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We consider the Potts model and the related bond, site, and mixed site-bond percolation problems on
triangular-type and kagome-type lattices, and derive closed-form expressions for the critical frontier. For
triangular-type lattices the critical frontier is known, usually derived from a duality consideration in conjunc-
tion with the assumption of a unique transition. Our analysis, however, is rigorous and based on an established
result without the need of a uniqueness assumption, thus firmly establishing all derived results. For kagome-
type lattices the exact critical frontier is not known. We derive a closed-form expression for the Potts critical
frontier by making use of a homogeneity assumption. The closed-form expression is unique, and we apply it to
a host of problems including site, bond, and mixed site-bond percolations on various lattices. It yields exact
thresholds for site percolation on kagome, martini, and other lattices and is highly accurate numerically in other
applications when compared to numerical determination.
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I. INTRODUCTION

An outstanding problem in lattice statistics is the determi-
nation of the critical frontier, or the loci of critical point, of
lattice models. Of special interest are the q-state Potts model
�1� and its associated lattice models �2�. For q=2 it is the
Ising model, and for q=1 the Potts model generates the per-
colation problem �3� including the bond �4�, site �5�, and
mixed site-bond percolations. However, except for the
simple square, triangular, and honeycomb lattices �6� and
some special lattices essentially of a triangular type �7�, the
determination of the Potts critical frontier in general has
proven to be elusive.

In this paper we consider the Potts model on two general
classes of lattices: the triangular- and kagome-type lattices
shown in Fig. 1. Shaded triangles in Fig. 1 denote the most
general interactions involving three Potts spins �1 ,�2 ,�3
=1 ,2 , . . . ,q with the Boltzmann weights written in the form
of

W��1,2,3� = A + B��12 + �23 + �31� + C�123,

W��1,2,3� = A� + B���12 + �23 + �31� + C��123, �1�

where �ij =�Kr��i ,� j�, �123=�12�23�31, and A ,B ,C ,A� ,B� ,C�
are constants. For shaded triangles containing additional in-
ternal Potts spins �4 ,�5 , . . ., for example, the constants are
obtained by summing over the internal spin states. In Eqs.
�1�, we have assumed interactions isotropic in the three di-
rections of a triangle. The extension of our analysis to aniso-

tropic interactions is straightforward and will not be given.
Special cases of shaded triangles are the “stack-of-

triangle” or subnet lattices shown in Figs. 2 and 3 that have
been of recent interest �8–11�. We refer to these stack-of-
triangle lattices as subnet lattices. The 1�1 subnet lattices
are the triangular and kagome lattices themselves. We shall
call a kagome-type lattice with m�m down-pointing and n
�n up-pointing subnets an �m�m� : �n�n� subnet lattice or
simply an �m�m� : �n�n� lattice. Examples of these
kagome-type subnet lattices are shown in Fig. 3.

Partition functions for the two lattices in Fig. 1 are

Ztri�q;A,B,C� = �
�i=1

q

�
�

W��i, j,k� , �2�

Zkag�q;A,B,C;A�,B�,C�� = �
�i=1

q

��
�

W��i, j,k��
���

�

W��i�, j�,k��� , �3�

where the products are taken over the respective up- and
down-pointing shaded triangles. The critical frontier of the
triangular-type lattice in Fig. 1�a� has been known from ear-
lier works �12–14�, but the critical frontier for the kagome-
type lattice in Fig. 1�b� is open.

For q=2, the Potts spins � can always be replaced with
Ising spins �= �1 and shaded triangles with triangles �1
�1 subnet� with an Ising interaction KI�=K /2�. To determine
KI, we write

(a) (b)

FIG. 1. �Color online� �a� Triangular-type lattice. �b� Kagome-
type lattice. Shaded triangles possess Boltzmann weights �1�.

(b)(a) (c)

FIG. 2. Triangular subnet lattices. �a� 1�1 lattice �triangular�.
�b� 2�2 lattice. �c� 3�3 lattice.
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�ij = 1
2 �1 + �i� j� ,

W��1,2,3� = exp�2KI��12 + �23 + �31�� . �4�

Equating Eqs. �4� with W� in Eq. �1�, one obtains after a
little algebra

e4KI = �A + 3B + C�/�A + B� . �5�

It follows that the partition functions �2� and �3� are com-
pletely equivalent to those of the triangular and kagome Ising
models.

For q	3, the shaded triangles can be replaced with any
triangular network having two independent parameters. An
example is the mapping shown in Fig. 12 in Sec. III G.

