number of
independent clusters not containing sites 1, 2, or 3, and n,, is
the number of occupied dots.

The rules to divide the graphs into five types correspond-
ing to A,B,C are the same as the ones for pure two-site
interactions. For example, the graph in Fig. 7(b) has n,,=2,
n,=0 and corresponds to the term 2,5 ¢(md) 56) (M8 4)
=m>§),, thus contributing to B, with a term m>.

The algorithm to obtain expressions of A, B, C is therefore
very similar to the one described in the above for 2-site in-
teractions. We present in the Appendix results on expressions
of A,B,C for the Potts model on nXn subnets with 2-site
interactions for n =4, and for subnets with three-site interac-
tions for n=7.

IV. TRANSFER MATRIX AND FINITE-SIZE SCALING

We use the method of transfer matrix to calculate statisti-
cal variables for lattice models wrapped on a cylinder with
circumference L and length N. For lattices shown in Fig. 1
with hatched triangles, L and N count up- and down-pointing
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FIG. 8. (Color online) Construction of the transfer matrix for
kagome-type subnet lattices. The procedure consists of several steps
each corresponding to a sparse transfer matrix.

hatched triangles (rather than individual Potts spins within
each triangle). Thus, for an (m X m):(n X n) lattice shown in
Fig. 8(a), there are actually (m+n)L Potts spins in a length L.

For the Potts model, we build the transfer matrix by using
the random-cluster representation of the Potts partition func-
tion [13,14]

7= 2 vnb(g)qn(;(g), 9)
g

where the summation is over all subgraphs g of the lattice (or
graph) on which the Potts model is defined, v=eX-1, and
ny(g) and n.(g) are, respectively, the number of bonds and
clusters in g. For the (¢=1) bond percolation we have simply
Z=(1+v)F, where E is the total number of edges of the lat-
tice.

The concept of connectivity plays an essential role in the
building of the transfer matrix. In the N XL cylinder, the L
end sites are partitioned into clusters with sites belonging to
the same cluster connected by lines. A partition is noncross-
ing if the connecting lines do not cross. Thus, there are a
total of d; noncrossing partitions. (The example of d,=14
noncrossing partitions can be found in Fig. 3 of [15].) The
role played by noncrossing partitions in the transfer matrix
formulation of the Potts model was first noted by Temperley
and Lieb [16], who found

g 1 <2L+1> (10)
E=or+1\ L )

In our transfer matrix consideration, we map and code the
noncrossing partitions by a set of integers 1,2,---,d;. A de-
tailed explanation of the coding procedure can be found in
[17].

The partition function of the Potts model can, therefore,
be written as

PHYSICAL REVIEW E 81, 061111 (2010)

N>=EZ<N), (11)

where Z(N ) is the partition sum restricted to the partition f3.
The restrlcted sums Z(N ) and Z"Y are connected by a trans-
fer matrix 7 in the form of

2N =T, 20V, (12)
B

where

Top= > pAms(8)ghnc(e) (13)
g

are elements of 7. Clearly, T has the dimension d; X d;. It is
also clear that the summation in Eq. (13) is over subgraphs g
connecting partitions B and « of the (N—1)-th and Nth rows,
with An,(g) and An (g) denoting, respectively, the net (posi-
tive or negative) change of the number of bonds and clusters
due to the introduction of g.

To conserve computer memory and running time, the
transfer matrix is converted into a product of sparse matrices
as described below (see [17] for further details). This tech-
nique has proved to be very efficient in the transfer matrix
study of the Potts model, the O(n) loop and other lattice
models [18-24].

The transfer matrix can be regarded as adding a new layer
to the system. This process converts the transfer matrix 7
into a product of L+1 sparse matrices for kagome-type lat-
tices of Fig. 1(b). The first sparse matrix 7T adds one down-
triangle with two “new” corner sites on top of an “old” site
followed by a shift of labeling of sites. This gives rise to a
new layer with L+1 sites as shown in Figs. 8(a) and 8(b).
The matrix T is a d;,; X d; rectangular matrix. The second
sparse matrix 7, adds one up- and one down-triangle simul-
taneously. By shifting the labels of the sites of the top (new)
layer cyclically, T, brings in two new corner sites L and L
+1 on top of the current layer, and covers two old corner
sites L+1 and 1, as shown in Figs. 8(b) and 8(c). T, is a
dp .1 X d;, square matrix. After L—1 such steps, the graph is
transformed to the one shown in Fig. 8(d). By adding an
up-triangle on the two old sites L+1 and 1 under cylindrical
boundary condition, the last sparse matrix 75 adds the last
new corner site L to the system as shown from Figs. 8(d) and
8(e). Labels of the top sites are shifted and T3 is a d
Xdp,; rectangular matrix.

The transfer matrix 7 now assumes the form of a product
of sparse matrices,

T=TyT5'T,. (14)

In the actual calculation, we need to store only the positions
and values of the nonzero elements of each sparse matrix in
a few one-dimensional arrays.

In constructing these sparse matrices, one needs to enu-
merate all possible graphs inside the added (one or two)
hatched triangles for a given connectedness of the partitions
of the new and old layers. For example, in the construction
of T, we need to add a subnet shown in Fig. 2 (flipped
vertically). In the case of 1 X | subnet, it is straightforward to
enumerate all graphs manually. However, in the case of 2
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X2 and higher order subnets, it is tedious and sometimes

impossible to count all possible graphs by hand. Therefore,

we make use of a computer algorithm similar to the one used

in obtaining expressions of A,B,C to count An, and An,.
For site percolation, the partition function is

Z= > 91 — sVl = 1 (15)
8

where the summation is over all site percolation configura-
tions g, s is the probability that a site is occupied, n,(g) is the
number of occupied sites in g, and N is the total number of
sites. The corresponding transfer matrix is defined in a way
similar to that of the Potts model, but with a twist due to the
presence of vacant sites and henceforth not all L end sites are
occupied. Denote the number of end sites that are occupied
by n=0,1,---,L which can be distributed in (ﬁ) different
ways. Then there are a total of

L
di=2 (i)d (16)

n=0

non-crossing partitions and the transfer matrix has the di-
mension di X d5. It is clear that we have d} >d,.

