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Finite-size effects are investigated in the Gaussian model with isotropic and anisotropic short-range inter-
actions in film geometry with nonperiodic boundary conditions �bc� above, at, and below the bulk critical
temperature Tc. We have obtained exact results for the free energy and the Casimir force for antiperiodic,
Neumann, Dirichlet, and Neumann-Dirichlet mixed bc in 1�d�4 dimensions. For the Casimir force, finite-
size scaling is found to be valid for all bc. For the free energy, finite-size scaling is valid in 1�d�3 and 3
�d�4 dimensions for antiperiodic, Neumann, and Dirichlet bc, but logarithmic deviations from finite-size
scaling exist in d=3 dimensions for Neumann and Dirichlet bc. This is explained in terms of the borderline
dimension d*=3, where the critical exponent 1−�−�= �d−3� /2 of the Gaussian surface energy density van-
ishes. For Neumann-Dirichlet bc, finite-size scaling is strongly violated above Tc for 1�d�4 because of a
cancelation of the leading scaling terms. For antiperiodic, Dirichlet, and Neumann-Dirichlet bc, a finite film
critical temperature Tc,film�L��Tc exists at finite film thickness L. Our results include an exact description of
the dimensional crossover between the d-dimensional finite-size critical behavior near bulk Tc and the
�d−1�-dimensional critical behavior near Tc,film�L�. This dimensional crossover is illustrated for the critical
behavior of the specific heat. Particular attention is paid to an appropriate representation of the free energy in
the region Tc,film�L��T�Tc. For 2�d�4, the Gaussian results are renormalized and reformulated as one-loop
contributions of the �4 field theory at fixed dimension d and are then compared with the �=4−d expansion
results at �=1 as well as with d=3 Monte Carlo data. For d=2, the Gaussian results for the Casimir force
scaling function are compared with those for the Ising model with periodic, antiperiodic, and free bc; unex-
pected exact relations are found between the Gaussian and Ising scaling functions. For both the d-dimensional
Gaussian model and the two-dimensional Ising model it is shown that anisotropic couplings imply nonuniver-
sal scaling functions of the Casimir force that depend explicitly on microscopic couplings. Our Gaussian
results provide the basis for the investigation of finite-size effects of the mean spherical model in film geometry
with nonperiodic bc above, at, and below the bulk critical temperature.
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I. INTRODUCTION AND SUMMARY

Critical phenomena in confined systems have remained an
important topic of research over the past decades. Much in-
terest has been devoted to systems confined to film geometry
which are well accessible to accurate experiments, e.g., mea-
surements of the critical specific heat and of the critical Ca-
simir force in superfluid films near the � transition of 4He
and 3He-4He mixtures �1,2� and in binary wetting films near
the demixing critical point �3�. To some extent, these phe-
nomena have been reproduced by Monte Carlo �MC� simu-
lations of lattice models in finite-slab geometries �4–6�.
While progress has been made in the theoretical understand-
ing of these phenomena above and at the bulk critical tem-
perature Tc of three-dimensional systems �7–16�, there exists
a substantial lack of knowledge in the analytic description of
three-dimensional systems in film geometry below bulk Tc,
except for the case of periodic boundary conditions �bc� �17�,
except for the study of qualitative features of the critical
Casimir force �18�, and except for the study of dynamic

surface properties �19�. Also for two-dimensional systems in
strip geometry, only a few analytical results have been
known for the critical Casimir force �10,20–23� in the past.
Analytic expressions for the Casimir force scaling functions
of the two-dimensional Ising model are known for free and
fixed bc �23� and only since very recently for periodic and
antiperiodic bc �24�. On the other hand, to the best of our
knowledge, no complete analytic results for the free energy
finite-size scaling functions are available for the elementary
Gaussian model in strip and film geometries, respectively, in
two and three dimensions for nonperiodic boundary condi-
tions.

There are several reasons for this lack of knowledge. One
of the reasons is that realistic bc, such as Dirichlet or Neu-
mann bc for the order parameter, imply considerable techni-
cal difficulties in the analytic description of finite-size effects
below bulk Tc even at the level of one-loop approximations.
A second reason is the dimensional crossover between finite-
size effects near the three-dimensional bulk transition at Tc

and the two-dimensional film transition at the separate criti-
cal temperature Tc,film�L��Tc of the film of finite thickness
L. An appropriate description of this dimensional crossover
constitutes an as yet unsolved problem even for the simplest
case of film systems in the Ising universality class with
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unrealistic periodic bc. A third reason is the inapplicability
of ordinary renormalized perturbation theory to the �4 model
in two dimensions �i.e., either at fixed dimension d=2 or
within an � expansion in 4−� dimensions extrapolated to
�=2� because of the large value of the renormalized four-
point coupling at the fixed point for d=2. No special reason
exists, on the other hand, as to why no attention has been
paid in the literature to the Gaussian model in d=3 film or
d=2 strip geometries with several different boundary condi-
tions, although this model is exactly solvable and does pro-
vide valuable and interesting information on various aspects
of the free energy and the Casimir force, as we shall demon-
strate in this paper. A short summary of our main results is
given below.

�i� Gaussian model as the basis for the mean spherical
model. The exactly solvable mean spherical model �MSM�
�25� has played an important role in the analysis of finite-size
effects near critical points where, however, the free energy
and the critical Casimir force have been studied, for a long
time, only for periodic bc �26�. A calculation of the critical
Casimir force in the MSM for nonperiodic bc was performed
recently �27�, with a few results in film geometry in 2�d
�3 dimensions. Clearly these results need to be extended to
a more complete investigation. A serious shortcoming of the
MSM is the pathological behavior of the surface and finite-
size properties in d	3 dimensions �25,28� with logarithmic
deviations from scaling in d=3 dimensions. Such logarithms
were also found in the Casimir force and the free energy
�27,29�. A profound understanding of these pathologies is
important for the appropriate interpretation of the deviations
from finite-size scaling in the MSM. It was suggested earlier
�30� that the pathologies in the MSM should be attributed to
the effective long-range interaction induced by the con-
straint. The earlier analyses for nonperiodic bc �see �26��,
however, were restricted to integer dimensions d=3,4 , . . .. A
more recent study �31� of the full continuous range of 2
�d�4 dimensions revealed the absence of pathologies for
d�3 and identified the origin of the nonscaling features for
d	3 as a consequence of the properties of the ordinary
Gaussian model with short-range interactions. The crucial
point is that the MSM can be considered as a Gaussian
model with a constraint and that there exists a borderline
dimension d*=3 in the Gaussian model above which the
Gaussian surface energy density has a nonuniversal finite
cusp at bulk Tc. This cusp causes all nonscaling effects for
d
3, while for d*=3 the logarithmic divergence of the
Gaussian surface energy density explains the logarithmic de-
viations from scaling in the three-dimensional MSM �31�.
Both pathologies enter the MSM through the Gaussian sur-
face terms of the constraint equation. The long-range inter-
action induced by the constraint does not yet introduce a
nonuniversal parameter but it is rather the combination with
the borderline dimension d*=3 of the Gaussian model with
short-range interactions that is the origin of the nonuniversal
nonscaling features for d	3. The analysis of �31� was re-
stricted to the regime t	0 with t��T−Tc� /Tc for Dirichlet
bc, without considering the critical Casimir force. Our goal is

to fully explore the finite-size critical behavior of the free
energy and the critical Casimir force of the MSM both above
and below Tc for five different bc and to properly explain the
expected deviations from finite-size scaling in three dimen-
sions as well as to study the scaling functions for all bc in
2�d�3 dimensions. It is our conviction that this goal must
be based on a profound analysis of the Gaussian model as a
first step, before turning to the MSM. The appropriateness of
this strategy was demonstrated earlier in �31�. In the present
paper we perform this first step. Our main results that will be
relevant to our forthcoming analysis of the MSM are as fol-
lows. �a� Our results provide an exact description of the di-
mensional crossover from the d-dimensional finite-size criti-
cal behavior near bulk Tc to the �d−1�-dimensional critical
behavior near Tc,film, which is illustrated in Sec. VIII for the
critical behavior of the specific heat. This dimensional cross-
over will constitute the basis for describing the correspond-
ing crossover from bulk Tc to T→0 for d�3 in the MSM.
�b� Our exact calculation includes nonnegligible logarithmic
nonscaling lattice effects in d=3 dimensions for the case of
Neumann bc and Dirichlet bc that have not been captured by
the method of dimensional regularization used in Ref. �8�.
Such effects will be important for the interpretation of the
logarithmic nonscaling behavior in the d=3 MSM model. �c�
For the case of mixed Neumann-Dirichlet �ND� bc, a strong
power-law violation of scaling is found in general dimen-
sions 1�d�4 that has an important impact on the scaling
structure of the free energy density in a large part of the
L−1/�− t planes of both the Gaussian model and the MSM and
that is expected to imply unusually large corrections to scal-
ing in the �4 theory.

�ii� Gaussian model scaling functions as one-loop
renormalization-group (RG) scaling functions. There is an-
other important reason for studying finite-size effects of
the Gaussian model. After appropriate renormalization, the
Gaussian results for the free energy, Casimir force, and spe-
cific heat can be reformulated as one-loop contributions of
the �4 field theory. From previous work �32� it is known
that, within the minimal subtraction scheme in d=3 dimen-
sions �33�, the one-loop bulk amplitude function of the
specific heat provides a reasonable approximation above Tc
and that the one-loop finite-size contributions for Dirichlet
bc �11,12� yield good agreement with specific-heat data
�1,34� of confined 4He in film geometry above and at the
superfluid transition. This suggests to determine the one-loop
results for the free energy and the critical Casimir force
within the minimal subtraction scheme at fixed dimension d
and to compare these results with �=4−d expansion results
at �=1 �8,9,14,15�, with recent MC data �5,6,35�, and with
the recent result of an improved d=3 perturbation theory
�17� in an L�

2�L slab geometry with a finite aspect ratio
�=L /L� =1 /4. As suggested by the earlier successes
�12,17,36�, the minimally renormalized �4 theory at fixed d
is expected to constitute an important alternative in the de-
termination of the Casimir force scaling function in compari-
son to the earlier � expansion approach �8,9,15�. It is one of
the central achievements of this paper that our d=3 one-loop
RG results shown in Fig. 5 below indeed support this expec-
tation.

BORIS KASTENING AND VOLKER DOHM PHYSICAL REVIEW E 81, 061106 �2010�

061106-2



�iii� Casimir force scaling functions in two dimensions.
Most of our Gaussian results are valid in 1�d�4 dimen-
sions. This permits us to study the interesting case d=2
and to compare it with the exact results of the two-
dimensional Ising model �20,23,24�. As a totally unexpected
result we find �in Sec. VI� surprising relations between the
Casimir scaling functions of the Gaussian model with peri-
odic �antiperiodic� bc and those of the Ising model with
antiperiodic �periodic� bc. Our comparison between these
models also identifies the magnitude of non-Gaussian fluc-
tuation effects in the two-dimensional �4 model for several
bc.

�iv� Nonuniversal anisotropy effects. It has often
been stated in the earlier and recent literature
�5,10,14,15,24,26,37� that the critical Casimir force scaling
functions are universal, i.e., “independent of microscopic de-
tails.” In view of these claims we briefly study the case
of a simple example of anisotropic couplings, i.e., two
different nearest-neighbor couplings J� and J� in the hori-
zontal and vertical directions, respectively. Our exact results
for the Gaussian model show that these anisotropic couplings
imply nonuniversal scaling functions of the Casimir force
that depend explicitly on J� and J� for all bc, as predicted by
Chen and Dohm �36,38–40� and recently confirmed by
Dantchev and Grüneberg �41� for the case of antiperiodic bc
in the large-n limit for 2�d�4. In particular, we verify for
all bc the exact relation �38,41� 
aniso= �J� /J���d−1�/2
iso

between the Casimir amplitudes of the isotropic and
anisotropic film system within the d-dimensional Gaussian
model. We also extend this kind of relation to the two-
dimensional Ising model for periodic and antiperiodic bc
in the form 
aniso= ��0,� /�0,��
iso, where �0,� and �0,� are
the correlation-length amplitudes perpendicular and parallel
to the boundaries of the Ising strip. For the case of free
bc at Tc, such a relation was found earlier by Indekeu et al.
�20�. It would be interesting to test such nonuniversal aniso-
tropy effects by MC simulations for the critical Casimir
force, in addition to those for the critical Binder cumulant
�42�.

As a general remark we note that the Gaussian model
does not have upper or lower critical dimensions; for this
reason many of our results are valid for arbitrary d
0 ex-
cept for certain integer d where logarithms appear �at even
integer d for bulk properties and odd integer d for surface
properties�.