Parameters A ,B ,C for given n�n Potts subnets can be
readily worked out. For the 1�1 triangle, for example, one
has

W��1,2,3� = exp�K��12 + �23 + �31�� , �6�

from which one obtains

A = 1, B = v, C = 3v2 + v3 �triangle� , �7�

where v=eK−1. For the 2�2 subnet, one obtains in a similar
fashion

A = 3v5 + 21v4 + �50 + 4q�v3 + 33qv2 + 9q2v + q3,

B = v7 + 7v6 + 22v5 + �30 + 2q�v4 + 10qv3 + q2v2,

C = v9 + 9v8 + 33v7 + 63v6 + �54 + 3q�v5 + 9qv4 �2

� 2 subnet� . �8�

Expressions of A ,B ,C for n�n subnets up to n=7 are de-
rived and given in the subsequent paper �15�, hereafter re-
ferred to as paper II �15�.

The structure of this paper is as follows. In Sec. II we
consider the triangular subnet lattices and apply the rigor-
ously known critical frontier to various models including
mixed site-bond percolation. In Sec. III we consider the
kagome-type lattice and derive a closed-form expression for
its critical frontier on the basis of a homogeneity assumption.
We show that this critical frontier is exact for site percolation
on the kagome, martini, and other lattices and is highly ac-
curate in other applications. The accuracy of the critical fron-
tier will be closely examined in paper II �15�.

II. TRIANGULAR-TYPE LATTICES

In this section we consider triangular-type lattices in Fig.
1�a�. The Potts model on the triangular-type lattice was first
studied by Baxter et al. �12� in the context of a Potts model
with two- and three-site interactions. Using a Bethe-ansatz
result on a 20-vertex model on the triangular lattice due to
Kelland �16,17�, they showed that the partition function �2�
is self-dual and derived its self-dual point which, in the lan-
guage of interaction �1�, reads

qA = C . �9�

This self-dual trajectory was later rederived graphically by
Wu and Lin �13�. However, as is common in duality argu-
ments, an additional assumption of a unique transition is
needed to ascertain that Eq. �9� is indeed the actual critical
frontier.

However, Wu and Zia �14� established subsequently in a
rigorous analysis that Eq. �9� is indeed the critical frontier in
the “ferromagnetic” regime,

2B + C 
 0, 3B + C 
 0. �10�

It can be verified that condition �10� holds for Eqs. �7� and
�8�, so the critical frontier qA=C is exact. Applications of
Eq. �9� to the martini and other lattices have been reported in
�7�. The duality relation of the triangular Potts model with
two- and three-spin interactions has also be studied by
Chayes and Lei �18� with several rigorous theorems on the
phase transition proven.

A. Ising model

In Sec. I, we have established that for q=2 any triangular-
type lattice is reducible to a triangular Ising lattice with in-
teraction KI given by Eq. �5�. Indeed, using Eq. �5�, the
known critical point e4KI =3 of the triangular Ising model
reduces to the critical frontier 2A=C as expected.

For the Ising model on 1�1 and 2�2 subnet lattices
with interaction KI, we set q=2, v=e2KI −1 in Eqs. �7� and
�8� and obtain from 2A=C the critical point

xc = 	3, 1 � 1 subnet �triangular lattice�

=	5, 2 � 2 subnet, �11�

where x=e2KI. Using expressions of A and C given in paper
II �15� for 3�3 and 4�4 subnets, we obtain similarly

x8 − 5x6 − x4 − 19x2 − 8 = 0,

xc = 1
2
	5 + 	33 + 	�50 + 18	33� = 2.404 689 372,

3 � 3 subnet,

x12 − 5x10 − x8 − 22x6 − 53x4 − 125x2 − 51 = 0,

xc = 2.467 648 033, 4 � 4 subnet. �12�

B. Bond percolation

It is well known that bond percolation is realized in the
q=1 limit of the Potts model under the mapping v= p /

(b)(a) (c) (d)

FIG. 3. Kagome subnet lattices. �a� �1�1� : �1�1� lattice
�kagome�. �b� �2�2� : �2�2� lattice. �c� �3�3� : �3�3� lattice. �d�
�1�1� : �2�2� lattice.
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�1− p�, where p is the bond occupation probability �3,4�.
Therefore, the percolation threshold is given simply by C
=A. Thus, using Eq. �7� for A and C for the triangular lattice,
one obtains the well-known �19–21� critical frontier for bond
percolation,

1 − 3p + p3 = 0 or pc = 2 sin��/18�

= 0.347 296 355 �triangular lattice� .