The partitions can again be coded by means of a sequence
of integers 1,2, - ,di. The coding algorithm is the same as
that used in the consideration of the Potts model with vacan-
cies [19] and in the study of site percolation [25].

To determine the critical threshold of the Potts model
and/or site percolation, we calculate the magnetic scaled gap

L

X,(v,L) = IrEol)’

(17)
where &,(v,L) is the magnetic correlation length (with v re-
placed by s for site percolation). In the language of the ran-
dom cluster model and site percolation, the magnetic corre-
lation function is defined to be the probability that two sites
at a distance r belong to the same cluster, or

Z!

g r— Z ’ (18)
where Z’=Egv"b(g)q”f(g) for the random cluster model and
A =Egs”s(g)(l —s)N="s(8) for site percolation. The summations
in Z' are the same as in Egs. (9) and (15) but restricted to
subgraphs g with at least one cluster spanning from row 1 to
row r.

We define a transfer matrix, hereafter referred to as the
magnetic sector of the transfer matrix, based on Z’, in a way
similar to that of the transfer matrix based on Z in Eq. (13)
and (15) in the “nonmagnetic” sector. In constructing the
magnetic sector of the transfer matrix, we use the “magnetic”
type connectivity of the L end sites of the cylinder, which, in
addition to describing how sites are connected, specifies
which sites are still connected to a site in row 1. These sites
are called “magnetic sites.” To count the total number of
noncrossing partitions describing the magnetic type connec-
tivity, we first code the positions of the magnetic sites by
means of a binary number m=0,1, ... ,2L—1, where the bi-
nary digit 1 denotes a magnetic site. The magnetic sites di-
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vide the remaining sites in g(m) groups such that two sites in
different groups cannot be connected. Let n(j) be the number
of sites in the jth group. Then there are

hin = dn1)dn(2) *** (g m) (19)
noncrossing partitions for the Potts model and
S _ S s s
hm = n(l)dn(2) T dn(g(m)) (20)

noncrossing partitions for site percolation. The total number
of noncrossing partitions is therefore

2Ly
dm=" h, (21)
m=0
for the Potts model, and
2Ly
d\" =3 h, (22)
m=0

for the site percolation.

The partitions can again be coded by means of a sequence
of integers. A detailed description of the coding algorithm
can be found in [19]. The magnetic sectors of the transfer
matrix now have the dimensions d{™Xd" and d}™
X di(’") for the Potts model and site percolation, respectively,
and are much larger than those of the nonmagnetic sectors.
The magnetic sector of the transfer matrix can also be con-
verted into a product of sparse matrices in the same way as in
the case of the nonmagnetic sector.

The inverse magnetic correlation length is given by

L Ao
Lol - 1“( xg)’ @3)

where Ao and A are the leading eigenvalues of the transfer
matrix in the nonmagnetic and magnetic sector, respectively,
{ is a geometrical factor which is the ratio between the unit
of L and the thickness of a layer added by the transfer matrix.
The magnetic scaled gap then follows.

According to finite-size scaling theory [26] and Cardy’s
conformal mapping [27], X,(v,L) can be expanded as

X,(v,L) =X, +atl’ + bul’ + ..., (24)

where X, is the magnetic scaling dimension, ¢ is the devia-
tion from the critical point, and u the irrelevant field. Here, y,
is the thermal renormalization exponent, y, the leading irrel-
evant renormalization exponent, and a and b are unknown
constants.

We substitute Eq. (24) into the finite-size scaling equation
connecting lattices of sizes L and L—1,

Xh(U,L)=Xh(U,L— 1), (25)

and denote the solution of Eq. (25) by v.(L), which has the
expansion

v(L)=v.+a ul’ i+ - (26)

where @’ is an unknown constant. Because y,<<0 and y,
>0, v.(L) for a sequence of increasing system sizes con-
verge to the critical point v,.
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TABLE 1. Critical properties of the Potts model on the 3—12 lattice. (H=Homogeneity Assumption, N=Numerical, and T=Theoretical

universality prediction.)
q v, (H) v (N) c (T) c (N) X, (T) Xy (N)
0.5 2.007916417382387 2.00788(1) —0.445833945 —0.4458340(1) 0.082757037 0.08276(1)
1.0 2.852426157798754 2.8523883(2) 0 0 0.104166667 0.104167(1)
1.5 3.510849695265078 3.510825(2) 0.288024142 0.288024(1) 0.116778423 0.116778(1)
2.0 4.073446135573680 4.0734460(1) 0.5 0.500000(1) 1/8 0.12500000(1)
2.5 4.574927577671523 4.574952(3) 0.66584083 0.66585(1) 0.130338138 0.13033(1)
3.0 5.033022514872745 5.033077(3) 4/5 0.800(1) 2/15 0.13333(1)
3.5 5.458234413883058 5.458313(2) 0.910294591 0.91(1) 0.133771753 0.1339(3)
4.0 5.857394827983647 5.857497(3) 1 0.999(1) 1/8 0.13(1)
At v(L), the expression X,[v.(L),L] for a sequence of \,Zz —2 cos(mg), % =g=1. (31)

sizes L converges to the magnetic scaling dimension X, as
X, (L),L) =X+ b'ul’v+ ..., (27)

with b’ an unknown constant. This determines the magnetic
scaling dimension X,.
The free energy per unit area is given by

Z1n xo 28)

)=
where )\, is the largest eigenvalue of the transfer matrix in
the nonmagnetic sector. According to conformal invariance
theory, the large-L asymptotic finite-size behavior of the free
energy density at the critical point is [28,29]

L) = f(*) + — (29)

6L2’
where ¢ is the conformal anomaly.

The conformal anomaly ¢ and the magnetic scaling di-
mension X, are two important universal quantities defining
the universality class. For the two-dimensional g-state Potts
model, they are given by the conformal invariance theory
and Coulomb gas method [3,4,28-30] as

6(1-g)°
c=1-——,
8

Xh=1—

o |00

3
8g

where

V. NUMERICAL AND SOME EXACT RESULTS

In this section, we present numerical results of our trans-
fer matrix calculations and finite-size scaling analysis for the
3—-12 and kagome-type lattices. We also present some exact
results for site percolation on the (1 X 1):(n X n) lattices.