The outline of our paper is as follows. In Sec. II we define
our model, review the relevant bulk critical properties in d

0 dimensions, and give a short account of what effects
arise if the model is anisotropic. In Sec. III, we consider the
film critical behavior in 2�d�4 dimensions. In Sec. IV, we
derive and discuss the singular contributions to the free en-
ergy density in 1�d�4 dimensions. In Secs. V and VI the
Casimir force is considered, in Sec. VII our results are refor-
mulated as one-loop RG results of the �4 field theory and are
compared to other RG and MC results, while in Sec. VIII we
focus on the specific heat and its crossover from d to d−1
dimensions. The Appendixes are reserved for details of our
calculations.

II. GAUSSIAN MODEL IN FILM GEOMETRY

A. Lattice Hamiltonian and basic definitions

We start from the Gaussian lattice Hamiltonian �divided
by kBT�

H = ãd� r0

2 �
x

Sx
2 +

1

2ã2 �
x,x�

Jx,x��Sx − Sx��
2	 , �2.1�

with Sx
2=��=1

n �Sx
����2 and with couplings Jx,x� between the

continuous n-component vector variables Sx= �Sx
�1� , . . . ,Sx

�n��
on the lattice points x of a d-dimensional simple-cubic lattice
with lattice spacing ã. The components Sx

��� vary in the range
−��Sx

����+�. Unless stated otherwise, we shall assume an
isotropic nearest-neighbor ferromagnetic coupling Jx,x�=J

0, Jx,x�=0 for 
x−x�

 ã. In the discussion of our results
we shall also comment on the case of anisotropic short-range
interactions Jx,x� with a positive definite anisotropy matrix A
�36� as defined in Eqs. �2.43� and �2.52� below. The only
temperature dependence enters via r0=a0t�a0�T−Tc� /Tc,
a0
0, where Tc is the bulk critical temperature. We assume
N�N�

d−1�N lattice points in a finite rectangular box of vol-
ume V=L�

d−1�L=Nãd, where L� �N�ã and L�Nã are the
lattice’ extension in the d−1 “horizontal” directions and in
the one “vertical” direction, respectively. Thus we have N
layers each of which has N�

d−1 fluctuating variables. The lat-
tice points are labeled by x= �y ,z� with y= �y1 , . . . ,yd−1�. We
assume periodic bc in the horizontal �y� directions. As we
shall take the film limit N�→�, the relevant bc are those in
the vertical �z� direction. The top and bottom surfaces have
the coordinates z1= ã and zN=L, respectively. It is convenient
to formulate the vertical bc by adding two fictitious layers
with vertical coordinates z0=0 and zN+1=L+ ã below the bot-
tom surface and above the top surface, respectively, for each
value of the d−1 horizontal coordinates. Then we may define
periodic �p�, antiperiodic �a�, Neumann-Neumann �NN�,
Dirichlet-Dirichlet �DD�, and Neumann-Dirichlet �ND� bc by

p: SzN+1
= Sz1

, �2.2a�

a: SzN+1
= − Sz1

, �2.2b�

NN: Sz0
= Sz1

, SzN+1
= SzN

, �2.2c�

DD: Sz0
= 0, SzN+1

= 0, �2.2d�

ND: Sz0
= Sz1

, SzN+1
= 0, �2.2e�

where we have omitted the y coordinates. We use the repre-
sentation

Sy,z = �
p,q

Ŝp,quL
����z,q��

i=1

d−1

uL�

�p��yi,pi� , �2.3�
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uL
�p��z,qm� =

1
�N


cos qmz = 1, m = 0

�2 cos qmz , 1 � m � N/2

cos qmz = cos
�z

ã
, m = N/2

�2 sin qmz , N/2 � m � N − 1,
� qm =

2�m

L
, �2.4a�

uL
�a��z,qm� =

1
�N


�2 cos qmz , 0 � m � �N − 1�/2

cos qmz = cos
�z

ã
, m = �N − 1�/2

�2 sin qmz , �N − 1�/2 � m � N − 1,
� qm =

2��m +
1

2
�

L
, �2.4b�

uL
�NN��z,qm� =

1
�N
cos qm�z −

ã

2
� = 1, m = 0

�2 cos qm�z −
ã

2
� , m = 1, . . . ,N − 1,� qm =

�m

L
, �2.4c�

uL
�DD��z,qm� =� 2

N + 1
sin qmz, m = 0, . . . ,N − 1, qm =

��m + 1�
L + ã

, �2.4d�

uL
�ND��z,qm� =� 2

N +
1

2

cos qm�z −
ã

2
�, m = 0, . . . ,N − 1, qm =

��m +
1

2
�

L +
1

2
ã

, �2.4e�

with the Fourier amplitudes Ŝp,q and the complete set uL
��� of

real orthonormal functions, where, for the d−1 horizontal
directions, the uL

�p��z ,qm� are used with the replacements
L→L�, z→yi, and qm→pi,mi

=2�mi /L�. The m=N /2 mode
for periodic bc �the m= �N−1� /2 mode for antiperiodic bc� is
only present if N is even �if N is odd�. The above mode
functions are equivalent to those in �25,31,43�, where com-
plex mode functions for periodic and antiperiodic bc have
been used instead of our real mode functions.

Functions �2.4� satisfy the orthonormality conditions

�
zj

uL�zj,qm�uL�zj,qm�� = �m,m�, �2.5a�

�
qm

uL�zj,qm�uL�zj�,qm� = � j,j�, �2.5b�

with zj � jã, j=1, . . . ,N. For the case of isotropic nearest-
neighbor couplings J
0, this yields the diagonalized Hamil-
tonian

H =
1

2
ãd�

p,q
�r0 + Jp,d−1 + Jq�Ŝp,q

2 , �2.6�

Jp,d−1 �
4J

ã2 �
i=1

d−1

�1 − cos piã� , �2.7a�

Jq �
4J

ã2 �1 − cos qã� . �2.7b�

Equations �2.7� reflect the cubic anisotropy of the lattice. The
lowest modes have p=0 and are homogeneous �q0=0� for
periodic and NN bc, whereas they are z dependent with q0
=� / �L+ ã� for DD bc and q0=� / �2L+ ã� for ND bc. For
antiperiodic bc, there is a twofold degeneracy of the lowest
modes with q0=� /L and qN−1=−� /L+2� / ã since Jq0
=JqN−1

. This has important consequences for the behavior of
the free energy and specific heat near the film critical tem-
perature, see Secs. III, IV A, and VIII below. A correspond-
ing twofold degeneracy of the ground state is known for the
mean spherical model with antiperiodic bc �41�.

We note that the boundary conditions assumed in Eq.
�2.2� do not depend on any nonuniversal parameter. They are
conceptually simple and represent only a small subset of a
large class of more complicated boundary conditions. The
latter may exist in the presence of an anisotropic lattice struc-
ture whose symmetry axes are not orthogonal to the bound-
aries but have skew directions relative to the boundaries.
Such more complicated systems �which, however, belong to
the same bulk universality class as standard spin models—
such as Ising models with nearest-neighbor couplings on
simple-cubic lattices� indeed exist, e.g., among real magnetic
materials with a nonorthorhombic lattice structure. Models
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of such systems may also arise after a shear transformation
has been performed to an isotropic system �36� if the original
lattice model has noncubic anisotropies. In this case the
transformed boundary conditions depend on the original an-
isotropy parameters and therefore give rise to nonuniversal
finite-size effects. We shall come back to such skew nonuni-
versal boundary conditions in the context of the discussion of
two-scale factor universality in Sec. II C.

The dimensionless partition function is

Z�t,L�,L� = ��
y,z
�

−�

+� dnSy,z

ã�2−d�n/2	exp�− H�

= ��
p,q
�

−�

+� dnŜp,q

ã�2−d�n/2	exp�− H�

= �
p,q

� 2�

ã2�r0 + Jp,d−1 + Jq�
�n/2

, �2.8�

where we have used that, due to the orthonormality of the

uL, the linear transformation Sy,z→ Ŝp,q has a Jacobian


��Sy,z /�Ŝp,q�
=1.
The film limit is defined for d
1 by letting L�→� while

keeping L finite. In this limit the Gaussian free energy per
component and per unit volume divided by kBT is given for
r0	r0c,film�L� by

f�t,L� = −
1

n
lim

L�→�

1

L�
d−1L

ln Z�t,L�,L� = −
1

2ãd ln�2��

+
1

2L
�

q
�

p

�d−1�

ln�ã2�r0 + Jp,d−1 + Jq�� , �2.9�

where �p
�d−1���i=1

d−1�−�/ã
+�/ãdpi / �2��. A film critical point exists

at r0=r0c,film�L�, where the argument of the logarithm on the
right hand side of Eq. �2.9� vanishes for p=0 and q=q0.

As a shortcoming of the Gaussian model, the bulk critical
value r0c=0 and the film critical value r0c,film�L� are indepen-
dent of d and n, and no low-temperature phase exists. Fur-
thermore, the Gaussian r0c is not affected by lattice anisotro-
pies, in contrast to r0c,film�L�, which depends explicitly on the
anisotropic couplings Jx,x� �see Sec. III�. For antiperiodic,
DD, and ND bc, r0c,film�L� is negative, thus the free energy
�2.9� exists for negative values of r0 in these cases. The
region r0c,film�L��r0�0 will be of particular interest for the
study of the mean spherical model below the bulk transition
temperature �44�. The film critical behavior of the Gaussian
model will be discussed in more detail in Sec. III.

The bulk limit is obtained by letting L→�, L−1�q→�q

��−�/ã
+�/ãdq / �2��. The bulk free energy density per component

divided by kBT is, for t	0,

fb�t� � f�t,�� = −
1

2ãd ln�2�� +
1

2
�

k

�d�

ln�ã2�r0 + Jk,d�� .

�2.10�

In the long-wavelength limit, the cubic anisotropy does not
matter and Jk,d=2Jk2+O�k4� becomes isotropic which justi-

fies to define a single second-moment bulk correlation length
� above Tc,

�2 = lim
L→�

1

2d

�
x,x�

�x − x��2�SxSx��

�
x,x�

�SxSx��
. �2.11�

The latter is given by

� = �2J/r0�1/2 = �0t−�, �0 = �2J/a0��, � = 1/2.

�2.12�

In the presence of NN or DD bc, there are surface free
energy densities per component 2fsf

�N��t� and 2fsf
�D��t� for

t
0 as defined by

fsf�t� =
1

2
lim
L→�

�L�f�t,L� − fb�t��� . �2.13�

In the presence of ND bc, the total surface free energy den-
sity per component is

2fsf
�ND��t� = fsf

�N��t� + fsf
�D��t� . �2.14�

For periodic and antiperiodic bc there exist no surface con-
tributions.

For small t
0, the bulk and surface free energy densities
will be decomposed into singular and nonsingular parts as

fb�t� = fb,s�t� + fb,ns�t� , �2.15a�

fsf�t� = fsf,s�t� + fsf,ns�t� , �2.15b�

where fb,ns�t� and fsf,ns�t� have an expansion in positive inte-
ger powers of t. For small t and large L, it is expected
�21,22,45� that, for the Gaussian model �2.1� in film geom-
etry, the free energy density can be decomposed as

f�t,L� = fs�t,L� + fns�t,L� , �2.16�

fns�t,L� = fb,ns�t� + L−1�fsf,ns
top �t� + fsf,ns

bot �t�� , �2.17�

where “top” and “bot” refer to the top and bottom surfaces of
the film. In the absence of logarithmic bulk singularities �21�,
i.e., for d�2 and d�4, and in the absence of logarithmic
surface singularities �31�, i.e., for d�3 �or periodic or anti-
periodic bc�, the singular part is expected to have the finite-
size scaling form �46�

fs�t,L� = L−dF�C1tL1/�� , �2.18�

with a nonuniversal parameter C1. For given bc, the scaling
function F�x̃� is expected to be universal only within the
subclass of isotropic systems but nonuniversal for the sub-
class of anisotropic systems of noncubic symmetry within
the same universality class �36,38�, see Eqs. �2.44�–�2.58�
below. A convenient choice of the scaling variable x̃ is

x̃ = t�L/�0�1/�, �2.19�

i.e., C1=�0
−1/�. The bulk singular part
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fb,s�t� = Yd�−d, d 
 0, d � 2,4,6, . . . , �2.20�

see Sec. II B below, with a universal bulk amplitude Yd
is included in Eq. �2.18� through Yd=limx̃→� x̃−d�F�x̃� for
1�d�4, d�2. For the surface free energy density, Eq.
�2.18� implies

fsf,s�t� = Asf�
1−d, �2.21�

with a universal surface amplitude Asf
= limx̃→� x̃−�d−1���F�x̃�−Ydx̃d��.

For fixed t
0 and large L it is expected �21,22,36,47�
that the free energy density can be represented as

f�t,L� = fb�t� + L−1�fsf
top�t� + fsf

bot�t�� + L−dG�x̃� + O�e−L/�e� .

