PHYSICAL REVIEW E 81, 061108 (2010)

Asymmetric exclusion process in a system of interacting Brownian particles
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We study a continuous-space version of the totally asymmetric simple exclusion process (TASEP), consist-
ing of interacting Brownian particles subject to a driving force in a periodic array of potential wells. Particles
are inserted into the leftmost well at rate «, hop to the right at unit rate, and are removed at the rightmost well
at rate 3. Our study is motivated by recent experiments on colloidal particles in a periodic potential generated
by an optical tweezers array. Particles spend most of the time near potential minima, approximating the
situation on the lattice; a short-range repulsive interaction prevents two particles from occupying the same
potential well. A constant driving force, representing Stokes drag on particles suspended in a moving fluid,
leads to biased motion. Our results for the density profile and current, obtained via numerical integration of the
Langevin equation and dynamic Monte Carlo simulations, indicate that the continuous-space model exhibits
phase transitions analogous to those observed in the lattice TASEP. The correspondence is not exact, however,
due to the lack of particle-hole symmetry in our model.
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I. INTRODUCTION

A driven lattice gas, or a driven diffusive system, is a
collection of interacting particles that hop in a preferred di-
rection on a lattice. The system cannot reach equilibrium but
may attain a stationary state with a steady current; the model
is a prototype for studies of nonequilibrium states [1-4]. The
simplest example of a driven diffusive system, which has
become one of the standard models of nonequilibrium statis-
tical mechanics, is the totally asymmetric simple exclusion
process (TASEP) [5-8]. In the TASEP with open boundaries
the edge sites are connected to particle reservoirs with fixed
densities. Introduced as a model of biopolymerization [9]
and transport across membranes [10], over the years, this
model has been applied to other processes, e.g., traffic flow
[11] and cellular transport [12,13].

From a mathematical point of view the model is of inter-
est in the theory of interacting particle systems since, despite
its simplicity, it shows a nontrivial behavior [7,8,14,15]. In
the one-dimensional TASEP with open boundaries, particles
jump only to the right, along a one-dimensional lattice whose
sites can be empty or occupied by a single particle. Particles
are injected at the leftmost site at rate « if this site is empty
and are removed at the rightmost site at rate [ if this site is
occupied. The one-dimensional TASEP, which has been
solved exactly, exhibits three distinct phases in the a-/3 plane
[16—19]. The phase transition is discontinuous along the line
a=B<1/2, where the density profile is linear, and is con-
tinuous along the lines a=1/2, a> B and B=1/2, a<p (see
Fig. 9). Although this model and variants have been the sub-
ject of intensive theoretical study, there is as yet no realiza-
tion of a TASEP-like system in the laboratory.

The invention of optical tweezers arrays has made pos-
sible experimental studies of the dynamics of colloidal par-
ticles in a periodic external potential [20-25]. The motion at

fkjeo@ﬁsica.ufmg.br
"dickman @fisica.ufmg.br

1539-3755/2010/81(6)/061108(9)

061108-1

PACS number(s): 02.50.Ey, 05.70.Fh, 05.60.Cd

long times and low friction consists of jumps between adja-
cent potential minima. If the particle and potential well sizes
are chosen properly, only one particle can occupy a given
well. The exclusion process is a caricature of this dynamics,
suggesting that a system of colloidal particles in an optical
tweezers array could be designed as a laboratory realization
of the TASEP. Motivated by this possibility, we propose a
model in continuous space having the same essential charac-
teristics as the lattice TASEP. Our model represents colloidal
particles immersed in a fluid flowing at constant rate through
a one-dimensional optical tweezers array, restricting particle
motion to the array axis. Specifically, we study a one-
dimensional system of interacting Brownian particles subject
to a periodic external potential and to a constant external
force representing the drag due to the fluid motion. A short-
range (essentially hard-sphere) repulsion between particles
prevents more than one particle occupying the same potential
well. This continuous-space model is studied via numerical
integration of the Langevin equation and dynamic Monte
Carlo (MC) simulation. We observe phase transitions analo-
gous to those found in the lattice TASEP. Some differences
in the detailed behavior nevertheless appear due to the lack
of particle-hole symmetry in the continuous-space model.
Details on the model and simulation methods are given in
Secs. II and III. Simulation results are presented in Sec. IV,
while our conclusions and prospects for future work are out-
lined in Sec. V.