�13�

For the 2�2 subnet lattice we use Eqs. �8� and obtain

1 − 3p2 − 9p3 + 3p4 + 45p5 − 72p6 + 45p7 − 12p8 + p9 = 0,

or pc = 0.471 628 788 �2 � 2 subnet lattice� . �14�

In a similar fashion using expressions of A and C given in
paper II �15�, we obtain

1 − 3p3 − 18p4 − 39p5 + 77p6 + 309p7 − 198p8 − 1406p9

+ 315p10 + 9303p11 − 23 083p12 + 28 707p13

− 22 047p14 + 10 959p15 − 3462p16 + 636p17 − 52p18

= 0,

pc = 0.509 077 792 �3 � 3 subnet lattice� , �15�

1 − 3p4 − 30p5 − 114p6 − 63p7 + 636p8 + 1940p9 + 741p10

− 14 283p11 − 26 541p12 + 78 759p13 + 18 9279p14

− 370 589p15 − 1 229 877p16 + 2 829 339p17

+ 6 938 691p18 − 41 655 363p19 + 96 750 306p20

− 143 421 123p21 + 152 405 700p22 − 121 438 416p23

+ 73 822 093p24 − 34 270 647p25 + 11 994 555p26

− 3 073 478p27 + 545 409p28 − 60 012p29 + 3089p30

= 0,

pc = 0.524 364 822 �4 � 4 subnet lattice� . �16�

These findings agree with those of Haji-Akbari and Ziff �11�
deduced from a duality consideration. As aforementioned,
our derivation now ascertains that these thresholds are the
exact transition points.

C. Potts model

The exact critical threshold for the Potts model on
triangular-type lattices is Eq. �9�, or qA=C. Using expres-

sions of A and C given in Eq. �7�, one obtains the known
critical frontier �6,22�

3v2 + v3 = q �Potts model on triangular lattice� .

�17�

For the 2�2 subnet lattice one uses Eqs. �8� and obtains the
critical frontier

v9 + 9v8 + 33v7 + 63v6 + 54v5 − 12qv4 − �50q + 4q2�v3

− 33q2v2 − 9q3v − q4 = 0. �18�

Solutions of Eqs. �17� and �18� and those of the 3�3 and
4�4 subnet lattices using expressions of A and C given in
paper II �15� are tabulated in Table I for q=1,2 ,3 ,4 ,10.
Note that the q=1 solutions are related to the bond percola-
tion thresholds �13�–�16� by eKc =1 / �1− pc�.

D. Site percolation

Kunz and the present author �5� showed that site percola-
tion can be formulated as a q=1 limit of a Potts model with
multisite interactions. The Kunz-Wu scheme is to consider a
reference lattice with multispin interactions and regard faces
of multispin interactions as sites of a new lattice on which
the site percolation is defined. The critical frontier of the
Potts model on the reference lattice then produces the site
percolation threshold for the new lattice. This scheme of for-
mulation can be extended to mixed site-bond percolation.

1. Site percolation on the triangular lattice

Consider as a reference lattice the triangular lattice with
pure three-site interactions M marked by dots shown in the
left panel of Fig. 4. The dots form a triangular lattice shown
in the right. The Kunz-Wu scheme now solves the site per-
colation on the triangular lattice. We have

W��1,2,3� = eM�123 = 1 + m�123, �19�

or A=1, B=0, C=m=eM −1. Writing m=s / �1−s�, where
s=1−e−M is the site occupation probability, the exact critical

TABLE I. Exact Potts threshold eKc for triangular-type subnet lattices.

q=1 q=2 �Ising� q=3 q=4 q=10

Triangular lattice 1.532088885 	3 1.879385241 2 2.492033301

2�2 1.892608790 	5 2.493123120 2.706275430 3.602637947

3�3 2.036982609 2.404689372 2.674398828 2.895419068 3.808005450

4�4 2.102451724 2.467648033 2.731876784 2.946645097 3.820754228

FIG. 4. �Color online� Site percolation on the triangular
lattice.
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frontier A=C now yields immediately the well-known site
percolation threshold �19–21,23� for the triangular lattice,

sc = 1/2. �20�

2. Site percolation on kagome lattice

Consider the reference 2�2 subnet lattice with pure
three-site interactions M denoted by dots shown in the left
panel of Fig. 5. The Kunz-Wu scheme then maps the refer-
ence Potts model into site percolation on the kagome lattice
as indicated in the right.