�2.22�

In Eq. �2.22�, �e is the exponential bulk correlation length in
the direction of one of the cubic axes �36,47�

�e � �2

ã
arsinh

ã

2�
�−1

. �2.23�

Its deviation from � for finite ã causes scaling to be violated
�36,47� for fixed t
0 and large L�24�3 / ã2, i.e., x̃
�576�� / ã�4. We recall that this scaling violation is a general
consequence of the exponential structure of the excess free
energy for large L at fixed � and is a lattice �or cutoff� effect
that is predicted to occur not only in the Gaussian model but
also quite generally in the �4 lattice �or field� theory for
systems with short-range interactions �36,47�. This effect is
different in structure from additional nonscaling effects that
occur in the presence of subleading long-range �van der
Waals type� interactions �36,48�.

In the absence of long-range interactions, no contributions
�L−m with m
1, m�d should exist in Eq. �2.22� for film
geometry. The representation �2.22� separates the finite-size
part �L−d from the surface parts �L−1. The latter do not
contribute to the Casimir force scaling function X�x̃� to be
discussed in Sec. V.

If Eqs. �2.18� and �2.20�–�2.22� are valid, the connection
between F, Asf, and G is, for x̃
0,

F�x̃� = Ydx̃d� + �Asf
top + Asf

bot�x̃�d−1�� + G�x̃� . �2.24�

In Sec. IV we shall examine the range of validity of the
structure of Eqs. �2.18�, �2.22�, and �2.24� for the Gaussian
model for various bc and calculate the scaling functions.

In Sec. VIII we shall also discuss the specific heat �heat
capacity per unit volume� divided by kB

C�t,L� = �U�t,L�/�T , �2.25�

where U�t ,L�=−T2�f�t ,L� /�T is the energy density �internal
energy per unit volume� divided by kB, with the singular bulk
part

Ub,s�t� = − Tc�0
−1/�d�Yd�−�1−��/�. �2.26�

The surface part of the energy density is Usf�t�
=−T2�fsf�t� /�T, with the singular part

Usf,s�t� = − Tc�0
−1/��d − 1��Asf�

−�1−�−��/�. �2.27�

In Eqs. �2.26� and �2.27� we have used the hyperscaling re-
lation d�=2−�, with the Gaussian exponent

� = �4 − d�/2, d � 4. �2.28�

In the presence of NN, ND, and DD bc, logarithmic devia-
tions from the scaling structure of Eqs. �2.18�, �2.21�, �2.24�,
and �2.27� are expected for the Gaussian model in the bor-
derline dimension d*=3 �31� because of the vanishing of the
critical exponent

1 − � − � = �d − 3�/2 �2.29�

of the singular part of the surface energy density �2.27�.
�This is similar to the logarithmic deviations for systems
with periodic bc �49� at d=4, where the specific-heat expo-
nent � vanishes.� In this case, F�x̃� and Asf do not exist, but
G�x̃� and X�x̃� remain well defined. The positivity of expo-
nent �2.29� for d
3 implies a nonuniversal cusp that is re-
sponsible for the nonscaling features in the MSM for d
3
�31�.

Moreover, logarithmic deviations from the structure of
Eqs. �2.20� and �2.26� are expected for the Gaussian model
in the borderline dimension d=2 because of the vanishing of
the critical exponent

1 − � = �d − 2�/2 �2.30�

of the singular part of the bulk energy density �2.26�.

B. Bulk critical properties

In contrast to real systems with short-range interactions,
the Gaussian model has a bulk phase transition at r0=0 for
any dimension d
0 including d=1. In the following we
present both the singular and nonsingular parts of the bulk
critical behavior of the free energy since they will be needed
in the context of the mean spherical model in a subsequent
part of the present work �44�. The exact result for the bulk
free energy density for r0	0 in d
0 dimensions is

fb�t� =
1

2ãd�ln
J

�
+ W̃d�r̃0�	 , �2.31�

where r̃0�r0ã2 / �2J� and

W̃d�z� � �
0

� dy

y
�e−y/2 − e−zy/2B�y�d� , �2.32�

with

B�y� � e−yI0�y� , �2.33�

and where I0 is a Bessel function of order zero, I0�z�
=�−1�0

�d� exp�z cos ��. From the large-y behavior �B12� of
B�y�, the universal amplitude of Eq. �2.20� in d
0, d
�2,4 ,6 , . . . dimensions is derived as

Yd = −
��− d/2�
2�4��d/2 , �2.34�

with Y3=−�12��−1. The nonsingular bulk part fb,ns�t� has an
expansion in integer powers of r̃0,
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fb,ns�t� = fb,ns�0� +
1

2ãd �f1r̃0 + O�r̃0
2�� , �2.35�

where

fb,ns�0� = fb�0� =
1

2ãd�ln
J

�
+ W̃d�0�	 , �2.36�

f1 = 
1

2
�

0

�

dy�B�y�d − �2�y�−d/2� , 0 � d � 2,

Wd�0� , d 
 2,
�

�2.37�

with the generalized Watson function �25�

Wd�z� � W̃d��z� =
1

2
�

0

�

dye−zy/2B�y�d. �2.38�

In order to appropriately interpret the critical behavior
of the three-dimensional system in film geometry in
Secs. III–VIII below it is important to first consider

the bulk critical behavior in two dimensions. While W̃2�0�
=4G /� with Catalan’s constant G�0.915 966 is finite, both
Yd=−1 / �4��d−2��+O��d−2�0� and Wd�0�=1 / �2��d−2��
+O��d−2�0� diverge as d→2+. However, the sum of the re-
spective contributions to the singular and the nonsingular
part of the free energy remains finite and we obtain the bulk
free energy per unit area

fb�t� = fb�0� +
ln��/ã�
4��2 +

ln 2 − 1

16�J
r0 + O�r0

2�, d = 2,

�2.39�

with the singular part

fb,s�t� =
ln��/ã�
4��2 , d = 2. �2.40�

The logarithmic structure is related to the vanishing of
1−� for d=2, see Eq. �2.30�. In Sec. VI we shall compare
the Casimir force scaling function of the Gaussian model
with that of the two-dimensional Ising model. This compari-
son will be restricted to the regime T	Tc. Correspondingly,
we comment here on the Ising bulk free energy only for this
case. For T
Tc the bulk correlation length of the d=2 Ising
model is, asymptotically, �=�0+t−� with �=1. In terms of this
length, the singular part of the bulk free energy density of the
d=2 Ising model �on a square lattice with lattice spacing ã�
has the same form as given by Eq. �2.40� but with a negative
amplitude −1 / �4�� instead of 1 / �4�� for the d=2 Gaussian
model.

In contrast to the universal power-law structure �2.20� for
d
0, d�2,4 ,6 , . . ., the logarithmic structure �2.40� contains
the nonuniversal microscopic reference length ã. Other ref-
erence lengths are expected for other lattice structures,
whereas the amplitude 1 / �4�� is expected to be universal.
The choice of the amplitude of such reference lengths is not
unique but in our case the lattice spacing ã appears to be
most natural for the cubic lattice structure. �Due to the arti-

fact of the Gaussian model and the d=2 Ising model that
�−2� t and �−2� t2, respectively, are analytic functions of t, a
different choice cã with c�1 as a reference length would
yield a different decomposition into singular and nonsingular
parts.�

C. Isotropic and anisotropic continuum Hamiltonian

For the purpose of a comparison with the results of �4

field theory we shall also consider the continuum version of
the Gaussian lattice model �2.1� for an n-component vector
field ��x�. For the choice 2J=1 the isotropic �4 Hamiltonian
reads

Hfield = �
V

ddx� r0

2
�2 +

1

2 �
�=1

d � ��

�x�
�2

+ u0��2�2	 ,

�2.41�

with some cutoff � in k space. The field ��x�=��y ,z� sat-
isfies the various bc that are the continuum analogues �8� of
Eqs. �2.2�. In Sec. VII our Gaussian results based on H, Eq.
�2.1�, in the limit ã→0 will be renormalized and reformu-
lated as one-loop contributions of the minimally renormal-
ized �4 field theory at fixed dimension 2�d�4 �33,36�
based on Hfield, Eq. �2.41�, in the limit �→�. The role
played by the d=3 RG approach will be to change the Gauss-
ian critical exponent �=1 /2 to the exact critical exponent �
at d=3 entering the correlation length � which appears in the
scaling argument of the scaling functions of the renormalized
�4 field theory. This will then justify to compare the resulting
one-loop finite-size scaling functions of the Casimir force in
d=3 dimensions with MC data for the three-dimensional
Ising model �6�, with higher-loop �=4−d expansion results
at �=1 �8,15�, and with the recent result of an improved
d=3 perturbation theory �17� in an L�

2�L slab geometry with
a finite aspect ratio �=L /L� =1 /4.

We shall also consider the anisotropic extension of �2.41�
�38�

H field
aniso

= �
V

ddx� r0

2
�2 + �

�,�=1

d
A��

2

��

�x�

��

�x�

+ u0��2�2	 .

�2.42�

The expression for the symmetric anisotropy matrix A
= �A��� in terms of the microscopic couplings Jx,x� of the
lattice Hamiltonian H, Eq. �2.1�, is given by the second mo-
ments �39,36�

A�� = A�� =
1

Nã2 �
x,x�

�x� − x����x� − x���Jx,x�. �2.43�

In the case of isotropic nearest-neighbor couplings J on a
simple-cubic lattice we have simply A��=2J���. In general,
A�� is nondiagonal and contains d�d+1� /2 independent non-
universal matrix elements.

The relation between the finite-size critical behavior of
isotropic and anisotropic systems was recently discussed in
detail for the case of a finite rectangular geometry with peri-
odic bc �36,38,39�. It was shown that the relation between
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the anisotropic and isotropic critical behavior is brought
about by a shear transformation. In real space, this transfor-
mation is described by the matrix product �−1/2U, with an
orthogonal matrix U that diagonalizes A according to �
=UAU−1, where � is a diagonal matrix whose diagonal ele-
ments are the �positive� eigenvalues of A. This transforma-
tion causes a nonuniversal distortion of the rectangular shape
to a parallelepipedal shape, of the simple-cubic lattice struc-
ture to a triclinic lattice structure, and of the periodic bc
along the rectangular symmetry axes to periodic bc along the
corresponding skew lattice axes of the triclinic lattice. The
general structure of the scaling form of the free energy den-
sity is expressed in terms of the characteristic length L�
=V�1/d, where V� is the finite volume of the parallelepiped
�see Eqs. �1.3� and �4.1� of �36��. This is, however, not di-
rectly applicable to our present model with film geometry
with an infinite volume and with various bc. Furthermore, a
significant difference occurs in film geometry due to the ex-
istence of a film transition temperature that is affected by
anisotropy for the cases of antiperiodic, DD, and ND bound-
ary conditions. Thus anisotropy effects in film geometry de-
serve a separate discussion. In particular, we shall compare
our results with those of Indekeu et al. �20�, who studied an
anisotropic Ising model on a two-dimensional infinite strip.

In �38� it was found that, for 2�d�4 in the large-n limit
of the �4 theory above bulk Tc in film geometry with peri-
odic bc, the universal structure �2.18� is replaced by

fs,aniso�t,L;A� = L−d��Ā−1�dd�−d/2Fiso��L̃/���1/�� ,

�2.44�

where Fiso is the scaling function of a film system described
by the isotropic �4 theory with ordinary periodic bc, but
where the scaling argument contains the transformed length

L̃ = ��A−1�dd�1/2L , �2.45�

and where �� is the bulk correlation length of the isotropic

system. In Eq. �2.44�, �Ā−1�dd denotes the dth diagonal ele-

ment of the inverse of the reduced matrix Ā=A / �det A�1/d. In
�38� the simplicity of the structure of Eq. �2.44� was attrib-
uted to the large-n limit. In general one expects that
fs,aniso�t ,L ;A� is expressed in terms of the scaling function of
an isotropic system that has transformed boundary condi-
tions which are not identical with those of the original aniso-
tropic system. For a brief discussion of such boundary con-
ditions see the paragraph before Eq. �2.8� in Sec. II A.

A simplifying feature of film geometry is that the shear
transformation preserves the film geometry except that the

original thickness L is transformed to a different thickness L̄.

In general, the length L̃ appearing in the scaling argument of

Fiso in Eq. �2.44� is not the transformed thickness L̄ but
rather the distance between those points on the opposite sur-
faces in the transformed film system that are connected via
the periodicity requirement �38�; this distance is measured
along the corresponding skew lattice axis. The correctness of
this geometric interpretation can be seen as follows. Let
x̂d� ẑ be the unit vector in the z direction, i.e., orthogonal to

the film boundaries. Then L̃ is the length of the vector L̃
obtained by transforming the vector Lx̂d, i.e.,

L̃ = �−1/2ULx̂d, �2.46�

and therefore

L̃ = 
�−1/2ULx̂d
 = 
x̂d
TU−1�−1/2�−1/2Ux̂d
1/2L

= 
x̂d
TU−1�−1Ux̂d
1/2L = 
x̂d

TA−1x̂d
1/2L = ��A−1�dd�1/2L ,

�2.47�

in agreement with Eq. �2.45�. A corresponding statement
holds for antiperiodic bc.