II. CONTINUOUS-SPACE MODEL

Our aim is to study a continuous-space model sharing the
same essential features as the TASEP (defined on a lattice) as
a step toward experimental realization of a TASEP-like sys-
tem. The model should possess the following characteristics:
(i) confinement of particles to a one-dimensional structure,
(ii) localization of particles at potential minima (“wells”) of a
linear periodic array with (iii) multiple occupancy prohib-
ited, (iv) biased hopping between adjacent wells, and (V)
insertion (removal) of particles at the initial (final) well. Cri-
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FIG. 1. (Color online) (a) Two neighboring
Gaussian profiles (red and black dotted curves)
and their sum (green solid curve); (b) effective
external potential.

teria (i)—(iii) are realizable with a suitably tailored optical
tweezers array. The array consists of a series of spherically
symmetric optical tweezers; the particles flow along this line,
which we take as the x axis. To avoid particles escaping the
array, there should be a substantial overlap between neigh-
boring wells, so that a potential maximum at a point midway
between two wells is in fact a saddle point in the full three-
dimensional space [see Fig. 1(a)]. For a TASEP-like system,
it is crucial that the probability of a particle escaping from
the array is negligible on the time scale of the experiment.
Effective confinement requires that the potential barrier to
escape the array be much larger than kzT; the barrier be-
tween adjacent minima should be ~kzT to allow transitions
between neighboring wells. In what follows we shall assume
that this condition is satisfied and consider, for simplicity, a
one-dimensional system. Fluctuations of the particle posi-
tions in the directions perpendicular to the array will there-
fore be ignored, but should be included in a more complete
analysis.

The diameter of the optical tweezers well should be
slightly greater than the particle diameter, so that at most one
particle can occupy the well at a given time. Due to thermal
fluctuations, particles will occasionally overcome the poten-
tial barrier separating neighboring wells. Since hopping must
be asymmetric, we impose a steady fluid motion along the +x
axis, which effectively prohibits particle jumps in the oppo-
site direction. In the lattice TASEP particles are inserted in
the first site and removed from the last. Experimental real-
ization of this feature is subtler, but can in principle be
achieved using optical tweezers to drag particles into the first
well, and out of the last one, at prescribed rates. We discuss
an alternative method of insertion and removal in Sec. V.

The above sketch of an experimental setup motivates our
study of Brownian motion of interacting colloidal particles in
an optical tweezers array. The Langevin equation for the ith
particle is

mi(t) == b[x(t) —v] - ———

ﬁvexl(xi)
&xi

d
- E[Vint(xi,i—l) + Vint(xi,i+1)] +mly(1), (1)

where x;, X;, and X; are, respectively, the position, velocity,
and acceleration of particle i; x; ;=x;—x;; v is the fluid ve-
locity; and V,,, is the periodic external potential. V;,, is the
(strongly repulsive) interparticle potential. (We assume the
range of V,,, to be short enough such that only neighboring

particles interact.) The first term on the right side of Eq. (1)
represents damping of the particle velocity relative to the
fluid. For a sphere of radius R, Stokes law gives

b=6muR, (2)

where u is the fluid viscosity. Here, it is important to stress
that the fluid is three dimensional although we treat the par-
ticle motion as one dimensional. The final term is a random
noise with the following properties:

(Iy=0, 3)

2bkpT
25 8—1"), (4)
m

(CinT(e')) =

where kg=1.380 650 4 X 10723 J/K is the Boltzmann con-
stant, 7' is temperature, and m is the particle mass. It is con-
venient to ignore the inertial term mx,(¢) in Eq. (1) since the
observational times of interest (microseconds or greater) are
much larger than the relaxation time of the velocity, m/b
~107% s, for our choice of parameters. Then the velocity of
particle i follows

] 19V, (x;) 19
x(t)=v - Zé’—;, - Za_xi[vim(xi,i—l) + Vid(Xi 1)