Now for a 2�2 subnet containing three dots as in Fig. 5,
we have

A = q3 + 3qm, B = m2, C = m3, �21�

where m=eM −1. Writing m=s / �1−s� and setting q=1, the
rigorous critical frontier A=C yields the critical condition
1−3s2+s3=0, leading to the known exact result �19,20�

sc
kag = 1 − 2 sin��/18� = 0.652 703 644. �22�

3. Site percolation on (1Ã1): (nÃn) lattices

The above scheme of mapping can be extended to site
percolation on �1�1� : �n�n� lattices for general n. The ex-
ample in Fig. 5 is n=1, and the n=2 lattice is shown in Fig.
6. The reference lattice �not shown� for n=2 consists of 3
�3 subnets with

A = q7 + 6q5m + 15q3m2 + �14q + 3q2�m3 + 3m4,

B = q2m3 + 2�q + 1�m4 + m5,

C = 3m5 + m6, �23�

where m=eM −1 and M is the three-site interaction. After
setting q=1 and m=s / �1−s�, the critical frontier qA=C be-
comes

�1 − 2s2��1 + 2s2 − 3s3 + s4� = 0, �24�

yielding the exact threshold

sc = 1/	2, �1 � 1�:�2 � 2� kagome site percolation.

�25�

The exact critical threshold for higher �1�1� : �n�n� lattices
can be similarly worked out. Results for up to n=6 are tabu-
lated in Table VII of paper II �15�.

III. KAGOME-TYPE LATTICES

We consider in this section the case of the kagome-type
lattices in Fig. 1�b�. The critical frontier of the Potts model
on kagome-type lattices has proven to be highly elusive. On
the basis of a homogeneity assumption, however, the present
author �6� has advanced a conjecture on the critical point for
the kagome lattice. The conjecture has since been closely
examined �24–27� and found to be extremely accurate. Here,
we extend the homogeneity assumption to general kagome-
type Potts lattices. For continuity of reading, we first state
our result in Sec. III A and present the derivation in Sec.
III G.

A. Closed-form critical frontier and homogeneity assumption

For Potts model on kagome-type lattices described by the
partition function �3�, the critical frontier under a homogene-
ity assumption is

�q2A + 3qB + C��q2A� + 3qB� + C�� − 3�qB + C��qB� + C��

− �q − 2�CC� = 0. �26�

Remarks:
�1� Despite its appearance, the critical frontier �26� actu-

ally contains only three independent parameters �cf. Eqs.
�55� below�.

�2� Expression �26� is exact for q=2.

B. Ising model

We first show that Eq. �26� is exact for q=2. We have
already established that the partition function �3� is precisely
that of the kagome Ising model. For completeness we now
verify that the critical frontier �26� also gives the known
kagome critical point.

For symmetric weights A=A� , B=B� , C=C�, the
kagome Ising model has a uniform interaction KI and the
critical point is known to be at e4KI =3+2	3 �28�. It is readily
verified that, by using Eq. �5� for KI, this critical point gives
rise to precisely the q=2 critical frontier �26�, namely,

4A + 6B + C = 	3�2B + C� . �27�

The proof can be extended to the kagome-type model with
asymmetric weights.

FIG. 5. �Color online� Site percolation on the kagome lattice.

FIG. 6. �Color online� Site percolation on the �1�1� : �2�2�
lattice.
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Critical thresholds of kagome-type Ising subnet lattices
computed from Eq. �27� are tabulated in Table III. For the
kagome and �2�2� : �2�2� Ising lattices, for example, we
use Eqs. �7� and �8� for A ,B ,C with q=1, v=x−1, x
=e2KI. This gives

x4 − 6x2 − 3 = 0,

xc = 	3 + 2	3 = 2.542 459 756 �kagome lattice� ,

x8 − 8x6 − 6x4 − 32x2 − 83 = 0,

xc = 	2 + 	3 + 	12 + 10	3 = 3.024 382 957,

�2 � 2�:�2 � 2� lattice. �28�

C. Bond percolation

For bond percolation threshold on kagome-type subnet
lattices, we again use Eq. �26� with the substitution of q=1
and v= p / �1− p�, where p is the bond occupation probability.
Using Eqs. �7� and �8�, we obtain