As we show in Appendix A, the thickness L̄ of the trans-
formed isotropic film is given by

L̄ = �det A−1/det†�A−1�‡�1/2L , �2.48�

where the �d−1�� �d−1� matrix [�A−1�] is obtained by re-
moving the dth row and column from A−1.

It is possible to express Eq. �2.44� in terms of the single

length L̃ by rewriting

fs,aniso�t,L;A� = �det A�−1/2fs,iso�t,L̃� , �2.49�

fs,iso�t,L̃� = L̃−dFiso��L̃/���1/�� . �2.50�

Thus, apart from the geometric factor �det A�−1/2 that de-
scribes the change in the volume of the primitive cell under
the shear transformation, fs,aniso is given, in the large-n limit,

by the free energy fs,iso�t , L̃� of an isotropic film with an

effective thickness L̃� L̄ with ordinary periodic bc. We con-
jecture that the structure of Eq. �2.49� with Eq. �2.50� is
exactly valid also for the Gaussian model with periodic bc. A
similar structure is expected to be valid for the Gaussian
model with antiperiodic bc except that the scaling argument
should be expressed in terms of t rather than � in order to
capture the regime Tc,film�T�Tc,bulk. Furthermore, the ef-
fect of the anisotropy on Tc,film needs to be taken into ac-
count �see Sec. III below�.

A nontrivial situation exists in the case of NN and ND bc
because Neumann bc involve a restriction on the spatial de-
rivative perpendicular to the boundary which, after the trans-
formation, turns into a derivative in a skew direction not
necessarily perpendicular to the transformed boundary. Thus
the isotropic film system still carries the nonuniversal aniso-
tropy information of the original system both in its changed
thickness and in the nonuniversal orientation of its trans-
formed boundary conditions. Thus both nonuniversality and
anisotropy are still present at the boundaries of the trans-
formed system. The same assertion applies to periodic and
antiperiodic bc. Clearly, since boundary conditions dominate
the finite-size critical behavior at Tc where the correlation
lengths extend over the entire thickness of the film system,
the above reasoning implies that universality is not restored
by the shear transformation in spite of internal isotropy �in
the long-wavelength limit� of the transformed system away
from the boundaries. In other words, even this internal isot-
ropy of a confined system does not ensure the universality of
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its critical finite-size properties because of the nonuniversal-
ity contained in the boundary conditions. In the light of these
facts we consider as incorrect the recent assertion by Diehl
and Chamati �50� that “the critical properties of an aniso-
tropic system can be expressed in terms of the universal
properties of the conventional �i.e., isotropic� �4 theory.”

More specifically, even after the shear transformation, the
finite-size effects of the transformed isotropic system still
depend, in general, on d�d+1� /2+1 nonuniversal parameters
�see Eqs. �1.3�–�1.5� of �36��, contrary to the hypothesis of
two-scale factor universality �22,46�. This multiparameter
universality is fully compatible with the general framework
of the RG theory �36�. Technically, these parameters enter
through the transformed wave vectors k� of the isotropic
system, thus the dependence of finite-size properties on A��

cannot be eliminated by the shear transformation as demon-
strated explicitly for the example of periodic bc in Eq. �2.22�
of �36�. We conclude that there is no basis for complying
with the traditional picture of two-scale factor universality
according to the suggestion “to define two-scale factor uni-
versality only after the transformation to the primed vari-
ables �of the isotropic system� has been made” �50�. This
suggestion would be applicable only to bulk properties of the
transformed system.

A special case is the case of DD bc �vanishing order-
parameter field � at the boundaries� or free bc �no condition
on the fluctuating variables at the boundaries� since these bc
are invariant under the shear transformation and therefore do
not violate isotropy. In particular, these bc do not introduce
any nonuniversal parameter. Nevertheless, even in this case
there is a nontrivial shift of Tc,film of the film critical point of
systems in the ordinary �d ,n� universality classes �for n=1,
d
2, for n=2, d	3, and for n
2, d
3� due to anisotropy.
For the special case d=2, n=1, however, i.e., for a system of
the Ising universality class on an infinite strip of finite width,
there is no separate “film” transition and thus no analog of a
finite Tc,film
0 exists. This conceptually simplest case was
studied by Indekeu et al. �20� as will be further discussed
below. One may conjecture that for DD bc the structure of
Eq. �2.44� is valid also for the d-dimensional Gaussian model

where, however, the length L̃ in �2.44� is to be replaced by L̄,
Eq. �2.48�.

An open question remains as to what extent the structure
of Eq. �2.44� with Eq. �2.45� �and correspondingly of Eq.
�2.58� below� is valid even for the full �4 model with finite n
in d dimensions and even for real film systems. It would be
interesting to explore this problem theoretically as well as by
means of MC simulations for a variety of anisotropic spin
models in film geometry with various bc and various
anisotropies.

The situation becomes particularly simple if the matrix A
is diagonal in which case the original simple-cubic lattice of
the anisotropic system is distorted only to an orthorhombic
lattice of the isotropic system that still has a rectangular

structure. Then we have L̄= L̃=Add
−1/2L, see Appendix A. In

the following we confine ourselves to this simple case.
We consider only two different nearest-neighbor interac-

tions J� and J� in the “horizontal” and “vertical” directions.
This corresponds to replacing Eqs. �2.7� by

Jp,d−1 �
4J�

ã2 �
i=1

d−1

�1 − cos piã� , �2.51a�

Jq �
4J�

ã2 �1 − cos qã� , �2.51b�

in which case A is given in three dimensions by

A = 2�J� 0 0

0 J� 0

0 0 J�

� . �2.52�

In this case we must distinguish two different correlation
lengths �� and ��. For the Gaussian model they are given by

�� = �0,�t
−�, �0,� = �2J�/a0��, � = 1/2, �2.53a�

�� = �0,�t−�, �0,� = �2J�/a0��, � = 1/2. �2.53b�

The existence of two different correlation lengths implies the
absence of two-scale factor universality �36,38,39�. As a con-
sequence, all bulk relations involving correlation lengths
have to be modified �36,39� and all finite-size scaling func-
tions are predicted �38� to become nonuniversal as they de-
pend explicitly on the ratio J� /J�.

For the example �2.52�, we obtain

Ā−1 = ��J�/J��1/3 0 0

0 �J�/J��1/3 0

0 0 �J�/J��−2/3� �2.54�

for d=3 and �Ā−1�dd= �J� /J���1−d�/d and �A−1�dd= �2J��−1 for
general d. For the isotropic Gaussian model, we have simply
��=r0

−1/2 �compare Eq. �B16� of �36��. Then the scaling form
�2.44� becomes

fs,aniso�t,L;J�,J�� = L−d�J�/J���d−1�/2Fiso�t�L/�0,��1/�� .

�2.55�

Since

�J�/J��1/2 = �0,�/�0,� �2.56�

according to Eq. �2.53�, this relation can be written as

fs,aniso�t,L;J�,J�� = L−dFaniso�t�L/�0,��1/�;J�,J�� ,

�2.57�

where the finite-size scaling function Faniso of the anisotropic
system, considered as a function of the single scaling vari-
able t�L /�0,��1/�, is nonuniversal,

Faniso�t�L/�0,��1/�;J�,J�� = ��0,�/�0,��d−1Fiso�t�L/�0,��1/�� ,

�2.58�

as it depends on the nonuniversal ratio J� /J� through the
factor ��0,� /�0,��d−1. �For the d=2 Ising model �see Eq.
�2.60� and Sec. VI B�, this factor depends on J� and J� sepa-
rately.� As a consequence, also other thermodynamic quanti-
ties have a corresponding finite-size scaling structure. This
was recently confirmed for the case of antiperiodic bc in the
large-n limit in 2�d�4 dimensions �41�. So far no explicit
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verification of Eq. �2.55� has been given for systems with
surface contributions. In Appendix B we shall verify that Eq.
�2.55� holds within the Gaussian model for all bc in 2�d
�4 dimensions, including those involving surface terms, in
the temperature range where finite-size scaling holds. The
consequences for the Casimir force scaling functions will be
discussed in Sec. V. Eq. �2.55� is not directly valid for the
free energy density in d=2 dimension since the bulk part has
a logarithmic structure, see Eq. �2.40�, but we have verified
that it is valid for the excess free energy density and for the
Casimir force scaling form of the d=2 anisotropic Gaussian
model for all bc �see Secs. V and VI�.

The issue of nonuniversality of finite-size amplitudes
of the free energy with respect to coupling anisotropy was
studied earlier in the work by Indekeu et al. �20�. In this
paper an anisotropic Ising model on an infinitely long two-
dimensional strip with free bc in the vertical direction was
considered. This corresponds to our geometry for the special
case d=2 with DD bc. As noted above, this is a particularly
simple case as no distortions of the bc arise even if the an-
isotropic couplings correspond to a nondiagonal anisotropy
matrix. Furthermore, there exists no analog to a “film” tran-
sition at finite width of the infinite strip below the two-
dimensional “bulk” critical temperature Tc since there exists
no singularity in an effectively one-dimensional system with
short-range interactions. For the present case of interest, i.e.,
for the case of two different nearest-neighbor couplings
in the horizontal and vertical directions, the Ising Hamil-
tonian �divided by kBT� of Indekeu et al. �20� contains fer-
romagnetic nearest-neighbor couplings denoted by K1 and K2
which in our notation correspond to 2�J� and 2�J�, respec-
tively, with a lattice spacing ã=1.

The authors derived an exact relation between the ampli-
tudes 
aniso and 
iso of the free energies at criticality of the
anisotropic and isotropic Ising strips of the form


aniso = � sinh�4�cJ��
sinh�4�cJ��

	1/2


iso. �2.59�

Since

�sinh�4�cJ��/sinh�4�cJ���1/2 = �0,�/�0,� �2.60�

is the ratio of the amplitudes of the correlation lengths per-
pendicular and parallel to the Ising strip �20�, Eq. �2.59� can
be written as


aniso = ��0,�/�0,��
iso. �2.61�

This is the same structure as given in Eq. �2.58� for d=2.
It was also shown that the ratio �0,� /�0,� can be inter-

preted as a geometrical factor that arises in a transformation
of lengths such that isotropy is restored �20�. This is in com-
plete agreement with the analysis presented here and in Refs.
�36,39�. Nevertheless, in spite of the exact relation �2.59�, it
is clear that restoring isotropy does not imply “restoring uni-
versality” �20� since the finite-size amplitude 
aniso of the
original anisotropic lattice model depends explicitly on the
microscopic couplings J� and J�.

We note that the dependence of �0,� /�0,� on the nearest-
neighbor couplings J� and J� is a nonuniversal property that
has a different form in d=2 dimensions for the Gaussian
model on the one hand �see Eq. �2.56�� and for the Ising
model on the other hand �see Eq. �2.60��. The latter is not
captured by heuristic arguments based on a mapping of a d
=2 lattice spin model on a continuum model as seen from
Eq. �6.5� of Ref. �50�.

III. FILM CRITICAL BEHAVIOR

In the following we briefly discuss the film critical behav-
ior of the d-dimensional Gaussian model which we need to
refer to in Sec. IV. Here we confine ourselves to 2�d�4.

First we consider the isotropic case. For finite L, the film
critical point is determined by r0=r0c,film�L� with r0c,film�L�
=0 for periodic and NN bc, whereas

r0c,film�L� = − �4J/ã2��1 − cos�q0ã�� � 0, �3.1�

with q0=� /L for antiperiodic bc, q0=� / �L+ ã� for DD bc,
and q0=� / �2L+ ã� for ND bc, respectively. For large L / ã,
r0c,film�L�=−2J�2 /L2 for antiperiodic and DD bc and
r0c,film�L�=−2J�2 / �4L2� for ND bc. Correspondingly, the
film critical lines are described, for large L, by

tc,film�L� � �Tc,film�L� − Tc�/Tc = − �2��0/L�1/� �3.2�

for antiperiodic and DD bc and by

tc,film�L� = − ��/2�2��0/L�1/� �3.3�

for ND bc, in agreement with finite-size scaling. For the
shape of the film critical lines see Figs. 2 and 3 below.