+ 2T, (5)

A. Potentials

The potential of an optical tweezers array can be repre-
sented by a sum of n identical Gaussian profiles of width o
and spatial period d,

N
2
Vi) == Vp, e - dm2e?, (6)
n=0

We require neighboring wells to overlap, which can be ac-
complished by setting o<d; Fig. 1(a) shows that this condi-
tion is satisfied for o=d/4. For this choice of parameters, the
potential is well approximated by a cosine as can be seen
from the Fourier coefficients

2 (¢ 2nax Y (= dn)?20?
an=2 cos — D pla—dn dx. (7)

0 d n=0

Numerical evaluation yields
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ay=—-0.627,
a;=0.365,
a,=9.010 X 1072, (8)

Note that a,/a; =0.025, allowing us to write, to a good ap-
proximation, the array potential as a constant plus a cosine
term. For the one-dimensional model studied here, we define

X
Vext(x) == VO COS(W_) (9)
dy
as the periodic external potential. The interaction between
colloidal particles is taken as purely repulsive; for conve-
nience we use a truncated 1/r'? potential,

12
U{(g) - 1}, r=a
Vint(r)= r (10)

0, r=a,

where a is the particle diameter and r is the distance between
neighboring particles.

B. Parameter values

To specify the external and interaction potentials, we need
to fix Vy and U,. These values must be chosen so as to
approximate the TASEP dynamics given the length, time,
and energy scales characterizing the system. We measure
lengths in units of microns, time in seconds, and energies in
units of kzT=4.141 951 2 1072! J, assuming a temperature
of 300 K. We set dy=1 (so that the period of the external
potential is 2 um) and take the particle diameter as a=1.8,
so that a pair of particles occupying neighboring wells have
some freedom to fluctuate about the potential minima. Tak-
ing the fluid as water [with viscosity ©=0.01 g/(cm s)] we
fix the friction coefficient as b=1.697 X 1078 J s/m? or b
=4.096kpT s/um? in our units.

To determine the fluid velocity v and external-potential
intensity V; we examine the effective external potential, de-
fined as

X
Verr==Vj cos(ﬂ'd—) - bux, (11)
0

i.e., the sum of external periodic potential and a fictitious
potential representing the constant friction force acting on
particles [see Fig. 1(b)]. If bvd,> V,, particles do not feel the
periodic potential, while if bvd, <<V, particle hopping is es-
sentially unbiased. Let AE; (AEp) denote the difference be-
tween a given maximum of V, and the first minimum to the
right (left) of this maximum. In this way, AE; (AEp) is the
potential barrier separating a given potential minimum from
its left (right) neighbor. A simple calculation shows that

AEG - AEP = 2bvdo,

AEG + AEP = 4VO COS(WXO/do) + 4bU.xO, (12)

with
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FIG. 2. A typical single-particle trajectory.

d bud,
Xo= —Osin'1<ﬂ>, (13)

such that the potential minima occur at x;=2jd,+x, and
maxima at y;=2jd,+1-x, for j an integer. Given AE; and
AEp, we can determine x,, v, and V. We take AEp~ kT,
and AE;> kT, so that a particle has a finite rate of jumping
to the well on the right and virtually has no chance of jump-
ing in the opposite direction. We show in the following sec-
tion that this condition is satisfied for AE;=20kzT and
AEp=2kgT. For these values we have

v=2.1974 pm/s,
VO = 45680kBT,

xp=0.215 um. (14)

To maintain the interparticle repulsion in the presence of the
external potential, we must take U, substantially greater than
V. On the other hand, very large values of U, are inconve-
nient for numerical integration of the Langevin equation, as a
very small time increment would be required to avoid spuri-
ous particle displacements. We therefore use Uy=40kzT
=9 V().