A. g-state Potts model on the 3-12 and kagome-type subnet
lattices

Critical points are estimated by extrapolating the solutions
of Eq. (25) for a sequence of increasing system sizes in ac-
cordance with the finite-size scaling Eq. (26). The numerical
accuracy one reaches depends highly on the system size
reached in the calculation.

For the 3-12 lattice and the (1 X 1):(1X 1) (the kagome)
and (2X2):(2X2) kagome-type subnet lattices, the largest
dimension of the arrays used to store the values and the
positions of nonzero elements of the sparse matrices is d(m)
The largest system size we reached is L=15 with dr’”)
=335897865. For the (3X3):(3X3) and (4X4):(4X 4)
kagome-type subnet lattices, the sparse matrix 7, in the mag-
netic sector is further decomposed i 1n two rectangular matri-
ces of dimensions d\"™) X d\™), and d\"), X d\™), and the largest
system size we reached is L=14. The computer memory re-
quirement for the calculations of the largest system is about

TABLE II. Critical properties of the Potts model on the kagome (1X 1) lattice. (H=Homogeneity Assumption, N=Numerical, and T

=Theoretical universality prediction.)

q v (H) ve (N) ¢ (7) c(N) X (1) X, (N)
0.5 0.787417375457453 0.787320(1) —0.445833945 -0.445834(1) 0.082757037 0.082757(1)
1.0 1.102738621067509 1.10262924(2) 0 0 0.104166667 0.104167(1)
1.5 1.342082948593078 1.3420126(2) 0.288024142 0.2880243(3) 0.116778423 0.116780(3)
2.0 1.542459756837412 1.5424598(1) 0.5 0.500000(1) 178 0.12500000(1)
2.5 1.718102046569530 1.718191(3) 0.66584083 0.66584(1) 0.130338138 0.1304(1)

3.0 1.876269208345760 1.876458(3) 4/5 0.8000(1) 2/15 0.1333(1)

35 2.021253955272383 2.02154(2) 0.910294591 0.910(1) 0.133771753 0.134(1)
4.0 2.155842236513638 2.15620(5) 1 1.00(1) 1/8 0.13(1)
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TABLE III. Critical properties of the Potts model on the (2X2):(2 X 2) kagome lattice. (H=Homogeneity Assumption, N=Numerical,

and T=Theoretical universality prediction.)

q ve (H) ve (N) c (T) c(N) X (T) X, (N)
0.5 1.115482279992555 1.1154309(3) —0.445833945 -0.4458340(2) 0.082757037 0.082757(1)
1.0 1.505450910604828 1.5053987(1) 0 0 0.104166667 0.104167(1)
1.5 1.790803965420646 1.7907720(2) 0.288024142 0.288024(1) 0.116778423 0.11678(1)
2.0 2.024382957091806 2.02438295(3) 0.5 0.500000(1) 178 0.1250000(1)
2.5 2.225885325024986 2.2259229(2) 0.66584083 0.66584(1) 0.130338138 0.13034(1)
3.0 2.405138877193783 2.4052181(3) 4/5 0.8001(1) 2/15 0.1333(1)
35 2.567855953492942 2.567981(2) 0.910294591 0.910(1) 0.133771753 0.1339(3)
4.0 2.717691692682905 2.717856(2) 1 0.99(1) 1/8 0.13(1)

65 gigabytes, which is quite large, but the CPU time con-
sumed is rather modest. It is just a few hours for a typical
calculation of the magnetic scaled gap.

The magnetic scaling dimension X, is estimated by ex-
trapolating the scaled gaps X;,(v.(L),L) at the solution of Eq.
(25) for a sequence of increasing system sizes in accordance
with Eq. (27). The free energy density at the estimated criti-
cal point is calculated using Eq. (28) and the conformal
anomaly c is computed by making use of the finite-size scal-
ing relation Eq. (29). Details of the data fitting procedure are
described in [17]. We also checked corrections to scaling due
to the leading irrelevant field. Take the simple kagome lattice
as an example. According to the Coulomb gas theory [30],
y,=4-4/g with g given in Eq. (31) is the second leading
thermal exponent, which we expect to be a candidate for the
leading correction exponent y,. For ¢>2, we indeed found
yu close to y, . For g=0.5, y, is about —2.00(1), which is the
analytic one. For ¢=1.0 and 1.5, we found y,=-1.79(3) and
—1.51(2), respectively, which dominate and overcome the
corresponding Vi, For g=2, the Ising model, we obtain y,
=-4.00(1). The amplitudes of y, =—4/3 and the analytic y,
=-2 corrections vanish. This is understandable for lattices
with sixfold rotational symmetry. This picture is generally
true for all (n X n):(n X n) kagome subnet lattices.

We summarize in Tables I-V numerical results of our cal-
culations on the critical point v, conformal anomaly ¢, and
magnetic scaling dimension X, together with the universality
predictions of ¢ and X;,. We have also computed v, using the

homogeneity assumption and list the results. The v,. calcula-
tion for the kagome lattice extends those of [31] using Monte
Carlo renormalization group method and finite-site scaling
analysis for g=1,2,3,4. Our study extends to noninteger g
and offers results with higher accuracy.

For g=2, the Ising model, our numerical estimates of the
critical threshold agree with the exact critical results up to 7
or 8 decimal numbers. This probably indicates the limit of
the numerical accuracy of the finite-size analysis we can
reach at present. For g # 2, the critical points obtained from
Eq. (6) under the homogeneity assumption coincide with our
numerical estimations to 5 or so decimal places but lie out-
side error bars. This indicates that the homogeneity assump-
tion, while highly accurate, is an excellent approximation
yielding numerical values with an error within one part in
10°. Our computed values of the conformal anomaly ¢ and
the magnetic scaling dimension X}, coincide with the theoret-
ical universality predictions within error bars.