Near Tc,film�L� there exist long-range correlations parallel
to the boundaries. A corresponding second-moment correla-
tion length �film�r0 ,L� may be defined by

�film�r0,L�2 =
1

2�d − 1�

�
y,z,y�,z�

�y − y��2�Sy,zSy�,z��

�
y,z,y�,z�

�Sy,zSy�,z��
. �3.4�

�The summation over all z, z� corresponds to a kind of aver-
aging over all horizontal layers.�

Define a length

��r0,L� = � 2J

r0 − r0c,film�L��
1/2

. �3.5�

For periodic and NN bc, where r0c,film�L�=0, we obtain just
as in the bulk case �2.12� the exact relationship �film=�=�
= �2J /r0�1/2, which is independent of L. For antiperiodic, DD,
and ND bc and arbitrary L / ã, we obtain �film=� only in the
limit where ��L.

At finite L, the free energy per unit area divided by kBT is
defined as

f film�r0,L� = Lf�t,L� . �3.6�

We expect that for ��L �which is equivalent to the condition
�film�L mentioned in �8��, the film critical behavior corre-
sponds to that of a bulk system in d−1 dimensions. Taking
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into account Eq. �2.20�, this would imply that the singular
part f film,s has the temperature dependence for 2�d�4, d
�3,

f film,s�t� = Yd−1�film
−�d−1�, d � 3, �3.7�

where the dimensionless universal amplitude Yd−1 is defined
by Eq. �2.20�. We indeed confirm this expectation for all bc
except for antiperiodic bc whose lowest mode has a twofold
degeneracy as noted already in Sec. II A above. This causes
a factor of 2 in the corresponding relation

f film,s
�a� �t� = 2Yd−1�film

−�d−1�, d � 3, antiperiodic bc. �3.8�

For d=3, the expected structure of f film,s is less obvious
because of the logarithmic dependence of the corresponding
bulk quantity �2.39� in d=2 dimensions. For ��L we obtain

f film�r0,L� = f film�r0c,film,L� + f film,s + O�r0 − r0c,film� ,

�3.9�

where it is necessary to specify the singular part f film,s sepa-
rately for the various bc,

f film,s
�p� =

1

4�
�film

−2 ln��film/L� , �3.10a�

f film,s
�a� =

1

2�
�film

−2 ln��film/L� , �3.10b�

f film,s
�NN� =

1

4�
�film

−2 ln��film/�Lã� , �3.10c�

f film,s
�DD� =

1

4�
�film

−2 ln��filmã1/2/L3/2� , �3.10d�

f film,s
�ND� =

1

4�
�film

−2 ln��film/L� , �3.10e�

as will be derived in Secs. IV A, IV C, and IV D below.
Both microscopic and macroscopic reference lengths may

appear in the logarithmic arguments depending on the bc.
�Our decomposition is such that no logarithmic dependencies
on ã or L appear in the nonsingular part of f film proportional
to r0−r0c,film.� By contrast, the amplitude 1 / �4�� appears to
have a universal character, in agreement with Eq. �2.40�,
except for the factor of 2 for antiperiodic bc. The expressions
for f film�r0c,film,L� at the critical line T=Tc,film�L� are nonuni-
versal and depend on the bc.

For the anisotropic case, we consider only two different
nearest-neighbor interactions J� and J� as described by Eq.
�2.51� and corresponding different bulk correlation lengths ��

and �� as described by Eq. �2.53�. In the paragraph contain-
ing Eqs. �3.1�–�3.3� the only necessary changes are a replace-
ment of J by J� and of �0 by �0,�.

Define the film correlation length, now called �film,aniso, by
Eq. �3.4� and lengths �� and �� by

������r0,L� = � 2J����

r0 − r0c,film�L�
�1/2

. �3.11�

For periodic and NN bc, we obtain, in close analogy to the
isotropic case, the exact relationship �film,aniso=�� =��

= �2J� /r0�1/2, which is again independent of L. For antiperi-
odic, DD, and ND bc and arbitrary L / ã, we obtain �film,aniso
=�� only in the limit where ���L.

The considerations of the paragraphs containing Eqs.
�3.6�–�3.10� translate one to one to the anisotropic case if
�film is replaced by �film,aniso and the condition ��L is re-
placed by ���L.

IV. FREE ENERGY IN 1�d�4 DIMENSIONS

In the following we present exact results for the
asymptotic structure of the finite-size critical behavior of the
Gaussian free energy density near the bulk transition tem-
perature for large L / ã�1 in the isotropic case. These results
include both the bulk critical behavior �2.20�–�2.40� for L
→� at fixed t
0 and the film critical behavior �3.7�–�3.10�
for T→Tc,film�L� at fixed finite L. Thus our results provide an
exact description of the dimensional crossover from the
d-dimensional finite-size critical behavior near bulk Tc to the
�d−1�-dimensional critical behavior near Tc,film of �the iso-
tropic subclass of� the Gaussian universality class. Our scal-
ing functions F are analytic at bulk Tc for antiperiodic, DD,
and ND bc, in agreement with the general discussion given
in Sec. VII of Ref. �8�. Our Gaussian results go beyond the
corresponding one-loop results of Ref. �8� in the following
respects. �i� Our exact calculation includes nonnegligible
logarithmic nonscaling lattice effects in d=3 dimensions for
the case of NN and DD bc, whereas these effects are not
captured by the method of dimensional regularization used in
Ref. �8�. �ii� For the case of ND bc, a strong power-law
violation of scaling is found in general dimensions 1�d
�4 that has an important impact on the scaling structure of
the free energy density in a large part of the L−1/�− t plane of
the Gaussian model and that is expected to imply unusually
large corrections to scaling in the �4 theory. �iii� Our repre-
sentation of the scaling functions is directly applicable to the
region Tc,film�L��T�Tc for antiperiodic, DD, and ND bc,
whereas the representation of Ref. �8� is applicable only to
T
Tc, apart from a few results in Sec. VII of Ref. �8�.
�iv� We study the approach to the critical behavior near Tc,film
and compare it with the critical behavior of a �d−1�-
dimensional bulk system; this comparison confirms the un-
expected factor of two of the leading universal amplitude for
the case of antiperiodic bc that was presented in our Sec. III
as a consequence of the twofold degeneracy of the lowest
mode. �v� Our analysis includes, for all bc, the exponential
nonscaling part of the excess free energy due to the lattice-
dependent nonuniversal exponential bulk correlation length
�2.23� that was not taken into account in �8�. �vi� Our analy-
sis also includes the d=2 scaling functions of the finite-size
part of the free energy that provide the basis for the Casimir
force scaling functions in d=2 dimensions to be discussed in
Secs. V and VI �it is only the d=2 bulk part of the free
energy that exhibits a logarithmic deviation �ln�� / ã� from
scaling, see Sec. II B�; the case d=2 was not discussed in �8�.
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Because of the special role played by the borderline di-
mension d*=3 for the surface properties of the Gaussian
model it is necessary to distinguish the cases without surface
contributions �periodic and antiperiodic bc� from those with
surface contributions �NN, DD, and ND bc�.

A. Periodic and antiperiodic bc

For periodic and antiperiodic bc, the finite-size scaling
structure of Eqs. �2.18� and �2.22� is confirmed. For d�2 we
find �see Appendix B� the finite-size scaling functions

F�p��x̃� = Id
�p��x̃� + Ydx̃d/2, x̃ 	 0, �4.1a�

F�a��x̃� = Id
�a��x̃ + �2� + Yd�x̃ + �2�d/2, x̃ 	 − �2,

�4.1b�

with the universal bulk amplitude from Eq. �2.34�, where, for
y	0,

Id
�p��y� = −

1

2�
�

0

�

dz��/z��d+1�/2e−zy/�2��2
�K�z� − ��/z� ,

�4.2a�

Id
�a��y� = −

1

2�
�

0

�

dz��/z��d+1�/2�e−zy/�2��2
�ez/4�K�z/4� − K�z��

− ��/z� −
��z

4
� . �4.2b�

Equation �4.2b� is valid for 2�d�4, while for 1�d�2 the
subtraction of the term 1

4
��z inside the curly brackets has

to be omitted. The function K�z� is defined by K�z�
��n=−�

+� exp�−n2z�, which converges rapidly for large z.
It may be expressed in terms of the third elliptic theta
function �3�u ,e−z� �51� via K�z�=�3�0,e−z�. It satisfies
the relation K�z�=�� /zK��2 /z� with the expansion K�z�
=�� /z�n=−�

+� exp�−n2�2 /z�, which converges rapidly for
small z.

The function F�a��x̃� is regular at x̃=0 in agreement with
general analyticity requirements, whereas F�p��x̃� is nonana-
lytic at x̃=0 due to the film critical point.

Equations �4.1� include the singular parts of both the bulk
critical behavior �x̃→�� and the film critical behavior
�x̃=L2 /�film

2 →0 for periodic bc and x̃+�2=L2 /�film
2 →0 for

antiperiodic bc�. The latter is obtained from the singular parts
of the small-y expansions for y
0,

Id
�p��y� = Id

�p��0� + Yd−1y�d−1�/2 + O�y,yd/2� , �4.3a�

Id
�a��y� = Id

�a��0� + 2Yd−1y�d−1�/2 + O�y,yd/2� , �4.3b�

for d�3, while for d=3,

I3
�p��y� = −

��3�
2�

−
1

8�
y�ln y − 1� + O�y3/2� , �4.4a�

I3
�a��y� = −

��3�
2�

−
1

4�
y�ln y − 1 − ln�2��� + O�y3/2� .

�4.4b�

Contrary to the naive expectation based on universality, the
amplitudes of the leading singular y�d−1�/2 and y ln y terms of
Eqs. �4.3� and �4.4�, respectively, differ by a factor of 2 for
periodic and antiperiodic bc as already mentioned in Sec. III.
These terms yield the right hand sides of Eqs. �3.7�, �3.8�,
�3.10a�, and �3.10b�.

The comparison of Eqs. �2.22� and �4.1� leads to the
finite-size parts for x̃	0,

G�p��x̃� = Id
�p��x̃� , �4.5a�

G�a��x̃� = 21−dG�p��4x̃� − G�p��x̃� , �4.5b�

where Eq. �4.5b� follows from Eq. �B6a�. Equations �4.5�
remain valid for d=2. For d=3, Eq. �4.5b� agrees with Eqs.
�9.3� for N=1 of Ref. �8�.

The representation of our results differs from that of �8�,
where Eqs. �6.8� provide an integral representation of G�p��x̃�
and G�a��x̃�. Both representations have the same expansions
in terms of modified Bessel functions, see Appendix C,
which suggests that, for x̃
0, indeed G�p��x̃�=�+per

�1� �y+� and
G�a��x̃�=�+aper

�1� �y+�, with the identification y+=�x̃. Our repre-
sentation of F�p��x̃�, G�p��x̃�, and G�a��x̃� in terms of Id

�p� has
the advantage that it is directly applicable to the bulk critical
point at x̃=0, whereas the integral representation of �+per

�1� �y+�
and �+aper

�1� �y+� given in Eqs. �6.8� of �8� require an extra
small-y+ treatment of the divergent integrals so that after
multiplication with the prefactor y+

d finite results are ob-
tained. More importantly, the representation of F�a��x̃� in
terms of Id

�a� has the advantage that it is valid also for x̃�0
including the film critical point at x̃=−�2, whereas the inte-
gral representation of �+aper

�1� �y+� in Eqs. �6.8� of �8� is not
suitable for an analytic continuation to the region x̃�0.

A representation of F�a��x̃� valid for all x̃	−�2 may also
be extracted from result �3.26� with Eq. �3.27� in Ref. �41�
for the singular part of the excess free energy of the mean
spherical model with antiperiodic bc in film geometry. After
omitting the term �xt, restoring the bulk contribution by re-
moving the term �yb

d/2, and replacing y→ x̃+�2, the last two
terms within the curly brackets of Eq. �3.26� in Ref. �41�
may be shown to be equivalent to the integral representation
�4.1b� with Eq. �4.2b� of F�a��x̃�.

The universal finite-size amplitudes at Tc are

F�p��0� = G�p��0� = − �−d/2��d/2���d� , �4.6a�

F�a��0� = G�a��0� = �1 − 21−d��−d/2��d/2���d� , �4.6b�

which agree with the corresponding N=1 amplitudes 
per
�1�

and 
aper
�1� , respectively, in Eq. �5.7� of �8� �up to a sign mis-

print there for periodic bc�.
At fixed t
0 the results for G�p� and G�a� yield the large-L

approach to the bulk critical behavior,
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f�t,L� − fb�t� = �
1

Ld

x̃�d−1�/4

�2���d−1�/2e−�x̃, x̃ � 1, �4.7�

where the upper �lower� sign refers to periodic �antiperiodic�
bc, see the paragraph around Eq. �B13�. For sufficiently large
L at fixed t
0, however, the exponential scaling form �4.7�
must be replaced by an exponential nonscaling form �36�
which is obtained from Eq. �4.7� by replacing the exponen-
tial argument −�x̃ by −L /�e, where �e is the exponential
correlation length �2.23�.