1 − 3p2 − 6p3 + 12p4 − 6p5 + p6 = 0,

pc = 0.524 429 717 �kagome lattice� , �29�

1 − 3p3 − 12p4 − 12p5 + 63p6 + 60p7 − 330p8 + 423p9

− 264p10 + 84p11 − 11p12 = 0,

pc = 0.570 882 620, �1 � 1�:�2 � 2� lattice, �30�

1 − 3p4 − 18p5 − 39p6 + 30p7 + 273p8 + 264p9 − 1785p10

− 126p11 + 8232p12 − 16 236p13 + 16 359p14 − 9948p15

+ 3708p16 − 786p17 + 73p18 = 0,

pc = 0.600 870 248, �2 � 2�:�2 � 2� lattice. �31�

Bond percolation thresholds computed from Eq. �26� for
�m�m� : �n�n� lattices are tabulated in Table II. We also
include in Table II numerical determinations of pc for the
�1�1� : �2�2� �29� and �n�n�� �n�n�, where n=2,3 ,4
�10�, lattices by Ziff and Gu using simulations, and of the
kagome lattice by Feng et al. �27� from a transfer matrix
analysis. The comparison shows that Eq. �26� is accurate to
within one part in 105.

D. Potts model

Critical thresholds for the Potts model on kagome-type
subnet lattices computed from Eq. �26� are tabulated in Table
III. For the kagome lattice itself, for example, we have A
=A�=1, B=B�=v , C=C�=3v2+v3 , v=eK−1, and Eq.
�26� gives the critical frontier

v6 + 6v5 + 9v4 − 2qv3 − 12qv2 − 6q2v − q3

= 0 �kagome lattice� . �32�

The critical frontier �32� for the kagome lattice was first ob-
tained by the present author some 30 years ago �6,30� by
using the homogeneity assumption described in Sec. III G.
Comparison of the thresholds computed from Eq. �32� for
q=1,3 ,4 with Monte Carlo renormalization-group findings
has shown that the accuracy of Eq. �26� is within one part in
105 �24�.

TABLE III. Potts threshold eKc for kagome-type subnet lattices.

Lattice q=1 q=2 �Ising� q=3 q=4 q=10

Kagome lattice 2.102738619 2.542459757 2.876269226 3.155842236 4.355385241

�1�1� : �2�2� 2.330364713 2.821281889 3.186678923 3.489096458 4.761529399

�1�1� : �3�3� 2.498740260 2.903273662 3.260483758 3.553390863 4.764908410

�1�1� : �4�4� 2.451083242 2.928442860 3.276998285 3.562314883 4.739553252

�2�2� : �2�2� 2.505450909 3.024382957 3.481055307 3.717691692 5.016332520

�2�2� : �3�3� 2.570143984 3.082166484 3.454087416 3.757519846 5.004155712

�2�2� : �4�4� 2.595404635 3.098624716 3.378293046 3.761399505 4.984524206

�3�3� : �3�3� 2.626971274 3.133002727 3.497087416 3.712498867 4.992841134

�3�3� : �4�4� 2.648818511 3.147204863 3.416364328 3.796037357 4.973931010

�4�4� : �4�4� 2.669262336 3.160721132 3.598289910 3.639241821 4.954642401

TABLE II. Bond percolation threshold pc for �m�m� : �n�n�
lattices for m ,n�4.

Lattice This work Numerical determination

Kagome 0.524429717 0.52440499�2� �27�
�1�1� : �2�2� 0.570882620 0.57086651�33� �29�
�1�1� : �3�3� 0.599798340

�1�1� : �4�4� 0.592017120

�2�2� : �2�2� 0.600870248 0.6008624�10� �10�
�2�2� : �3�3� 0.610916740

�2�2� : �4�4� 0.614703624

�3�3� : �3�3� 0.619333485 0.6193296�10� �10�
�3�3� : �4�4� 0.622473191

�4�4� : �4�4� 0.625364661 0.625365�3� �10�
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E. Site and site-bond percolations

We now apply Eq. �26� to site as well as mixed site-bond
percolation. First we show that Eq. �26� is exact in some
instances.

1. Site percolation on the 3-12 and kagome lattices

The 3-12 lattice is the lattice shown in the right panel of
Fig. 7. To formulate site percolation on the 3-12 lattice, we
consider the reference �2�2� : �2�2� lattice with pure three-
site interactions shown in the left. Let the three-site interac-
tions of the up and down triangles be, respectively, M1 and
M2. One finds

A = q3 + 3qm1, B = m1
2, C = m1

3,

A� = q3 + 3qm2, B� = m2
2, C� = m2

3, �33�

where m1=eM1 −1 and m2=eM2 −1. Setting q=1, m1=s1 /
�1−s1�, and m2=s2 / �1−s2�, where s1 and s2 are the respec-
tive site occupation probabilities for the 3-12 lattice, the
critical frontier �26� gives

1 − 3�s1s2�2 + �s1s2�3 = 0 �3-12 site percolation� .