Our numerical results for bond percolation are summa-
rized in Table VI for the 3-12 lattice and the (nXn):(n
X n) subnet kagome-type lattices. For the kagome lattice, we
found p.=0.524404978(5), which coincides with the best es-
timation [25]. For the 3-12 lattice our numerical result of
p.=0.74042077(2) is in agreement with other findings
[11,33,34] to 6 decimal places. For kagome-type subnet lat-
tices, our numerical analysis determines p,. with an accuracy
up to 7 or 8 decimal places.

TABLE 1V. Critical properties of the Potts model on the (3X3):(3 X 3) kagome lattice. (H=Homogeneity Assumption, N=Numerical,

and T=Theoretical universality prediction.)

q ve (H) ve (N) c(T) c(N) X (1) Xy, (N)
0.5 1.236699591471530 1.2366855(3) —0.445833945 —0.4458340(2) 0.082757037 0.0827569(2)
1.0 1.626971272019731 1.6269594(2) 0 0 0.104166667 0.104167(1)
1.5 1.906766682469675 1.906760(1) 0.288024142 0.288024(1) 0.116778423 0.116779(2)
2.0 2.133002727374153 2.13300273(1) 0.5 0.500000(1) 1/8 0.1250000(1)
25 2.326449318777172 2.32645568(5) 0.66584083 0.66585(1) 0.130338138 0.130338(1)
3.0 2.497336478778200 2.4973486(2) 4/5 0.800(1) 2/15 0.1333(1)
35 2.651556985414795 2.651575(3) 0.910294591 0.91(1) 0.133771753 0.1338(1)
4.0 2.79285603450327 2.79288(2) 1 0.999(1) 1/8 0.13(1)
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TABLE V. Critical properties of the Potts model on the (4 X 4):(4 X 4) kagome lattice. (H=Homogeneity Assumption, N=Numerical,

and T=Theoretical universality prediction.)

q v (H) ve (N) c(T) c(N) X (T) X, (N)
0.5 1.287715536704650 1.2877116(2) —0.445833945 -0.4458340(1) 0.082757037 0.0827569(1)
1.0 1.669262339202358 1.6692593(3) 0 0 0.104166667 0.10417(1)
1.5 1.941284616762751 1.9412832(5) 0.288024142 0.288024(1) 0.116778423 0.11678(1)
2.0 2.160721132019555 2.160721132(1) 0.5 0.500000(1) 1/8 0.1250000(1)
2.5 2.348099505779181 2.3481001(2) 0.66584083 0.66585(1) 0.130338138 0.13034(1)
3.0 2.513467694176093 2.5134684(2) 4/5 0.800(1) 2/15 0.1333(1)

35 2.662592230189568 2.662594(3) 0.910294591 0.911(1) 0.133771753 0.134(1)
4.0 2.799129506399588 2.799132(5) 1 0.999(1) 1/8 0.13(1)

In Table VI, we also give thresholds computed using the homogeneity assumption Eq. (6). The polynomial equations
determining the bond percolation thresholds p.. under the homogeneity assumption Eq. (6) for (n X n):(n X n) subnet lattices in

Table VI are as follows:

1-3p>—6p> +12p* - 6p° +p®=0, (n=1),

(32)

1 =3p* = 18p> = 39p° + 30p” + 273p® + 264p° — 1785p'° — 126p"! + 8232p'% - 162326p "3 + 16359p'* — 9948p"> + 3708p'°

-786p" 7 +73p"% =0, (n=2),

(33)

1-3p°—36p" — 186p® —372p° + 447p'° + 3558p! 1 + 4711p'% - 5274p'3 - 30771p"* - 110816p"° + 69828p'% + 1309302p'”
—242760p"® - 10117626p" + 9190737p*° + 53446600p>" — 137597577p** — 15101358p? + 714425889p>*
— 1897059306p% + 2985201585p2¢ — 3337272356p>” + 2817156177p*8 — 1840940730p>° + 938230487p°

—371179194p" + 112125462p>* — 25052124p>% + 3909120p>* — 380880p> + 17464p¢ =0,

(n=3), (34)

1-3p8—60p° —528p'0— 2406p'' — 4518p'% + 8388p" + 64323p'* + 108744p "> — 149520p'% — 892404p'" — 664532p'®
+2272086p" — 2348817p*° — 12425874p! + 123063933p* + 344663478p* — 1382031989p>** — 5244471786p>
+ 1259866667 1p% + 50539880448p>" — 112896871341p% — 350902330710p>° + 955575283123p>° + 1782743557128p>!
— 7239409905561 p32 — 5767231526534p> + 5236503424604 1p>* — 23401813013430p™> — 353073527306441p3°
+1041090144149322p7 — 623756767891383p™ — 4367477247915326p° + 18117607172859264p*°
— 42034422047996604p*! + 71675099615055545p** — 97479081216503664p* + 109775262989475858p**
— 104474772230850020p* + 85036825023972936p*¢ — 59604466077733650p*” + 36101308809040333p*
— 18909591474961260p* + 8552494666923729p° — 3327421649714158p°" + 1106659102637175p>2
—311767535257674p°* + 734425073657 12p>* — 14206464131418p + 2198697552561p°° — 261883431344p°’

+22544948382p°% — 1248899580p™° + 33437353p = 0,

(n=4).

(35)

The threshold Eq. (32) for n=1 has previously been given in [31,35] and in [33,36]. Thresholds Egs. (33)—(35) for n
=2,3,4 are new. The polynomial equation determining p,. under the homogeneity assumption in Table VI for the 3—12 lattice
has been given in paper I [9,36], and is 1—p+p*+p>-Tp*+4p°=0.

B. Site percolation on the 3-12 lattice

The exact critical threshold for site percolation on the
3-12 lattice is known to be s,=+1-2 sin(7r/18). It was first
given in [37] and is shown in paper I [9] to be the same as
that of the (2X2):(2X2) Potts subnet lattice with pure
three-site interactions. To calibrate our numerical approach,

we have also computed s, using the transfer matrix approach.
Our numerical determination of critical properties of site per-
colation is summarized in the last row in Table VII. The
comparison of numerical estimates of thresholds with exact
results shows agreements up to 7 decimal places (within er-
rors), indicating our numerical estimates to be accurate to the
same degree of accuracy. Our numerical determination of the
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TABLE VI. The thresholds p. of bond percolation on the 3—12 and various kagome-type subnet lattices.