In d=3 dimensions the scaling functions �4.1� can be ex-
pressed as

F�p��x̃� = G�p��x̃� −
1

12�
x̃3/2, x̃ 	 0, �4.8a�

F�a��x̃� = G�a��x̃� −
1

12�
x̃3/2, x̃ 	 − �2, �4.8b�

with the finite-size parts

G�p��x̃� = −
1

2�
�Li3�e−�x̃� + �x̃Li2�e−�x̃�� , �4.9a�

G�a��x̃� = −
1

2�
�Li3�− e−�x̃� + �x̃Li2�− e−�x̃�� , �4.9b�

where Lin�z� are polylogarithmic functions �see Appendix
D�. With the identification y+= x̃ we find that G�p��x̃� and
G�a��x̃� agree with �+per�y+� and �+aper�y+� in Eqs. �9.3� of
�8�, respectively, but that the representation of �+aper�y+� is
more elaborate than that of G�a��x̃�. It is understood that in
Eq. �4.8b� for −�2� x̃�0, the function G�a��x̃� means the
analytic continuation of Eq. �4.9b� to x̃�0 which is com-
plex; together with the complex term −x̃3/2 / �12��, however,
the right-hand side of Eq. �4.8b� becomes real and analytic
for all x̃
−�2 with a finite real value

F�a��− �2� = −
��3�
2�

� − 0.191 313, �4.10�

see Appendix E. For x̃	0, the d=3 scaling functions G�p��x̃�
and G�a��x̃� will be shown in Sec. V together with the corre-
sponding scaling functions X�p��x̃� and X�a��x̃� of the Casimir
force.

In Fig. 1 we show the scaling function F�a��x̃�, Eq. �4.8b�,
of the Gaussian free energy density in three dimensions for
antiperiodic bc including the range for negative x̃ down to
the film transition at x̃=−�2. It would be interesting to com-
pare this result with the corresponding � expansion result at
�=1 which, however, is not available in the literature so far.

B. NN and DD bc in dÅ3 dimensions

For NN and DD bc there exist well-defined surface free
energy densities for t
0 in d
1 dimensions. They are
given by �see Appendix B�

fsf
�N��t� =

1

8ãd−1�
0

� dy

y
B�y�d−1�e−2y − 1�e−yr̃0/2

=
1

8ãd−1 �W̃d−1�r̃0� − W̃d−1�4 + r̃0�� , �4.11a�

fsf
�D��t� =

1

8ãd−1�
0

� dy

y
B�y�d−1�e−2y + 1 − 2B�y��e−yr̃0/2

=
1

8ãd−1 �− W̃d−1�r̃0� − W̃d−1�4 + r̃0� + 2W̃d�r̃0�� ,

�4.11b�

with r̃0 defined after Eq. �2.31�. The result for fsf
�D� agrees

with fsurface in Eq. �67� of �31�. For d�3 and small t
0, the
singular parts are

fsf,s
�N��t� =

Asf
�N�

�d−1 + O��−�d+1�� , �4.12a�

fsf,s
�D��t� =

Asf
�D�

�d−1 −

��−
d

2
�

4�4��d/2
ã

�d + O��−�d+1�� , �4.12b�

with the universal surface amplitudes

Asf
�N� = − Asf

�D� =
1

4
Yd−1, 1 � d � 5, d � 3, �4.13�

in agreement with Eq. �6.3� in �8� and the remark about the
surface contribution in the last paragraph on p. 1910 of �8� as
well as with Eqs. �76� and �88� in �31�. The nonsingular parts
are for �=N,D,

fsf,ns
��� �t� = fsf

����0� −
b̃d

���

ãd−1 r̃0 + O�r̃0
2� , �4.14�

with the nonuniversal constants

b̃d
�N� �

1

16
�

0

�

dy�B�y�d−1�e−2y − 1� + �2�y��1−d�/2� 
 0,

�4.15a�

�10 �5 0 5 10
�0.6

�0.4

�0.2

0.0

0.2

F
(a)

x̃

FIG. 1. Scaling function F�a��x̃�, Eq. �4.8b�, of the free energy of
the Gaussian model in three dimensions with antiperiodic bc for
x̃	−�2 �solid line�. For x̃	0 are also shown the bulk part Y3x̃3/2

�dotted� and finite-size part G�a��x̃� �dashed�.
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b̃d
�D� �

1

16
�

0

�

dy�B�y�d−1�e−2y + 1 − 2B�y��

− �2�y��1−d�/2 + 2�2�y�−d/2� 
 0. �4.15b�

Equation �4.15a� holds for 1�d�3, while for 3�d�5

�where b̃d
�N��0� the addition of �2�y��1−d�/2 inside the curly

brackets has to be omitted. These integral expressions for

b̃d
�N� are connected by analytical continuation in d. Eq.

�4.15b� holds for 1�d�2, while for 2�d�3 �where b̃d
�N�

�0� the addition of 2�2�y�−d/2 inside the curly brackets has

to be omitted. For 3�d�5 �where b̃d
�D�
0 again�, addition-

ally the subtraction of �2�y��1−d�/2 has to be omitted. These

integral expressions for b̃d
�D� are connected by analytical con-

tinuation in d, as already noted in �31�, where closely related

integral representations of b̃d
�D� were given in Eqs. �77� and

�89�, valid for 2�d�3 and 3�d�5, respectively. For

d→3, both the amplitudes Asf
��� and the coefficients b̃d

��� di-
verge, while the nonuniversal constants fsf

�N��0��0 and

fsf
�D��0�
0 remain finite, see Sec. IV C below. For d→2, b̃d

�D�

diverges but the corresponding term in Eq. �4.14� combines
with the subleading term in Eq. �4.12b� to give a finite con-
tribution to fsf

�D�.
The �1−d terms in Eq. �4.12� agree with the corresponding

contributions in Eq. �6.3� and Appendix C of �8�. The sum of

Eq. �4.12b� and �4.14� for �=D bc with Eq. �4.13�, and b̃d
�D�

as given in Ref. �31� agrees with Eqs. �75�–�77� and �87�–
�91� of �31�. In Eq. �4.12b� we have included a singular term
of order �−d. Such a term does not exist in Eq. �4.12a�. Al-
though this term is subleading compared to the leading sin-
gular �1−d term, it becomes a leading singular term for ND bc
�to be discussed in Sec. IV D below�, where the terms �1−d of
Eq. �4.12a� and �4.12b� cancel because of Eq. �4.13�.

For NN and DD bc the finite-size scaling structure of Eqs.
�2.18� and �2.22� is confirmed for d�3. We find the finite-
size scaling functions �see Appendix B�

F�����x̃� = Id
�����x̃ + c�2� + Yd�x̃ + c�2�d/2

+ 2Asf
����x̃ + c�2��d−1�/2, x̃ 	 − c�2, �4.16�

with c=0 for �=N and c=1 for �=D, with the universal bulk
amplitude Yd from Eq. �2.34�, and where

Id
�NN��y� = 2−dId

�p��4y� , �4.17a�

Id
�DD��y� = −

1

2d+1�
�

0

�

dz��/z��d+1�/2�e−zy/�2
�ez�K�z� − 1�

− ��/z + 1� − ��z + z� , �4.17b�

with Id
�p� from Eq. �4.2a�. Equation �4.17b� is valid for

3�d�4, while for 2�d�3�1�d�2�, the addition of z
�the addition of z and the subtraction of ��z� inside the curly
brackets has to be omitted. The function F�DD��x̃� is regular
at x̃=0 in agreement with general analyticity requirements,
whereas F�NN��x̃� is nonanalytic at x̃=0 due to the film criti-
cal point.

Equations �4.16� include the singular parts of both the
bulk critical behavior �2.20� �x̃→�� and the film critical be-
havior �3.7� �x̃=L2 /�film

2 →0 for NN bc and x̃+�2=L2 /�film
2

→0 for DD bc�. The latter is obtained from the surface terms
of Eqs. �4.16� and from singular parts of the small-y expan-
sions for y
0,

Id
�NN��y� = Id

�NN��0� +
1

2
Yd−1y�d−1�/2 + O�y,yd/2�, d � 3,

�4.18a�

Id
�DD��y� = Id

�DD��0� +
3

2
Yd−1y�d−1�/2 + O�y,yd/2�, d � 2,3.

�4.18b�

We note that, according to Eq. �4.13�, the surface amplitudes
Asf of the d-dimensional film system have the same d depen-
dence as the bulk amplitude Yd−1 of the �d−1�-dimensional
bulk system, apart from a constant factor of �1 /4. This im-
plies

2Asf
�N� +

1

2
Yd−1 = 2Asf

�D� +
3

2
Yd−1 = Yd−1, �4.19�

which explains how the y�d−1�/2 terms on the right hand sides
of Eq. �4.18� and the terms in Eq. �4.16� involving the sur-
face amplitudes �4.13� lead to identical amplitudes Yd−1 for
the film free energy in Eq. �3.7� for both NN and DD bc, in
agreement with the expectation based on universality.

For the finite-size contribution �L−d in Eq. �2.22� we find
the scaling functions for x̃	0,

G�NN��x̃� = G�DD��x̃� = 2−dG�p��4x̃� = Id
�NN��x̃� = 2−dId

�p��4x̃� ,

�4.20�

where G�DD��x̃� agrees with Eq. �71� in �31� with x=�x̃	0.
The representation of our results differs from that of

�8�, where Eqs. �6.8� and �6.6� provide an integral represen-
tation of G�NN� and G�DD�, respectively. Both representations
have the same expansions in terms of modified Bessel func-
tions, see Appendix C, which suggests that, for x̃
0, indeed
G�NN��x̃�=�+SB,SB

�1� �y+� and G�DD��x̃�=�+O,O
�1� �y+�, with the

identification y+=�x̃. Our representation of F�NN��x̃�,
G�NN��x̃�, and G�DD��x̃� in terms of Id

�NN� has the advantage
that it is directly applicable to the bulk critical point at x̃
=0, whereas the integral representation of �+SB,SB

�1� �y+� and
�+O,O

�1� �y+� given in Eqs. �6.8� and �6.6�, respectively, of �8�
require an extra small-y+ treatment of the divergent integrals
so that after multiplication with the prefactor y+

d finite results
are obtained. More importantly, the representation of
F�DD��x̃� in terms of Id

�DD� has the advantage that it is valid
also for x̃�0 including the film critical point at x̃=−�2,
whereas the integral representation of �+O,O

�1� �y+� in Eq. �6.6�
of �8� is not suitable for an analytic continuation to the re-
gion x̃�0.
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The universal finite-size amplitudes at Tc are

F�NN��0� = G�NN��0� = F�DD��0� = G�DD��0�

= − �4��−d/2��d/2���d� , �4.21�

which agree with the corresponding N=1 amplitudes 
SB,SB
�1�

for NN bc and 
O,O
�1� for DD bc in Eqs. �5.7� and �5.6� of �8�,

respectively.
At fixed t
0 the results for G�NN� and G�DD� yield the

same large-L approach to the bulk critical behavior

f�t,L� − fb�t� =
2fsf�t�

L
−

1

Ld

x̃�d−1�/4

2�4���d−1�/2e−2�x̃, x̃ � 1,

�4.22�

see the paragraph around Eq. �B13�. Equation �4.22� is in
agreement with the result Eq. �72� in �31� for free �DD� bc.
For sufficiently large L at fixed t
0, the exponential part of
the scaling form �4.22� must be replaced by an exponential
nonscaling form �36� which is obtained from Eq. �4.22� by
replacing the exponential argument −2�x̃ by −2L /�e, where
�e is the exponential correlation length �2.23�. The same re-
mark applies to the exponential parts contained in the scaling
functions that are presented in Eqs. �4.25�, �4.34�, and �4.38�
below.

C. NN and DD bc in d=3 dimensions

For NN and DD bc in d=3 dimensions, the vanishing of
the critical exponent �2.29� of the surface energy density �31�
causes logarithmic deviations �ln�� / ã� from the scaling
structure of Eq. �2.18�. From Eqs. �4.12�, �4.14�, and �4.15�,
we obtain for d→3 the singular and nonsingular parts of the
surface free energy density for small t
0 as

fsf
�N��t� = fsf

�N��0� +
ln��/ã�
16��2 −

b̃�N�

ã2 r̃0 + O�r̃0
2,�−4 ln �� ,

�4.23a�

fsf
�D��t� = fsf

�D��0� −
ln��/ã�
16��2 −

1

24�

ã

�3 −
b̃�D�

ã2 r̃0 + O�r̃0
2,�−4 ln �� ,

�4.23b�

with the nonuniversal constants

b̃�N� � lim
d→3

�b̃d
�N� − Asf

�N��

=
1

16
�

0

�

dy�B�y�2�e−2y − 1� +
1 − e−y/2

2�y
� −

1

32�

=
1

8
W2�4� −

5 ln 2 + 1

32�

� − 0.027 653, �4.24a�

b̃�D� � lim
d→3

�b̃d
�D� − Asf

�D��

=
1

16
�

0

�

dy�B�y�2�e−2y + 1 − 2B�y�� −
1 − e−y/2

2�y
� +

1

32�

=
1

8
�W2�4� − 2W3�0�� +

5 ln 2 + 1

32�
� − 0.001 992 79.