C. Single-particle dynamics

To begin, we study the motion of a single Brownian par-
ticle in the system defined above. Figure 2 shows a represen-
tative time series of the particle position; the sizes of the
plateaux correspond to the times spent in a given well. Using
time series of this kind, we determine the mean transition
time 7 between neighboring wells to be 6.5380(9) s. This
quantity is needed in order to define the insertion and re-
moval rates. (Recall that in the lattice TASEP these rates are
defined in units of the hopping rate.) If the first well is empty
we insert a particle there (at the potential minimum position),
at rate a/ 7; if the last well is occupied, we remove the par-
ticle at rate B/ 7.

III. DYNAMIC MONTE CARLO SIMULATIONS

The Langevin simulation (LS) outlined in the preceding
section is valuable for fixing the time scale of hopping be-
tween wells and for confirming the basic phenomenology of
the model. It is, however, rather inefficient numerically, so
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that it is desirable to implement a dynamic MC simulation
for large-scale studies. We apply the Metropolis algorithm to
evolve the particle positions in time.

In this approach we use the following expression for the
potential energy:

N N-1

E=- 2 [ Vo cos(mx;) + bux;] + E Vid(Xir1 = x;), (15)
i=1 i=1

where V;,, is given by Eq. (10). The drag force due to the
moving fluid is represented by the effective potential —bvx.
In the MC dynamics, a trial configuration is generated by
selecting one of the N particles at random and subjecting it to
a random displacement Ax, chosen from a Gaussian distribu-
tion with mean zero and standard deviation 0=0.2 um. This
value is 10% of the well size, large enough to afford a sub-
stantial speedup, but small enough that the probability of a
particle displacement greater than 2 wm is negligible. As is
usual in Metropolis MC, trial moves such that the change in
energy AE=0 are always accepted, while for AE>0 the
trial move is accepted with probability e 27, We deter-
mine the mean number of Monte Carlo steps required for a
particle move from one well to its neighbor on the right as
Ny ec=120.917(1). Thus, the time per Monte Carlo step is

__T _ )
o= —— =5.4070(8) X 1072 s.
Nyc

(16)

Particle insertion and removal are done as in the Langevin
simulations. We verify below that this method is equivalent
to the latter approach; the MC algorithm is ~1000 faster
than numerical integration of the Langevin equation, for
L=100.

IV. RESULTS

During the simulations we monitor the mean occupation
probability p(i) at each well i, and the current J, given by the
mean number of particles leaving the system per unit time.
Examples of density profiles in the stationary regime [p(i)
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FIG. 4. (Color online) Comparison between profiles obtained
using LS (open symbols) and MC (filled symbols), a=0.3 (lower
curves), @=0.8 (upper curves), B=0.4, and L=100.

versus i] are shown in Fig. 3 for several values of a, with
B=0.4. (From here on @ and B are given in units of 1/7,
where 7 is the mean time required for hopping between
wells.) This figure shows that the continuous-space model
exhibits the same basic phenomenology as the lattice TASEP.
For @«=0.4 the overall density grows with a. On increasing
a from 0.4 to 0.5 there is a marked increase in density, but
for further increases the density changes very little. While
the LS results already suggest that the model exhibits phase
transitions, we shall use the more precise results of our MC
simulations to perform a detailed analysis. Before proceed-
ing, we verify that the MC method yields results in agree-
ment with the LS. In Fig. 4 we compare density profiles
obtained via LS and MC for the same values of a and 8. The
bulk densities obtained using the two methods differ by
=1.6%. Thus, the MC method captures the behavior found
using the Langevin equation to good precision.

We perform MC simulations of systems of L=100, 200,
and 500 wells. Far from the phase transition, density profiles
depend only weakly on the system size, but near the transi-
tion there are significant finite-size effects, as illustrated in
Fig. 5. In this case, as L increases, the profile tends to a
near-constant value except for a sharp increase near the exit.