�34�

For s1=s2=s, this yields the known �19,23� critical fron-
tier 1−3s4+s6=0 or

sc
3-12 = 	1 − 2 sin��/18� = 0.807 900 076. �35�

Using the relation sc
kag= �sc

3-12�2 �23�, we have therefore de-
rived the exact kagome and 3-12 site percolation thresholds
and demonstrated that Eq. �26� is exact in this instance.

2. Site percolation on the martini lattice

The martini lattice �31� is the lattice shown in the right
panel of Fig. 8. To generate a site percolation on the martini
lattice, we start from the �1�1� : �2�2� reference lattice
with three-site interactions shown in the left. Denote the
three-site interactions of up- and down-pointing triangular
faces by M1 and M2, respectively, and write m1=eM1 −1 and
m2=eM2 −1. We have

A = q3 + 3qm1, B = m1
2, C = m1

3,

A� = 1, B� = 0, C� = m2. �36�

Setting q=1 and m1=s1 / �1−s1� , m2=s2 / �1−s2�, with s1 and
s2 as the respective site occupation probabilities, Eq. �26�
gives the critical frontier

1 − �3s1
2 − s1

3�s2 = 0 �martini site percolation� . �37�

This is a known exact result �26,32,33� and is another ex-
ample that the critical frontier Eq. �26� is exact. For s2=1,
the percolation reduces to that on the kagome lattice, and Eq.
�37� gives the threshold �22�. For uniform occupation prob-
ability s1=s2=s, Eq. �37� becomes 1−3s3+s4=0 and gives
the exact solution sc

martini=0.764 826 486.

3. Site-bond percolation on the honeycomb lattice

No exact result is known for the site and site-bond perco-
lations on the honeycomb lattice. Owing to the intrinsic in-
terest of a percolation process on a simple lattice, the prob-
lem of honeycomb site percolation has attracted considerable
attention for many years. There now exists a host of highly
precise numerical estimates on the threshold for site perco-
lation on the honeycomb lattice �10,23,27�.

Consider the more general mixed site-bond percolation on
the honeycomb lattice with site occupation probabilities s1
and s2 and bond occupation probability p shown in the right
panel of Fig. 9. The relevant reference lattice can be taken as
shown in the left with edge interactions K and three-site
interactions M1 and M2. To make use of Eq. �26�, we adopt
the scheme of devising up- and down-pointing triangles as
indicated in Fig. 11�b� below. This gives

A = �q + v�3 + �q + 3v�m2, B = v2m2, C = v3m2,

A� = 1, B� = 0, C� = m1, �38�

where v=eK−1, mi=eMi −1, i=1,2. Setting q=1, v
= p / �1− p� , mi=si / �1−si�, we obtain from Eq. �26� the criti-
cal frontier for the mixed site-bond percolation as

�3p2 − p3�s1s2 = 1 �honeycomb site-bond percolation� .

�39�

When s1=s2=1, Eq. �39� is exact since it gives the known
honeycomb bond percolation threshold 1−3p2+ p3=0
�19–21�. When p=1, Eq. �39� gives the threshold

s1s2 = 1/2, �40�

which is exact for s2=1, as the site percolation reduces to
one on the triangle lattice with the critical point �20�, sc

s2

s1

s1

s2s2

s1

FIG. 7. �Color online� Site percolation on the 3-12 lattice.

s1

s1 s1

s2

FIG. 8. �Color online� Site percolation on the martini lattice.

M1

2s
1s

K p

M2

FIG. 9. �Color online� Site-bond percolation on the honeycomb
lattice.

F. Y. WU PHYSICAL REVIEW E 81, 061110 �2010�

061110-6



=1 /2. But for s1=s2=s, Eq. �40� gives sc=1 /	2
=0.707 106 781 differing from accurate numerical estimates
of sc=0.697 040 2 �27� and sc=0.697 041 3 �10�. The critical
frontier �26� is therefore a close approximation in this in-
stance.

The site-bond percolation has also been studied by simu-
lations by Ziff and Gu for s1=s2 �10� and for p=1 �29�. Their
results indicate that Eq. �39� works better for site occupation
probabilities 
1.