�4.24b�

The limit d→3 in Eq. �4.24� is independent of whether it is
taken as d→3− or d→3+, in agreement with Eqs. �79� and
�92� of �31� for the case of Dirichlet bc. The structure of the
leading singular terms of Eqs. �4.23a� and �4.23b� agrees
with that of the two-dimensional result �2.39� but the ampli-
tudes are different. For the same reason as in Eq. �4.12b�, we
have included the subleading �−3 term in Eq. �4.23b�. Equa-
tion �4.23b� with Eq. �4.24b� agrees with Eqs. �80�–�82� of

�31� but here we give a simplified expression of b̃�D� as com-
pared to Eqs. �81� and �82� in �31�.

The singular surface contributions �4.23a� and �4.23b� ap-
pear also in the resulting singular parts of the free energy
densities for t	0 �see Appendix B�,

fs
����t,L� =

Y3

�3 � 2
ln��/ã�
16��2L

+
G����x̃�

L3 , �4.25�

with “�” for �=NN and “�” for �=DD, and where

G�NN��x̃� = G�DD��x̃� = 2−3G�p��4x̃�

= −
1

16�
�Li3�e−2�x̃� + 2�x̃Li2�e−2�x̃�� . �4.26�

Equation �4.25� for DD bc agrees with Eq. �86� in �31� �there
is a sign misprint in Eq. �85� of �31��. With y+=�x̃, Eq.
�4.26� agrees with Eqs. �9.3� for N=1 in �8�.

Because of the dependence of ln�� / ã� on the nonuniversal
lattice spacing ã, no finite-size scaling functions of fs

�NN��t ,L�
and fs

�DD��t ,L� can be defined. The nonuniversal surface
terms �L−1 constitute the leading deviations from the bulk
critical behavior for large L at fixed t
0. One may define
“nonscaling regions” in the ��0 /L�1/�− t planes �see Figs. 2�a�
and 2�b�� by requiring that these logarithmic terms are com-
parable to or larger than the scaling terms L−3G�x̃�. These
nonscaling regions depend on ã /�0 and are shown for the
example ã /�0=1 as the shaded regions in Figs. 2�a� and 2�b�.

The logarithmic deviations from scaling are not present
right at bulk Tc, where fs�0,L�=L−3G�0� with the universal
critical amplitudes G�NN��0�=G�DD��0�=−��3� / �16��, in
agreement with Eq. �9.2� for N=1 in �8�.

For the remaining part of the discussion we need to dis-
tinguish the cases of NN and DD bc. For NN bc, the function
fs

�NN��t ,L� is not regular at t=0 as it includes the film critical
behavior �3.9� with �3.10c� for t→0 at fixed L. To derive this
behavior we use the small-x̃ expansion for x̃	0
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G�NN��x̃� = −
��3�
16�

−
x̃�ln x̃ + 2 ln 2 − 1�

16�
+

x̃3/2

12�
+ O�x̃2� ,

�4.27�

which implies

fs
�NN��t,L� = fs

�NN��0,L� −
1

L3� x̃ ln�x̃ã/L�
8�

+ O�x̃�	 .

�4.28�

The second term yields Eq. �3.10c� because of x̃=L2 /�film
2 for

NN bc.
By contrast, the film critical point for DD bc is located at

tc,film�0, see Eq. �3.2�, thus no singularity exists at t=0 for
finite L for DD bc, which implies that fs

�DD��t ,L� should be
regular at t=0. This is indeed the case as shown in the fol-
lowing. The first three terms of fs

�DD��t ,L� from Eq. �4.25�
can be rewritten as

fs
�DD��t,L� =

1

L3�G�DD��x̃� −
x̃3/2

12�
+

x̃ ln x̃

16�
−

x̃ ln�L/ã�
8�

	 ,

�4.29�

where now the logarithmic deviation from scaling appears in
the form of ln�L / ã� but the temperature dependence through
x̃� t is regular at t=0 since

G�DD��x̃� −
x̃3/2

12�
+

x̃ ln x̃

16�
�4.30�

is regular at x̃=0 �see Appendix E�. It is understood that in
Eq. �4.30� for −�2� x̃�0, the function G�DD��x̃� means the
analytic continuation to x̃�0 as given by Eq. �4.26�, which
is complex; together with the complex terms −x̃3/2 / �12��
+ x̃ ln x̃ / �16��, however, Eq. �4.30� becomes real and ana-
lytic for x̃
−�2 with a finite real value at x̃=−�2, see Ap-
pendix E. The representation �4.29� has the advantage that it
is valid down to x̃=−�2 corresponding to the film critical
point. For x̃→−�2 it includes the film critical behavior �3.9�
with Eq. �3.10d�. To derive this behavior we use an expan-
sion around x̃=−�2 for x̃
−�2 �see Appendix E�,

G�DD��x̃� −
x̃3/2

12�
+

x̃ ln x̃

16�
= −

��3� + 2�2 ln �

16�
−

�x̃ + �2��2 ln�x̃ + �2� − 4 ln � − 3�
16�

+ O��x̃ + �2�2� , �4.31�

which implies

fs
�DD��t,L� = fs

�DD��tc,film,L� +
1

L3�−
�x̃ + �2�ln��x̃ + �2��L/ã��

8�
+ O�x̃ + �2�� . �4.32�

The second term yields Eq. �3.10d� because of x̃+�2

=L2 /�film
2 for DD bc.

For x̃	0, the d=3 scaling functions G�NN��x̃� and G�DD��x̃�
will be shown in Sec. V together with the corresponding
scaling functions X�NN��x̃� and X�DD��x̃� of the Casimir
force.

D. ND bc in 1�d�4 dimensions

For ND bc, the leading terms of the singular parts of the
surface free energies, i.e., the O��1−d� terms in Eqs. �4.12a�
and �4.12b� and the logarithmic terms in Eq. �4.23a� and
�4.23b�, cancel. Then the leading term of the singular part of
the total surface free energy density for t
0,
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0
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t
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0.008

0.012

ξ2

0
/L2
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(a)

FIG. 2. Asymptotic part of the ��0 /L�1/�− t plane of the Gaussian
model in three dimensions with isotropic short-range interaction in
film geometry with �a� NN and �b� DD bc. The solid lines indicate
the film critical temperatures Tc,film�L� at finite L: �a� vertical line at
t=0 for NN bc, and �b� Eq. �3.2� for DD bc. No low-temperature
phases exist for T�Tc,film�L�. Finite-size scaling is valid between
the film critical lines and the shaded areas. The shaded areas �as
defined in the text� are nonscaling regions that depend on ã /�0.
Their shapes are shown here for the example ã /�0=1. These shapes
start at the origin with infinite slope. The film critical lines in �a�
and �b� have the same form as for the cases of periodic and antipe-
riodic bc, respectively. In these cases surface terms are absent and
only very small nonscaling regions exist due to the nonscaling ex-
ponential parts �exp�−L /�e� mentioned after Eq. �4.7�.
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fsf,s
�ND� = fsf,s

�N��t� + fsf,s
�D��t� = −

��−
d

2
�

4�4��d/2
ã

�d + O��−�d+1�� ,

�4.33�

does not have the universal scaling form �2.21� but depends
explicitly on ã. The cancelation of the leading surface terms
��1−d for ND bc was already noted in Appendix C of �8�,
where, however, the next-to-leading surface term ��−d, Eq.
�4.33�, was not taken into account. In contrast to the weak
logarithmic deviations from scaling in d=3 dimensions ac-
cording to Eq. �4.23�, Eq. �4.33� constitutes a strong power-
law violation of scaling �within the Gaussian model� that has
an important impact on the scaling structure of the free en-
ergy density in a large part of the L−1/�− t plane. The result-
ing singular and nonsingular parts of the free energy density
for ND bc read for t	0

fs
�ND��t,L� = fb,s�t� +

1

L
�−

��−
d

2
�

4�4��d/2
ã

�d� +
G�ND��x̃�

Ld ,

�4.34�

fns
�ND��t,L� = fb,ns�t� +

1

L
� fsf

�N��0� + fsf
�D��0� −

b̃d
�N� + b̃d

�D�

ãd−1 r̃0

+ O�r̃0
2�	 , �4.35�

where b̃d
�N�+ b̃d

�D��0 and, for x̃	0,

G�ND��x̃� = 2−dG�a��4x̃� , �4.36�

with G�a� from Eq. �4.5b� �see Appendix B�. This result re-

mains valid for d→3, where limd→3�b̃d
�N�+ b̃d

�D��= b̃�N�+ b̃�D�

with b̃�N� and b̃�D� given by Eq. �4.24�. For d→2, the diver-
gent terms of Eq. �4.34� and �4.35� combine to give a finite
result, while G�ND��x̃� remains finite and continues to provide
the scaling function of the finite-size contribution to the free
energy.

The representation of our results differs from that of Ref.
�8�, where Eqs. �6.8� provide an integral representation of
G�ND�. Both representations have the same expansions in
terms of modified Bessel functions, see Appendix C, which
suggests that, for x̃
0, G�ND��x̃�=�+O,SB

�1� �y+�, with the iden-
tification y+=�x̃. Our representation of G�ND��x̃� in terms of
G�a��x̃� and thus Id

�p� has the advantage that it is directly ap-
plicable to the bulk critical point at x̃=0, whereas the integral
representation of �+O,SB

�1� �y+� given in Eqs. �6.8� of �8� re-
quires an extra small-y+ treatment of the divergent integral so
that after multiplication with the prefactor y+

d a finite result is
obtained. More importantly, the related representation of
F�ND��x̃� in terms of Id

�ND� provided in Eq. �4.40� below has
the advantage that it is valid also for x̃�0 including the film
critical point at x̃=−�� /2�2, whereas the integral representa-
tion of �+O,SB

�1� �y+� in Eqs. �6.8� of �8� is not suitable for an
analytic continuation to the region x̃�0.

In Eq. �4.34� the nonscaling structure of the surface term
�L−1 destroys the finite-size scaling form of fs

�ND��t ,L�
above Tc in the regime where the surface term is comparable
to or larger than the finite-size term L−dG�ND��x̃�, i.e., in the
regime

�L

�
�d−1 ã

�
� � 4�4��d/2

��− d/2�
G�ND��x̃�� , �4.37�

with x̃= �L /��1/� for x̃	0 �this is valid only for d�2; for d
=2 the logarithm in the singular part of the bulk free energy
causes deviations from scaling in any case�. For d=3 this
regime is indicated by the shaded area in Fig. 3. This viola-
tion of finite-size scaling is significantly more important than
that due to the exponential correlation length �e, Eq. �2.23�,
which happens only for considerably larger L�24�3 / ã2. At
fixed t
0, the result �4.34� yields the large-L approach to
the bulk critical behavior

fs
�ND��t,L� − fb,s�t� = L−1�−

��−
d

2
�

4�4��d/2
ã

�d�
+ L−d x̃�d−1�/4

2�4���d−1�/2e−2�x̃, x̃ � 1,

�4.38�

see the paragraph around Eq. �B13�. Equation �4.38� implies
that for � / ã�1 the estimate �4.37� for the nonscaling region
in Fig. 3 can be replaced by L�

1
2� ln�� / ã�.

The cancelation of the leading surface scaling terms in the
Gaussian model does not persist in the �4 theory at O�u*�
�two-loop order� as can be seen from Eq. �D11� of �8�. Two-
loop terms, however, are typically smaller than one-loop
terms; therefore it is expected that the two-loop contributions
to the scaling part are less important than ordinary one-loop
scaling contributions. This means that now corrections to
scaling are expected to become considerably more important
compared to the scaling part. This would imply a shrinking

�0.04 �0.02 0.00 0.02
0.000

0.005

0.010

0.015

0.020

ξ2

0
/L2

t

FIG. 3. Asymptotic part of the ��0 /L�1/�− t plane of the Gaussian
model in three dimensions with isotropic short-range interaction in
film geometry with ND boundary conditions. The solid line indi-
cates the film critical temperature Tc,film�L� at finite L according to
Eq. �3.3�. No low-temperature phase exists for T�Tc,film. Finite-
size scaling is valid between the film critical line and the shaded
area. The shaded area is a nonscaling region that depends on ã /�0.
Its shape �shown here for the example ã /�0=1� is determined by
Eq. �4.37�. The shape of the shaded area starts at the origin with
zero slope.
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of the asymptotic region for the case of ND bc. Thus we
expect that a more careful analysis of future experiments or
of MC simulations is required for systems with ND bc be-
cause of unusually large corrections to scaling.