To minimize boundary effects we study the bulk density
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FIG. 3. (Color online) Density profile for 8=0.4 obtained via

numerical integration of the Langevin equation, for « values as

indicated; L=100.

for systems of 100, 200, and 500 wells.
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FIG. 6. (Color online) Bulk density versus « for S=0.4; system
sizes L=100, 200, and 500.
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The bulk density as a function of «, for 8=0.4, is shown in
Fig. 6 for the three system sizes studied. These results
strongly suggest the development of a discontinuity in p(c)
near a=0.47 as the system size is increased.
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A. Phase diagram

Before determining the phase diagram in detail, we note
that Fig. 7, which provides an overview of how the bulk
density and the current depend on the control parameters,
shows evidence of both continuous and discontinuous phase
transitions. For a<<0.8 or so, and 8< a, the system is in the
high-density phase since the density and current depend only
on 3, whereas for 8> «, and 8<0.6 or so, the system is in
the low-density phase, in which p and J depend only on a.
For larger values (a>0.8 and 8>0.6), the system is in the
maximum-current phase, in which p and J are independent of
both a and B, and J takes its maximum value. Thus, the
continuous-space model exhibits the same three phases ob-
served in the lattice model. As in the lattice model, the tran-
sition between the low- and high-density phases is discon-
tinuous, whereas transitions between the maximum-current
phase and the other phases are continuous. (While the den-
sity is discontinuous in the former case, the current is always
continuous at the transition.)

Kolomeisky et al. [26] showed how the phase diagram of
a TASEP-like system (with open boundaries) can be deter-
mined from the current-density relation J(p) for the corre-
sponding system with periodic boundaries, assuming that
J(p) possesses a single maximum, J,,,, at the density p*.
Suppose that the leftmost site is connected to a reservoir with
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FIG. 7. (Color online) Upper panels: bulk density for (a) fixed « and (b) fixed B. Lower panels: current for (c) fixed a and (d) fixed B.

System size L=200.
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FIG. 8. (Color online) Current versus density for L=200 with
open and periodic boundary conditions.

density p_, and the rightmost site is connected to a reservoir
with a higher density p,. The coexistence line between the
low- and high-density phases is given by J(p_)=J(p,)
<Jpae In the low-density phase [J(p_) <J(p,)] the bulk
density p=p_<p*, while in the high-density phase [J(p_)
> J(p,)] the bulk density p=p,>p*. The continuous transi-
tion lines are p_=p* for p,<p* and p,=p" for p_>p".

The above observations allow one to find the transition
lines once J(p) is known. Simulations with open boundaries
furnish J(p) with p given by Eq. (17). These data, however,
are not convenient for the analysis since the density values
are not equally spaced and, moreover, the bulk density values
given by Eq. (17) have statistical uncertainties. We therefore
perform MC simulations on a ring of L=200 wells (in con-
tinuous space) to obtain J(p) at equally spaced fixed particle
densities, p=N/L. Figure 8 shows that the current-density
relations obtained using open and periodic boundaries are in
excellent agreement. For subsequent analysis, we fit an
eighth-degree polynomial to J(p)/[p(1-p)], using the data
obtained with periodic boundaries. (We fit J/[p(1-p)],
rather than J itself, to guarantee that the resulting expression
for the current vanishes at p=0 and p=1.) Using the polyno-
mial fit, we find p*=0.575 489(3) [the uncertainty in p* re-
flects that in J(p)]. The coexisting densities, p, and p_, along
the discontinuous transition curve, are determined using
J(p-)=J(p,) [26].

It remains to determine the phase diagram in the «-f
plane, a task that cannot be accomplished solely on the basis
of the function J(p) since, off lattice, the relation between the
rates « and 3, and the bulk density p is nontrivial and not
known a priori. Therefore, using the data from simulations
with open boundaries, we equate p_ to the bulk density p; («)
in the low-density phase and equate p, to the bulk density
pu(B) in the high-density phase. [The bulk densities p; and
py are determined in simulations using 8=1.6 and @=2.0,
respectively; see Figs. 7(b) and 7(a).] Inverting these rela-
tions (numerically, using polynomial fits), each point in the
p.-p_ plane is mapped to a point in the a-B plane.