4. Site-bond percolation on the kagome lattice

Consider the mixed site-bond percolation on the kagome
lattice with site and bond occupation probabilities s and p
shown in the right panel of Fig. 10. The reference lattice is
shown in the left having edge interaction K and three-site
interaction M. Regard the reference lattice as a kagome type
with the partition function �3�. One has

A = q�q2 + 3m��q + v�3 + 3m2�q + v�2 + m3,

B = m2�q + v�2 + m3v ,

C = m3�3v2 + v3� ,

A� = 1, B� = v, C� = 3v2 + v3, �41�

where v=eK−1, m=eM −1. Substituting Eq. �41� into Eq.
�26� and setting q=1, v= p / �1− p� , m=s / �1−s�, one ob-
tains the critical frontier

1 + 3s2�1 − 3p + 2p3 − p4� + s3�− 3 + 9p − 3p2 − 12p3 + 15p4

− 6p5 + p6� = 0 �kagome site-bond percolation� .

�42�

For p=1, Eq. �42� becomes 1−3s2+s3=0, which gives
the exact critical threshold �22� for the kagome site percola-
tion. For s=1, Eq. �42� becomes 1−3p2−6p3+12p4−6p5

+ p6=0 or pc=0.524 429 717, in agreement with Eq. �29�.

F. 3-12 lattice

The 3-12 lattice is the lattice shown in Fig. 11�a� with
interactions K ,K1 ,K2. To make use of �26� we regard the
lattice as one of the kagome type consisting of large up-
pointing triangles �dotted lines� and small down-pointing tri-
angles as indicated in Fig. 11�b�. Then we have �see also Eq.
�5� of �7��

A = �q + v�3 + 3�q + v��q + 2v�v2 + 3�q + 3v�v2
2 + �q + 3v�v2

3,

B = v2��q + v�v2 + 3v2
2 + v2

3� ,

C = v3�3v2
2 + v2

3� ,

A� = 1, B� = v1, C� = 3v1
2 + v1

3, �43�

where v=eK−1, v1=eK1 −1 , v2=eK2 −1. Substituting Eq.
�43� into Eq. �26�, we obtain the critical frontier �rearranged
in a symmetric form�

�q + v�3�h1 + 3qv1 + q2��h2 + 3qv2 + q2� − 3�qv2 + v3��h1

+ qv1��h2 + qv2� − �q − 2�v3h1h2 = 0, �44�

where hi=3vi
2+vi

3, with i=1,2.
For the 3-12 Ising model with uniform interactions KI, we

set q=2 and v1=v2=v=e2KI −1, and Eq. �44� simplifies to

�	3 − 1�v2 − 2v − 4 = 0, �45�

yielding the known exact critical point e2KI = 1
2 �3+	3�

+	�6+5	3� /2=5.073 446 135 in agreement with Utiyama
�34� and Syozi �28�.

For Potts model on the 3-12 lattice with uniform interac-
tion K, Eq. �44� gives

v9 + 6v8 + 3�3 − q�v7 − q�32 + q�v6 − q�75 + 30q�v5 − q2�111

+ 12q�v4 − 2q3�41 + q�v3 − 36q4v2 − 9q5v − q6 = 0. �46�

This gives the critical point

eKc = v + 1 = 3.852 426 158, q = 1

=5.073 446 135, q = 2 �exact Ising result�

=6.033 022 515, q = 3

=6.857 394 828, q = 4. �47�

The accuracy of prediction �47� will be examined in paper II
�15�.

For bond percolation on the 3-12 lattice we set q=1 and
write v= p / �1− p� , v1= p1 / �1− p1� , v2= p2 / �p2− p2�, where
p , p1 , p2 are the respective bond occupation probabilities.
Then Eq. �44� gives the critical frontier

1 − 3p2�p1 + p1
2 − p1

3��p2 + p2
2 − p2

3� + p3�3p1
2 − 2p1

3��3p2
2

− 2p2
3� = 0 �3-12 bond percolation� . �48�

This expression has been conjectured recently by Scullard

K

K
M s

p
p

FIG. 10. �Color online� Site-bond percolation on the kagome
lattice.

(a) (b)

K

K
K1

KK

1

K1

2

K2

2

FIG. 11. �a� The 3-12 Potts lattice. �b� The 3-12 lattice as an
asymmetric kagome-type lattice.
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and Ziff �26� as a nonrigorous extension of the exact bond
percolation threshold of the martini lattice. In the uniform
case p1= p2= p, Eq. �48� becomes

1 − p + p2 + p3 − 7p4 + 4p5 = 0, pc = 0.740 423 317,

�49�

which is also given by pc=1−e−Kc using eKc for q=1 in Eq.
�47�. Compared to the numerical determination of pc
=0.740 421 95�80� by Ziff and Gu �10� and the value pc
=0.740 420 81 by Parviainen �35�, the accuracy of the ho-
mogeneity determination �49� is seen to be well within one
part in 105.