(H=Homogeneity Assumption and N=Numerical.)

PHYSICAL REVIEW E 81, 061111 (2010)

Subnet p. (H) p. (N) Other sources
(1X1):(1x1) 0.524429717521274 0.524404978(5) 0.52440499(2)*
(kagome lattice) 0.52440503(5)*
0.5244053(3)"
(2X2):(2%2) 0.600870248238631 0.60086193(3) 0.6008624(10)°
(3%X3):(3%3) 0.619333484666866 0.61933176(5) 0.6193296(10)°
(4X4):(4%x4) 0.625364661497144 0.62536424(7) 0.625365(3)°
3-12 lattice 0.740423317919897 0.74042077(2) 0.740421184
0.74042081°¢
0.74042195(80)°

Reference [25].
PReference [32].
“Reference [11].
dReference [33].
“Reference [34].

conformal anomaly and magnetic scaling dimension of site
percolation indicates that these models all belong to the two-
dimensional g=1 Potts model universality class. Again, the
hypothesis of universality is verified.

C. Exact thresholds for site percolation on the (1X1):(nXn)
kagome-type lattice

It was shown in paper I [9], and in Sec. II, that the rigor-
ous critical frontier Eq. (4) yields the exact thresholds of site
percolation on (1X1):(nXn) kagome-type subnet lattices.
The polynomial equations determining the threshold s. are
generated by substituting expressions of A and C in Egs.
(A.5)—(A.11) into Eq. (4) and setting g=1. This yields the
site percolation thresholds shown in Table VII. Explicitly, the
thresholds for site percolation on (1X1):(nXn) kagome-
type subnet lattices, 1 =n=6, in Table VII are as follows:

1-3s+s°=0, (n=1) (36)

1-35%-3s*+65°-25°=0, (n=2) (37)

1-35*-957+950+ 115" - 1258+ ° +51°=0, (n=3)

(38)

1-35°— 185+ 1257 + 125% + 415° — 665'0 + 951 — 952

+48s3 =365 +8s°=0, (n=4) (39)

1-35°=30s" + 60s° — 30s'0 + 2165 — 3295'2 — 4843 + 354
+396s5"° 4+ 180s'° = 1113s'7 + 1038s'® — 39357 + 485
+3s2'=0, (n=5) (40)

1 —3s7 —455% — 455 + 165510 = 7551 + 165512 + 51053
— 10565' = 95951 + 36756 + 234957 + 34335!8
- 65895 — 90695%° + 22070s*' — 1149552 — 35975
+ 445557 + 70257 - 197157 + 7925%7 — 1065
=0, (n=6). (41)

TABLE VII. Critical properties of site percolation on (1 X 1):(n X n) kagome-type subnet lattices and the 3—12 lattice. (E=Exact result,

N=Numerical, and T=Theoretical universality prediction.)

Subnet s. (E) s. (N) Other sources c(T) c(N) X, (T) X, (N)
(I1X1):(1x1) 0.652703644666139 0.6527035(2) 1-2 sin(7r/18)* 0 0 0.1041667  0.1042(1)
(1X1):(2%2) 0.707106781186548 0.7071068(2) 1/\5b 0 0 0.1041667  0.10416(1)
(1X1):(3%3) 0.728355596425196 0.7283555(1) 0 0 0.1041667  0.10417(1)
(1X1):(4x4) 0.738348473943256 0.7383483(5) 0 0 0.1041667  0.10417(2)
(1X1):(5%5) 0.743548682503071 0.7435486(3) 0 0 0.1041667  0.1042(1)
(1X1):(6%x6) 0.746418147634282 0.7464180(3) 0 0 0.1041667  0.10417(1)
3-12 lattice V1-2 sin(7r/18)=0.807900764120  0.8079008(3) V1-2 sin(7/18)¢ 0 0 0.1041667  0.10416(1)

0.807904(4) [N]¢

“Reference [38].
PReference [39].
“Reference [37].
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The threshold s,=1-2 sin(7/18) for the n=1 kagome lattice
was first given in [38]. The threshold s.=1/y2 for n=2 has
also been obtained by a “cell-to-cell” transformation in [39].
Here, the thresholds for 3=n =06 are new.

We also computed s. and other critical properties numeri-
cally. The results are summarized in Table VII. Again, our
numerical estimates of s. agree with the exact results up to 7
decimal places, and these models all belong to the two-
dimensional g=1 Potts model universality class.

Finally, we comment on some numerical specifics. Since
the number of noncrossing partitions for site percolation is
much larger than that of the Potts model in both the magnetic
and nonmagnetic sector for a given circumference L, the
maximum system size L=12 that we reached is smaller. The
largest dimension of arrays used to save values and positions
of nonzero elements of the sparse matrices is d{g’fl
=125481607, which requires about 43 gigabytes computer
memory in the calculations. Corrections to scaling due to the
leading irrelevant field is about —1.8(1) for all lattices.

VI. SUMMARY

We have studied critical properties of the g-state Potts
model and bond and site percolation on two general classes
of lattices, the triangular-type and kagome-type lattices. For
the triangular-type lattices of Fig. 1(a), the exact critical
frontier is known and this led to a determination of the exact
critical thresholds of site percolation on (1 X 1):(nXn)
kagome-type subnet lattices. Results for ] =n=6 are given.
For the kagome-type lattices of Fig. 1(b), no exact results are
known except for g=2. We carried out finite-size analysis to
numerically determine critical properties for various lattice
models including the 3-12 lattice and (nXn):(nXn)
kagome-type subnet lattices. Our numerical results on con-
formal anomaly and magnetic correlation length verify that
the principle of universality holds.

We have also computed the critical thresholds for the
Potts and bond percolation on the 3-12 lattice and (n
X n):(n X n) kagome-type subnet lattices using the homoge-
neity assumption Eq. (6). To assess the accuracy of our nu-
merical analysis as well as that of the homogeneity assump-
tion, we have applied our numerical procedure to study
critical properties of models for which exact results are
known. The comparison of numerical and known results
shows that the numerical procedure is accurate within errors
of our finite-size analysis, which correspond to 7 or 8 sig-
nificant digits, in determining critical thresholds. Assuming

PHYSICAL REVIEW E 81, 061111 (2010)

the same degree of accuracy for all lattice, this in turn infers
that the homogeneity assumption determines critical thresh-
old with an accuracy up to 5 decimal places or higher. The
only way the precision could be worse is if the finite-size
scaling procedure suffered from additional systematic effects
not estimated by the errors.