The above procedure, making use of the current-density
relation for the periodic system, is expected to provide the
most reliable results for the phase diagram [26]. We refer to
this as “method A.” For comparison, we estimate the phase
diagram using the results of simulations with open bound-
aries (“method B”). Here, we use polynomial fits to the data
for the current as a function of the rates a and B (see Fig. 7)
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FIG. 9. (Color online) Phase diagram of the TASEP on the lat-
tice (dotted lines) and in continuous space (solid lines) for L=200
obtained using methods A and B described in the text.

to estimate the transition points. Consider first the case of
fixed a. For small S, the stationary current depends only on
B [see Fig. 7(c)]. We therefore fit a polynomial P(B) to the
current in the regime $<0.6, using data for a large fixed «
(a=2.0). For larger values of S, the current depends only on
a; in Fig. 7(c) this regime corresponds to one of the plateaux,
J=J*(a). The transition point B.(«) is taken as the value at
which the plateau intersects the polynomial fit to the small-83
data, i.e., P(B.)=J"(«). Determination of «.(B) follows an
analogous procedure, in which we fit a polynomial to the
current data for @<<0.85. We find that a quadratic polyno-
mial is sufficient to fit (to within uncertainty) the current
J(B) at fixed «, while a good fit of J(«) (at fixed B) requires
a quartic polynomial. We determine points along the continu-
ous transition lines via the criterion that the current attains its
maximum value at the transition.

Using the methods described above we construct a phase
diagram based on the data for each system size studied; that
for L=200 is shown in Fig. 9. We verified that the boundaries
for L=100 and 500 are nearly the same as for L=200, as can
be seen in Table I for the continuous transitions, suggesting
that the latter are already quite close to their limiting
(infinite-L) values.

The two methods yield slightly different predictions for
the continuous transition line. Method A is more robust since
we use data near the maximum-current value to perform the
fit of the current-density relation, while in method B, data
from this region are not included and the position of the
maximum is rather sensitive to one’s choice of the range of
values fit using the polynomial. Indeed, the behavior of the

TABLE I. Values of a and B at the continuous transitions ob-
tained via methods A and B.

Method A Method B
L a(,‘ BC a(,' BC
100 1.034(3) 0.723(1) 0.9292(6) 0.6903(2)
200 0.966(2) 0.717(1) 0.941(1) 0.6970(2)
500 0.958(2) 0.725(1) 0.9413(7) 0.6957(2)
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phases boundaries outside the fitting region (i.e., for «
>0.85 or >0.6) is somewhat dependent of the choice of
fitting region in both methods, since the mapping from
(p_,py) to (a,B) employs an extrapolation of the data for
p_(a) and p,(B) outside the fitting region.

While the continuous-space phase diagram is isomorphic
to that of the lattice model, there are some differences be-
tween the two cases that appear likely to persist in the
infinite-size limit. Since the lattice model possesses particle-
hole symmetry, the phase diagram is invariant under the ex-
change of a and B. Thus, the boundary between the high-
and low-density phases is a straight line extending from the
origin to the point (1/2,1/2) in the a-B plane. The phase
diagram of the continuous-space model does not possess this
symmetry; the phase boundary between the high- and low-
density phases does not fall along the line &= and appears
to be somewhat curved.

One might inquire whether the differences in the phase
boundaries of the lattice and continuous-space models
merely reflect finite-size effects in the latter. We have verified
that in the lattice TASEP with L=200, the phase boundaries
fall quite near their expected (infinite-size) positions. Com-
parison of the phase boundaries (in continuous space) for L
=200 and 500 suggests that finite-size effects are somewhat
stronger in the continuous-space model than on the lattice.
Given the lack of particle-hole symmetry, however, it ap-
pears very unlikely that the continuous-space phase bound-
aries will converge to those of the lattice model in the
infinite-size limit. One might argue that the curvature of our
discontinuous transition line is a consequence of extrapoling
the polynomial fit to regions out of the fitting region «
<0.85 and 8<<0.6. But, as Fig. 9 shows, the curvature is
already present for e and B values inside the fitting region.