For the mixed site-bond percolation on the 3-12 lattice, it
is tempting to use the kagome critical frontier �42� and re-
place s with s2p as argued by Suding and Ziff �23�. This
gives the critical frontier

1 + 3s4�p − 3p2 + 2p4 − p5� + s6�− 3p3 + 9p4 − 3p5 − 12p6

+ 15p7 − 6p8 + p9� = 0. �50�

For p=1 the pure site percolation, this becomes 1−3s2+s6

=0, which is exact. For s=1 the pure bond percolation, Eq.
�50� gives

1 + 3p2 − 12p3 + 9p4 + 3p5 − 15p6 + 15p7 − 6p8 + p9 = 0,

�51�

with the solution pc=0.747 882 617. The small difference
between Eqs. �49� and �51� reflects the approximate nature of
the kagome site-bond critical frontier �42�.

G. Critical frontier and homogeneity assumption

We now derive the critical conjecture �26� using a homo-
geneity assumption. In the partition function �2�, we replace
the two Boltzmann weights with

W��1,2,3� = F �
s1�,s2�,s3�=1

q

eL��11�+�22�+�33��eN�1�2�3�,

W��1,2,3� = F� �
s1�,s2�,s3�=1

q

eL���11�+�22�+�33��eN��1�2�3�, �52�

as indicated graphically in Fig. 12. Equating Eqs. �52� with
Eqs. �1�, we find

A = F��q + ��3 + �q + 3��n� ,

B = F�2n ,

C = F�3n , �53�

where �=eL−1, n=eN−1 and similar relations for
A� ,B� ,C� with �F ,� ,n�→ �F� ,�� ,n�� and ��=eL�−1, n�
=eN�−1.

Solving Eq. �53� for � ,n ,F, one obtains

� =
C

B
,

n =
�qB + C�3

AC2 − qB3 − 3B2C
,

F =
B3�AC2 − qB2 − 3B2C�

C2�qB2 + C�3 , �54�

and similarly one obtains �� ,n� ,F� in terms of A� ,B� ,C�.
The kagome-type lattice now becomes the one shown in Fig.
13�a�.

The duality relation of Potts models with multisite inter-
actions has been formulated by Essam �21� �see also �2��.
Following Essam, the dual to the lattice in Fig. 13�a� is the
one shown in Fig. 13�b� with

eK = �1 + q/���1 + q/��� ,

eM = 1 + q2/n ,

eM� = 1 + q2/n�, �55�

where the interaction K is the dual to the two interactions L
and L� in series. We therefore are led to consider the Potts
model on the triangular lattice shown in Fig. 13�b�, where M
and M� are three-site interactions.

For M�=0, the partition function is Ztri�q ;A ,B ,C� given
by Eq. �2� with

W��1,2,3� = eK��12+�23+�31�eM�123,

or

A = 1, B = eK − 1, C = e3K+M − 3eK + 2. �56�

The exact critical frontier in this case is known. It is qA=C,
or
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FIG. 12. �Color online� Graphical representation of Eq. �52�.
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e3K+M − 3eK + 2 = q . �57�

For M��0 the critical frontier is not known. However, the
critical frontier must be symmetric in M and M�. We now
make a homogeneity assumption requiring M and M� to ap-
pear homogeneously in the exponent of Eq. �57�. The sim-
plest way to do this is to extend Eq. �57� to

e3K+M+M� − 3eK + 2 = q . �58�

The substitution of expressions of K, M, and M� in Eqs. �55�
and �54� into Eq. �57� now leads to Eq. �26�.

IV. SUMMARY

We have considered the q-state Potts model and the re-
lated bond, site, and mixed site-bond percolations for
triangular- and kagome-type lattices. For triangular-type lat-
tices we obtained its exact critical frontier in the form of Eq.
�9� without the usual assumption of a unique transition. We
then applied the exact critical frontier in various applications.
For kagome-type lattices we obtained a critical frontier �26�

by making use of a homogeneity assumption. We established
that the present critical frontier is exact for q=2 and for site
percolation on the kagome, martini, and other lattices. For
the Potts and bond percolation models for which there is no
exact solution, the present critical frontier gives numerical
values of critical thresholds accurate to the order of 10−5. For
mixed site-bond percolation, the homogeneity assumption
gives rise to critical frontiers which are accurate when site
occupation probabilities are 
1.

In summary, we emphasize that applications of the critical
frontiers �9� and �26� are not limited to those reported in this
paper. They can be extended to numerous other lattice mod-
els having a triangular or kagome symmetry, and thus they
open the door to a host of previously unsolved problems.
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