Finally, our analysis of critical properties is based on the
use of lattice-dependent constants A,B,C for the hatched
triangles shown in Fig. 1. We have developed an algorithm
of evaluating expressions of A,B,C using computers for
hatched triangles in the form of a stack-of-triangle structure.
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APPENDIX: EXPRESSIONS OF A,B,C

In this appendix we list constants A,B,C computed using
the computer algorithm as described in Sec. III. The condi-
tion Eq. (3) holds for ferromagnetic Potts models with
v,m,q>0. This confirms that gA=C is the exact critical
frontier in the ferromagnetic regime.

1. Potts model on n X n subnets with pure 2-site coupling K

v=ek-1
Subnet 1 X 1:
A=1, B=v, C=v’+30v% (A.1)
Subnet 2 X 2:

A=q>+94¢% +33qv” + (50 + 4¢)v> + 21v* + 30°
B =q*?+10gv> + (30 + 2¢)v* + 220° + Tv® + v’

C=9gv*+ (54 + 3¢)v> + 63v° + 330" + 9% + v°.
(A.2)
Subnet 3 X 3:

A =294°00 + (459¢% + 9¢*)v" + (2592¢ + 423¢%)v® + (5292 + 4185¢ + 171¢*)v° + (12825 + 32584 + 36¢%)v'% + (15534 + 1539¢
+3¢°)0" + (12184 + 4549)v"% + (6732 + 78¢)v"> + (2688 + 6¢)v'* + 768" + 1500 + 1807 + v'8,

B =qv? + 21g%* + (199¢° + 3¢™)v> + (1040¢% + 85¢°)v® + (2979¢ + 8444 + 174°)v” + (3780 + 38344 + 3404° + 2¢°)v®
+ (7182 + 2429 + 86¢°)v° + (6858 + 950g + 13¢*)v'" + (4250 + 233¢ + ¢*)v"" + (1846 + 33¢9)v'? + (570 + 2g)v "3 + 1210

+1605 +0'°,
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C=29¢°v° + (4594 + 9¢°)v” + (2592 + 423¢*)v® + (5292 + 4185¢ + 171¢*)v° + (12825 + 32584 + 364°)v'° + (15534
+1539g + 3¢H) v + (12184 + 454¢)v"? + (6732 + 78¢)v "> + (2688 + 6¢)v'* + 768v"> + 1500 + 1807 + v'3. (A.3)
Subnet 4 X 4

A =q"+30g"v +435¢" %2 + (4044¢° + 16¢'0)03 + (269524¢% + 4504°)v* + (13632347 + 60574% + 18¢°)v° + (5396874°
+51643g7 + 6064%)v° + (16960744° + 3107644° + 93364" + 27¢%)v” + (42293074 + 13885804 + 880624° + 948¢")v®
+ (82184054 + 47003024 + 5684434° + 152744° + 43¢")v° + (118886194 + 119899384> + 26356534* + 1486024°
+1608¢°)v'° + (115546384 + 222089044 + 88742554 + 9661894* + 263104° + 96¢°)v ! + (5728860 + 271320984
+21124723¢% + 4354609¢° + 251967¢* + 32224° + 3¢°%)v'? + (16691130 + 325355014 + 1344097842 + 1559913 4°
+ 484864  +267¢°)v'3 + (24925347 + 26263347 + 6337347¢% + 426225¢° + 6834¢* + 12¢°)v'* + (25218686
+15860794q + 23236684¢* + 89613¢> + 6444 0" + (19264962 + 7537923 ¢ + 6746344 + 140884° + 30g*)v'°
+ (11718378 + 2882733¢ + 1542484 + 15394 )v'” + (5825765 + 890008 + 270364> + 1024°)v'® + (2389554 + 2192584
+3447¢% + 3¢°)v"? + (806778 + 420094 + 2884°)v>’ + (221570 + 5996 + 12¢*)v*! + (48435 + 594¢)v* + (8136 + 36¢)v*

+(990 + g)v** + 780> + 30,

B =q°v* +364%° + (609¢" + 4¢%)v° + (63404° + 193¢7)v” + (448834° + 37304° + 30¢")v® + (225145¢* + 409574° + 11564°
+3¢7)v° + (8041744 + 290085¢* + 19521¢° + 2404¢°)v'* + (19805434 + 13841974° + 1928464" + 6208¢° + 30¢°)v !
+ (3064302 + 43949624° + 12204784 + 85315¢* + 1355¢° + 2¢%)v'? + (2280420 + 85604434 + 49791144* + 7173914°
+26906¢" +201¢°)v"? + (7901226 + 12201635¢g + 3771317¢% + 3071054° + 6145¢* + 19¢°)v'* + (14006718 + 116664444
+2106366¢% + 99167¢° + 989¢™ + ¢°)v'> + (16765996 + 82898474 + 9069644¢* + 242934> + 102¢*)v'° + (15077600
+4592110q + 3067884 + 4431¢> + 5¢*)v'" + (10735261 + 2026213 + 817844¢* + 5744 )v'® + (6217796 + 715829¢
+ 170414 + 484°)v" + (2966339 + 200961 + 27204* + 2¢°)v*° + (1168690 + 43935g + 319¢%)v>! + (378274 + 7210g
+25¢%)v?% + (99306 + 833g + ¢*)v>* + (20684 + 60g)v>* + (3298 + 29)v*° + 379020 + 280> + v,