The differences between the lattice and continuous-space
models reflect, in part, the absence of particle-hole symmetry
in the latter; particle positions fluctuate in continuous space,
but are fixed in the lattice model. In continuous space, more-
over, particles occupying neighboring wells may influence
one another via the repulsive potential V;,,. On the lattice no
such influence exists beyond simple exclusion. In continuous
space, repulsive interactions should tend to spread particles
more uniformly than on the lattice, promoting particle re-
moval and hindering insertion. Thus, the transition from high
to low density occurs for S<a. Since repulsion is more
significant for higher densities (i.e., larger @) the phase
boundary should curve toward the « axis, as observed. The
smaller value of B at the continuous transition [approxi-
mately 0.725(1) for L=500] compared to that of « [about
0.958(2) for L=500] may also be attributed to repulsion be-
tween neighboring particles.

B. Current: Comparison with mean-field theory

The absence of particle-hole symmetry is again evident in
the current-density relation. In the lattice model, mean-field
theory gives J=p(1-p) [27,28], which is exact. Figure 10
compares the current on lattice with our results for continu-
ous space. (Note that the latter exhibit virtually no finite-size
effects on the scale of the figure.) Unlike in the lattice
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FIG. 10. (Color online) Current versus density in the lattice
model (exact) and the continuous-space model.

TASEP, here the current is not symmetric about p=1/2; it
takes its maximum value at a density of about 0.57. The fact
that the maximum current occurs at a higher density than on
the lattice may again be attributed to interparticle repulsion.

On the lattice, the current is equal to the probability of
having an occupied site with its neighbor on the right vacant,
ie., J=(&(1-&,,)), Vi, where & is an indicator variable
equal to 1 if site i is occupied and zero if it is empty. In
mean-field theory the joint probability is factored, so (&(1
=& =(EX(1-&,1)), and setting (&)=p in the bulk, we
obtain J=p(1-p).

Since the rate for hopping to the well to the right is 1/7,
the above mean-field argument yields J=p(1—p)/ 7 when ap-
plied to the continuous-space model. Figure 10 shows that
this is in poor agreement with simulation. The mean-field
analysis can go wrong in at least two respects: the jump rate
may be modified by the presence of particles in neighboring
well, and the factorization of the joint probability distribution
may not be valid. Consider first the influence of neighbors on
the jump rate. Due to repulsive interactions between neigh-
boring particles, a particle in well i—1 affects the rate of
hopping from i to i+1. As a first approximation we write

J=P(0,1,0);(0,1,0) + P(1,1,0);(1,1,0), (18)

where P(&_,&;, &) is the joint probability for three adja-
cent wells and j(&_;,&,¢&.,;) is the transition rate in this
configuration. Factorizing the joint probability, we have
P(0,1,0)=p(1-p)? and P(1,1,0)=p*(1-p). It remains to
evaluate the currents j(0,1,0) and j(1,1,0).

Consider j(0,1,0), the rate to overcome the barrier be-
tween wells i and i+1, given that both i—1 and i+1 are
empty. The mean first-passage time 7., for a particle to over-
come the barrier, is readily found via the analysis of the
one-dimensional Fokker-Planck equation. From the standard
result [29] we have

L[
kBTa

’

eU(x')/kBderJAJr

-0

e—U(x")/kBdeu’ (19)

Tea™=

where a=x, and c=xy+2d,, are the positions of adjacent po-
tential minima, with x,, given by Eq. (13). Using the effective
external potential [Eq. (11)] for U(x) (since there are no in-
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teractions with other particles), numerical evaluation of Eq.
(19) yields 7.,=6.538 s=1/(0,1,0). This value agrees to
within uncertainty with our simulation result for the mean
time 7 for a particle to hop between adjacent wells when
there are no other particles in the system. Thus, the mean-
field curve in Fig. 10 agrees with simulation in the low-
density limit.

To estimate the transition rate j(1,1,0), we perform a
Monte Carlo simulation to determine the mean time required
for a particle to hop to the next well, when the preceding
well is occupied, and there are no other particles in the sys-
tem. This yields 1/j(1,1,0)=5.548 s. Although the presence
of the trailing particle leads to an increase of about 18% in j,
the effect is not sufficient to yield quantitative agreement
with the current observed at higher densities (Fig. 10). Note
however that at moderate and high densities, strings of n
=3 occupied wells occur with finite probability, and the cu-
mulative effect of repulsions along the chain should make
the hopping rate of the lead particle an increasing function of
n. Simulations of n=3-9 occupied wells show that the tran-
sition rate of the first particle grows with n, but not enough to
account for the value of the current observed in simulation.