C=99¢%8 + (2871¢° + 29¢%)0° + (362854 + 2250¢°)v'° + (2567854 + 478864* + 765¢°)v'" + (10786774* + 4891644>
+30525¢% + 135¢°)v'? + (25675384 + 27470884 + 463617¢> + 118984* + 9¢°)v'> + (2723220 + 8371674q + 35205664
+2828434° +2919¢%) v + (11070162 + 13828185¢ + 29659384 + 120355¢> + 420¢™)v'> + (22921893 + 15205050¢
+ 180595842 + 36504¢> + 27¢*)v'® + (31898508 + 123270424 + 826827¢* + 7773¢°)v'” + (33199952 + 77298284
+ 2879404 + 10984°)v'® + (27253662 + 3833517¢ + 75627¢* + 90¢*)v'® + (18157536 + 1513779¢ + 145564 + 34°)v*>°
+ (9965342 + 473460q + 1938¢%)v>! + (4531923 + 1152874 + 159¢%)v* + (1706052 + 21150g + 6¢*)v>* + (527795
+2757q)v** + (132300 + 228¢)v?> + (26256 + 9¢)v?® + 3976v%" + 432078 + 300 + v¥° (A.4)

2. Potts model on n X n subnets with pure three-site coupling M

M

m=e" -1
Subnet 1 X 1:
A=1, B=0, C=m. (A.5)
Subnet 2 X 2:
A=g>+3gm, B=m?, C=m’. (A.6)
Subnet 3 X 3:

A=q"+6¢°m +15¢°m® + (14q + 3¢*)m> + 3m*,
B=qg*m*+ (2 +2q)m* +m°,
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C=3m>+mP. (A7)
Subnet 4 X 4:
A=q"+109""m +45¢%m® + (114¢° + 6¢7)m> + (165¢* + 42¢°)m* + (117¢% + 994> + 9" )m> + (20 + 73¢ + 33¢* + 3¢°)m® + (15

+13g)m” +3m?,
B=¢’m*+ (6¢° + 3¢ )m’ + (9q + 15¢* + 3¢>)m® + (12 + 12q + 3¢*)m’ + (6 + 2q)m® + m°

C=Q2+9g)m” +(15+3q)m® + 7m’ + m'°. (A.8)
Subnet 5X5:
A=q"8+15¢"%m + 105¢"m® + (445¢' + 10¢"3)m> + (1245¢"° + 120" )m* + (23584 + 624¢° + 18¢'))m’ + (29674° + 17954’
+1894% + 64°)m® + (22984¢* + 2976¢° + 792¢° + 84q")m” + (8884* + 2613¢> + 16084™ + 399¢° + 27¢%)m® + (86 + 864¢
+ 14164% + 8084° + 182¢* + 9¢°)m® + (249 + 579¢ + 345¢% + 81¢> + 3¢ )ym'® + (126 + 129¢ + 36¢*)m'" + (30 + 13¢)m"?

+3m",

B=q’m’+ (12q" + 4¢®)m® + (47¢° + 42¢° + 6¢")m" + (80¢° + 1564* + 57¢° + T¢®)m® + (42q + 221¢° + 2044> + 59¢* + 1¢°)m°
+ (67 +225¢ + 169¢* + 58¢° + 5¢")m'* + (105 + 121 + 37¢° + 5¢°)m'" + (49 + 25¢ + 3¢H)m'* + (11 + 2¢)m" + m'*,

C=(12¢% +29¢°)m® + (6 + 63q + 964> + 9¢*)m' + (102 + 132¢ + 36¢>)m"" + (127 + 51g + 3¢>)m'* + (57 + 6¢)m"> + 12m"*
+mb. (A.9)
Subnet 6 X 6:

A =g +21¢%m +210¢*'m? + (1315¢" + 15¢%)m> + (5715¢"7 + 2704 "®)m* + (18084¢"> + 2235¢'® + 304'7)m> + (425604 ">
+ 111664 + 525¢" + 10¢'©)m® + (74769¢" + 37113¢"> + 4113¢" + 210¢'")m” + (96819¢° + 85161¢'° + 187954"!
+19264"% + 54¢")m® + (893504 + 1350824% + 545614° + 10086¢'° + 7984¢"" + 18¢'2)m’ + (54795¢° + 1431124°
+102321¢7 + 32634¢% + 5172¢° + 351¢' + 6¢')m'? + (192574° + 924454* + 118923¢° + 656854° + 185704 + 26224°
+174¢°)m" + (2642q + 29213¢> + 74961 4> + 766334 + 385224° + 99904° + 1452¢" + 664%)m'* + (2106 + 175564
+41547¢% + 42069¢° + 2027 1g* + 5523¢° + 735¢° + 27¢")m"® + (4536 + 166264 + 18789¢* + 101584> + 28174* + 3814°
+9¢%)m'™ + (3459 + 6819g + 4372¢° + 1398¢> + 179¢* + 3¢°)m"> + (1398 + 1593¢ + 594¢> + 87 )m'® + (342 + 2164
+36¢%)m'7 + (48 + 13¢)m"® + 3m"?,

B=q"m®+(20¢" + 5¢")m” + (145¢'° + 90¢"" + 10¢'2)m® + (5404 + 623¢° + 168¢'" + 14¢')m® + (11424° + 22634
+1132¢% +221¢° + 179" m!'% + (1304¢* + 45494¢° + 4089¢° + 141347 + 258¢% + 16¢°)m'" + (659¢> + 45734° + 78084*
+4873¢° + 1569¢° + 238¢" + 16¢%)m"? + (68 + 1652g + 6525¢° + 83254° + 48964* + 1432¢° + 214¢° + 14¢")m" + (1183
+4981q + 67864¢% + 39994° + 11844 + 182¢° + 11¢%)m'* + (1950 + 4062¢ + 2733¢* + 8854° + 1414* + 9¢°)m"> + (1372
+ 15664 + 571¢% + 102¢> + 7¢*)m'® + (538 + 338¢ + 64¢° + 5¢°)m"" + (127 + 40g + 3¢*)m'® + (17 + 2¢)m" + m*,

C = (544 +99¢°)m'" + (1464° + 585¢* + 483¢° + 29¢%)m"? + (90g + 8884> + 1971¢> + 1170¢* + 159¢°)m"* + (228 + 1992¢
+3303¢% +2073¢> + 381¢* + 9¢°)m'* + (1677 + 37264q + 25984 + 660" + 33¢g*)m"> + (2421 + 2511¢ + 810¢* + 81¢°)m'®
+ (1626 + 813 + 114¢% + 3¢°)m'" + (620 + 133g + 6¢>)m'® + (141 + 9g)m'® + 18m*° + m?!. (A.10)

Subnet 7X7:

A =g +28¢" m + 378¢%m* + (3255¢%" + 21¢°°)m’ + (19950 + 525¢°°)m* + (920256 + 6210g°* + 45> )m’
+(329615¢%" + 45955¢% + 1155¢% + 15¢*)m® + (9327924 + 237060¢%° + 13755¢*' + 430¢**)m’ + (2102508¢"7
+ 899163¢'% + 100401¢" + 5835¢%° + 90¢>"Ym® + (3777012¢" + 2577591¢"'® + 499731¢"7 + 48899¢'® + 20624"°
+ 304°0)m’ + (53729284¢" + 56504644 + 1784592¢" + 2786394'° + 22401¢"7 + 8464'% + 10¢"")m'® + (59636644"!
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+ 9467118¢'? + 4680099¢"% + 11278264'* + 1503304" + 106924'® + 3964'")m'! + (50302704° + 119663594'°

+ 90549664 + 330175642 + 683417¢" + 80559¢™* + 5754¢" + 132¢')m'? + (30811494 + 110793014°

+ 12758268¢° + 6987391¢'° + 2179863¢"" + 3998884'% + 46751¢" + 27664'* + 54¢")m"> + (12633484° + 71019034°
+ 12629796¢" + 104710114% + 4893192¢° + 135868240 + 2426704'! + 26103¢"% + 1422¢" + 18¢'HY)m'* + (2948024°
+ 28247684¢" + 815454947 + 105678104° + 7525012¢" + 3161463¢% + 8441844° + 1444914"'° + 150064"'" + 6904'

+ 6¢")m'> + (25948q + 547184¢° + 29351944° + 64640964" + 73978044° + 4847082¢° + 1962007 + 5114134%

+ 86643¢° + 84084'0 + 3484')m'® + (23688 + 392541¢ + 18785344 + 39860404° + 44320114* + 2878479¢°

+ 11605624° + 304893¢7 + 508954 + 4761¢° + 153¢'%)m'” + (112270 + 781871q + 18996154¢> + 22968354

+ 1561921g* + 654696¢° + 175858¢° + 29445q" + 26164° + 66¢°)m'® + (162018 + 662861¢ + 987349¢> + 7645294°
+ 3455204" + 97287¢° + 16524¢° + 1404q" + 274%)m' + (123912 + 327444q + 3203344* + 1668304° + 508114*

+ 8838¢° + 747¢° + 9¢")m*® + (60508 + 106552q + 699664> + 242884° + 45474* + 372¢° + 3¢%)m>" + (20268

+ 23740q + 10182¢% + 21424> + 188¢")m** + (4710 + 3525q + 894¢> + 87¢°)m* + (732 + 316q + 36> )m** + (69

+ 13¢)m™ + 3m?®,

B=q"m’ +(30¢' + 6¢")m® + (345¢' + 165¢"7 + 15¢'®)m’ + (2175¢"* + 18204"> + 3904'° + 25¢'")m'° + (858742
+ 11240¢" + 4199¢'* + 6244¢"5 + 35¢')m'! + (22421¢"° + 438914 + 25772¢"% + 654643 + 8444'* + 40¢"%)m'?
+(389664% + 113011¢° + 1008964'° + 395784 + 8607¢"'% + 951¢"% + 43¢')m"? + (43431¢4° + 190110¢" + 2584984®
+153642¢° + 50665¢'° + 95974¢" + 981¢'% + 44¢"3)m'* + (281164* + 19673 14° + 4203184° + 3856884 + 1909504°
+556864° +9626¢'° + 970¢"" + 40¢'*)m"> + (83204% + 1080044° + 395182¢™ + 590541¢° + 4553904° + 2034444’
+54523¢% +9175¢° + 874" + 37¢" Ym'® + (488 + 209764 + 170827¢% + 4779314 + 6263764 + 4520184° + 1901244°
+50024q" + 806445 + 775¢° + 32¢'")m"" + (15646 + 137655¢ + 396335¢> + 5313764° + 3813984 + 162295¢° + 421034°
+6904q" + 640g® + 28¢°)m'® + (51536 + 224439q + 3526474 + 2808164° + 123719¢" + 337314° + 55054° + 5324’
+22¢%)m" + (66881 + 176633q + 1705784 + 868214> + 24401¢* + 43394° + 407¢° + 18¢")m*® + (49197 + 833304
+ 5139047 + 170584° + 3016¢* + 3264° + 13¢%)m>' + (23535 + 25741 + 10127¢% + 2132¢> + 217¢* + 11¢°)m** + (7727
+5333g + 1281¢% + 155¢° + 7¢Y)m* + (1751 + 719g + 944° + 5¢°)m** + (264 + 57q + 3¢>)m™> + (24 + 2q)m*® + m*’ |

C=(222¢° +351¢'%)m" + (13864¢" + 3816¢° + 2250¢° + 99¢'*)m'* + (31984° + 146964° + 188944 + 75304% + 686¢°)m ">
+(3072¢° + 24933¢* + 590314° + 513664° + 18519¢" + 22084% + 29¢°)m'® + (8884 + 167104° + 785014° + 1323304"
+997474° + 35370¢° + 5022¢" + 150¢%)m"" + (1954 + 32712q + 1332034° + 2023184° + 1500514 + 550864° + 89974°
+4564")m"® + (25370 + 130809¢ + 2289604 + 178833¢> + 72045¢* + 13566¢° + 948¢° + 9¢7)m' + (67692 + 1793524
+ 174174¢% + 78354¢> + 17760¢™ + 15814° + 33¢%)m*° + (81987 + 127689¢ + 73398¢> + 19325¢> + 23434 + 72¢°)m>!
+ (58543 + 54880g + 18612¢° + 27464° + 150g*)m*? + (27453 + 15033g + 2859¢° + 207¢> + 3¢*)ym*® + (8825 + 26074

+ 24647 + 6¢°)m** + (1949 + 264q + 9¢*)m* + (285 + 12q)m*® + 25m*” + m*3. (A.11)
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