We have also verified that the mean-field factorizations
P(0,1,0)=p(1-p)? and P(1,1,0)=p*(1—-p) are not very ac-
curate in the continuous-space model. For density p=0.52,
for example, we find

P(0,1,0)
o 121, (20)
PO,1,1)
g 1.04, (21)

implying a significant correction to the mean-field theory
predictions. We defer the development of a quantitative
theory for J(p) to future work.

C. Fluctuations

To close this section we note an interesting finding on
fluctuations. The variance of the density, as a function of «,
with fixed B, exhibits a maximum at the discontinuous tran-
sition (see Fig. 11). For B values such that the transition is
continuous, by contrast, no peak in var(p) is observed at the
transition. (Similar behavior is found, varying B with «
fixed.) The large density fluctuations are associated with the
presence of a shock separating high- and low-density re-
gions, whose position fluctuates over the entire system. The
position of maximum variance agrees to within uncertainty
with the lines of the (discontinuous) phase transitions re-
ported in Fig. 9. While the total energy exhibits fluctuations
similar to those observed in the density, we do not find any
signal in var(J) associated with the phase transitions.

V. DISCUSSION

We propose a continuous-space model of interacting
Brownian particles in a periodic potential as a possible real-
ization of the TASEP. The particles are subject to a constant
drive in a periodic external potential. Using numerical inte-
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FIG. 11. (Color online) Density variance versus a for B values
as indicated. System size L=200.

gration of the Langevin equation and Monte Carlo simula-
tion, we study systems of L=100, 200, and 500 wells. Our
results show that the continuous-space model exhibits con-
tinuous and discontinuous phase transitions analogous to
those observed in the lattice TASEP. The phase diagram of
the continuous-space model is similar to that of the lattice
model, but exhibits some differences due to the absence of
particle-hole symmetry. This difference appears to be associ-
ated with fluctuations of particle positions around potential
minima. Such fluctuations, together with the repulsive inter-
actions between neighboring particles, cause the current to
attain its maximum value at a density somewhat greater than
1/2, the density marking the maximum current in the lattice
model. We expect these changes (relative to the lattice
model) to be generic for continuous-space systems exhibiting
TASEP-like phase transitions.

We believe that the present study demonstrates the possi-
bility of observing TASEP-like behavior in laboratory ex-
periments on systems of interacting colloidal particles in a
one-dimensional optical tweezers array. The essential fea-
tures of the TASEP—Iocalization of particles in potential
wells, with multiple occupancies prohibited, and biased hop-
ping along the line—are readily accomplished with an appro-
priate choice of particle, fluid, and tweezers array param-
eters. It is however less obvious how to implement random
insertion and removal of particles at the first and last wells of
the array. Particle manipulation can be accomplished using
optical tweezers to transfer particles between wells and res-
ervoirs. To transfer particles in a random fashion, these twee-
zers would have to be intrinsically noisy or chaotic, con-
trolled by a random number generator or driven by a noise
signal. A simpler alternative may be periodic insertion and
removal. In this case, one inserts a particle into the first well
(when empty) at intervals of 7/« and checks for occupancy
of the final well at intervals of 7/, removing the particle if
the well is occupied.

A preliminary study of the continuous-space model using
periodic insertion and removal confirms that the three
TASEP phases are again found. The density profiles under
periodic and random particle transfer are very similar in the
maximum-current phase, where the density profile is insen-
sitive to small changes in the insertion and removal rates.
Small systematic differences do however appear in the other
phases, as shown in Fig. 12.
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Although our study strongly suggests the feasibility of a
laboratory realization of the TASEP, a number of additional
features would have to be included in the model before a
quantitative comparison with experiment could be made. The
principal modifications we expect to be necessary are study
of a three-dimensional model, allowing fluctuations in direc-
tions perpendicular to the array axis, and inclusion of hydro-

dynamic interactions between the particles. We defer these
tasks to future work.
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