Above the shaded area in Fig. 3 the nonscaling surface
term is negligible and the leading L dependence of fs

�ND��t ,L�
is, for d�2, described by the scaling form

fs
�ND��t,L� = L−dF�ND��x̃�, x̃ 	 − ��/2�2, �4.39�

where

F�ND��x̃� = Id
�ND��x̃ + ��/2�2� + Yd�x̃ + ��/2�2�d/2 = 2−dF�a��4x̃�

�4.40�

and

Id
�ND��y� � 2−dId

�a��4y� , �4.41�

with F�a� and Id
�a� from Eqs. �4.1b� and �4.2b�, respectively.

This result includes the film critical behavior �3.7� and
�3.10e� for x̃→−�� /2�2 at fixed finite L. To derive this be-
havior we use an expansion around x̃=−�� /2�2,

Id
�ND��y� = Id

�ND��0� + Yd−1y�d−1�/2 + O�y,yd/2�, d � 3,

�4.42�

while for d=3

I3
�ND��y� = −

��3�
16�

−
y�ln�2y/�� − 1�

8�
+ O�y3/2� . �4.43�

The second terms on the right-hand sides of Eqs. �4.42� and
�4.43�, respectively, yield Eqs. �3.7� and �3.10e� because of
x̃+ �� /2�2=L2 /�film

2 .
The universal finite-size amplitude at Tc is

F�ND��0� = G�ND��0� = �1 − 21−d��4��−d/2��d/2���d� ,

�4.44�

which agrees with the corresponding N=1 amplitude 
O,SB
�1�

in Eq. �5.7� of �8�.
For d=3 we combine Eqs. �4.8b� and �4.40� to obtain

F�ND��x̃� = G�ND��x̃� −
1

12�
x̃3/2, �4.45�

G�ND��x̃� = −
1

16�
�Li3�− e−2�x̃� + 2�x̃Li2�− e−2�x̃�� .

�4.46�

With the identification y+=�x̃ we find that G�ND��x̃� agrees
with the more elaborate representation of �+O,SB�y+� pro-
vided by Eq. �9.3� in Ref. �8�. Because of relations �4.36�
and �4.40�, the situation is similar to that explained after Eqs.
�4.8� and �4.9�, thus F�ND��x̃� is real for x̃	−�� /2�2 and an
analytic function for x̃
−�� /2�2, even though the analytic
continuation of G�ND��x̃� to negative x̃ becomes complex. For
x̃	0, the d=3 scaling function G�ND��x̃� will be shown in
Sec. V together with the corresponding scaling function
X�ND��x̃� of the Casimir force.

In the region where finite-size scaling is valid �see Fig. 3�
there exists a scaling function F�ND��x̃� of the free energy

density for x̃	−�� /2�2. Due to Eqs. �4.36� and �4.40�, a plot
of this function in three dimensions can be obtained from the
solid curve in Fig. 1 with appropriately rescaled axes �the
same holds for G�ND��x̃� and the bulk part Y3x̃3/2�.

V. CASIMIR FORCE

The excess free energy density per component divided by
kBT is defined by

fex�t,L� = f�t,L� − fb�t� , �5.1�

where fb�t�, Eq. �2.10�, is the bulk free energy density. The
latter exists only for t	0. Thus, as a shortcoming of the
Gaussian model, fex�t ,L� can be defined only for t	0 al-
though f�t ,L�, Eq. �2.9�, exists for t�0 for the cases of
antiperiodic, DD, and ND boundary conditions.

The Casimir force FCas per component and per unit area
divided by kBT is related to fex by

FCas�t,L�/�kBT� = −
��Lfex�t,L��

�L
. �5.2�

For the subclass of isotropic systems, the asymptotic scaling
form of its singular contribution is

FCas,s�t,L�/�kBT� = L−dX�x̃� , �5.3�

where, for x̃	0, the universal scaling function X�x̃� is deter-
mined by the universal scaling function G�x̃� of the finite-size
contribution to the free energy defined by Eq. �2.22� accord-
ing to

X�x̃� = �d − 1�G�x̃� − �−1x̃
dG�x̃�

dx̃
. �5.4�

The surface contributions to the free energy density do not
contribute to X�x̃�. As an important consequence, finite-size
scaling is found to be valid for the Casimir force for all bc in
1�d�4 dimensions, i.e., no scaling violations exist for the
Casimir force in the three-dimensional Gaussian model with
NN, DD, and ND bc, in contrast to the free energy density
itself.

As a consequence of Eq. �2.55�, the asymptotic scaling
form of the singular part of the Casimir force becomes non-
universal in the case of the anisotropic couplings �2.51�.
Then Eq. �5.3� is replaced by

FCas,s�t,L�/�kBT� = L−d�J�/J���d−1�/2X�t�L/�0,��1/�� ,

�5.5�

where �0,� is the amplitude of the correlation length �2.53b�.
Thus the Casimir force depends explicitly on the ratio of the
microscopic couplings J� and J� for all bc, in agreement with
earlier results for periodic �36,38� and antiperiodic �41� bc.
In the following we primarily discuss the isotropic case.

For x̃	0 follow from Eq. �5.4� with Eqs. �4.20� and
�4.36�,

X�NN��x̃� = X�DD��x̃� = 2−dX�p��4x̃� , �5.6a�

X�ND��x̃� = 2−dX�a��4x̃� , �5.6b�

and with Eq. �4.5b�,
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X�a��x̃� = 21−dX�p��4x̃� − X�p��x̃� . �5.7�

Thus we only need X�p�, which we obtain in 1�d�4 dimen-
sions by applying Eq. �5.4� to Eq. �4.5a�. In three dimensions
we utilize Eq. �4.9a�, its derivative

dG�p��x̃�

dx̃
= −

1

4�
ln�1 − e−�x̃� , �5.8�

and Eq. �5.7� to obtain the d=3 scaling functions for periodic
and antiperiodic bc for x̃	0,

X�p��x̃� = −
1

�
�Li3�e−�x̃� + �x̃Li2�e−�x̃�� +

x̃

2�
ln�1 − e−�x̃�

= −
��3�

�
+

x̃

4�
−

x̃3/2

12�
+ O�x̃2� , �5.9a�

X�a��x̃� = −
1

�
�Li3�− e−�x̃� + �x̃Li2�− e−�x̃�� +

x̃

2�
ln�1 + e−�x̃�

=
3��3�

4�
−

x̃3/2

12�
+ O�x̃2� . �5.9b�

The scaling functions for the other bc follow by employing
Eq. �5.6�.

At x̃=0 the critical Casimir amplitude �10�


 � �d − 1�−1X�0� �5.10�

is obtained for 1�d�4 as


�p� = 2d
�NN� = 2d
�DD� = − �−d/2��d

2
���d� ,

�5.11a�


�a� = 2d
�ND� = �21−d − 1�
�p�, �5.11b�

specializing for d=3 to


�p� = 8
�NN� = 8
�DD� = −
��3�
2�

� − 0.191 313,

�5.12a�


�a� = 8
�ND� =
3��3�
8�

� 0.143 485. �5.12b�

The results �5.11� are identical to the results �5.6� and �5.7�
of �8� after setting N=1 �there is a misprint concerning the
sign of 
per

�1� in Eq. �5.7� of �8��. The results for 
�p� are also
in agreement with Eq. �3.42� of �35�.

As a consequence of Eq. �5.5�, the Casimir amplitude

aniso of the anisotropic system �with J��J�� is nonuniversal
and is related to 
 of the isotropic system �with J=J�=J��
for all bc by


aniso = �J�/J���d−1�/2
 = ��0,�/�0,��d−1
 , �5.13�

in agreement with earlier results for periodic �38� and anti-
periodic �41� bc. For d=2, the right-hand side of Eq. �5.13� is

of the same form as found in �20� for the anisotropic Ising
model on a two-dimensional strip with free bc.

VI. CASIMIR FORCE IN d=2 DIMENSIONS

Our exact results for XGauss in d=2 dimensions are of
particular interest in view of results for the exact Casimir
force scaling functions XIsing for an Ising model with isotro-
pic couplings on a two-dimensional strip of infinite length
and finite width L for free bc �23� and for periodic and anti-
periodic bc in the recent work by Rudnick et al. �24�. More-
over, there exist earlier results for the Casimir amplitude
at Tc of the two-dimensional Ising model with free bc and
anisotropic couplings by Indekeu et al. �20�. This calls for a
comparison with the corresponding Gaussian model results
XGauss.

A. Isotropic case

For the isotropic case, the two-dimensional Gaussian
model results for periodic, antiperiodic, and DD bc are ob-
tained from Eqs. �4.2a�, �4.5a�, �5.4�, �5.6a�, and �5.7� for
d=2. They read

XGauss
�p� �x̃� = −

1

2�
�

0

�

dz��

z
�3/2�1 +

zx̃

2�2�
� e−zx̃/�2��2�K�z� −��

z
	 , �6.1a�

XGauss
�a� �x̃� =

1

2
XGauss

�p� �4x̃� − XGauss
�p� �x̃� , �6.1b�

XGauss
�DD� �x̃� =

1

4
XGauss

�p� �4x̃� , �6.1c�

with the scaling variable x̃= �L /�0�1/�t= �L /��2, �=1 /2, t	0.
Above Tc, the corresponding Ising model results for periodic,
antiperiodic, and free bc read �23,24�

XIsing
�p� �xI� =

1

2�
�

0

�

d�q�tanh�q/2� − 1� , �6.2a�

XIsing
�a� �xI� =

1

2�
�

0

�

d�q�coth�q/2� − 1� , �6.2b�

XIsing
�free��xI� =

1

2�
�

0

�

d�q� �q + xI�eq − �q − xI�e−q

�q + xI�eq + �q − xI�e−q − 1	 ,

�6.2c�

with q��xI
2+�2. Here our Ising scaling variable xI

= �L /�0,I�1/�t=L /� with �=1 and �0,I= �8�cJ�−1 �52� is related
to the scaling variables X and x used in �23,24�, respectively,
by xI=2X=2x �compare, e.g., with the isotropic limit of the
correlation-length results in Appendix A 2 of �20�; see also
Sec. VI B below�. As an unexpected result, we find the sur-
prising identities
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XGauss
�p� ��L/��2� = − XIsing

�a� �L/�� , �6.3a�

XGauss
�a� ��L/��2� = − XIsing

�p� �L/�� , �6.3b�

whose derivation will be presented elsewhere �44�.
For a comparison of these results see Fig. 4. In Fig. 4�b�,

we have assumed that �asymptotically close to criticality�
free bc in the Ising model correspond to DD bc in the Gauss-
ian model. We see some similarity on a qualitative level:
both the Gaussian and the Ising scaling functions are nega-
tive for periodic and for DD �or free� bc, thus implying an
attractive Casimir force whereas for antiperiodic bc they are
positive implying a repulsive Casimir force. On a quantita-
tive level, however, the Casimir amplitudes at Tc differ
significantly, namely, by a factor of 2 according to the exact
results XGauss

�p� �0�=2XIsing
�p� �0�=−� /6, 2XGauss

�a� �0�=XIsing
�a� �0�

=� /6, and XGauss
�DD� �0�=2XIsing

�free��0�=−� /24, obtained from Eqs.
�5.10�, �5.11�, and �6.2�. Furthermore we note that, according
to the dashed line in Fig. 4�a�, XGauss

�a� has a weak maximum
above Tc, and correspondingly XIsing

�p� has a weak minimum
above Tc, in agreement with Fig. 2 of �24� and Fig. 15 of �6�.

These results can be interpreted in terms of the two-
dimensional �4 model which should be in the same univer-
sality class as the two-dimensional Ising model. In all cases,
the scaling functions at Tc of the Gaussian model differ by a
factor of 2 from the scaling functions at Tc of the two-
dimensional �4 model. This indicates that a low-order per-
turbation approach in the two-dimensional �4 model �in
terms of a perturbation expansion with respect to the four-

point coupling� is inappropriate, in contrast to the situation in
three dimensions to be discussed in Sec. VII. This is quite
plausible since the fixed-point value of the renormalized
four-point coupling in two dimensions is quite large, i.e., far
from the vanishing Gaussian fixed-point value. This is in line
with the known fact that non-Gaussian fluctuations are gen-
erally larger in two than in three dimensions, as seen, e.g.,
from the bulk critical exponents.

B. Anisotropic case

We have extended the analysis of the isotropic Ising
model by Rudnick et al. �24� for periodic and antiperiodic
bc to the anisotropic Ising model on a square lattice with
nearest-neighbor couplings J� 
0 and J�
0. This corre-
sponds to the “rectangular lattice” of Indekeu et al. �20�
with the identifications of the couplings K1=2�J�, K2
=2�J�, and K3=0. The corresponding bulk-correlation-
length amplitudes above Tc follow from Appendix A 2 of
�20� �for ã=1� as �52�

�0,� =
1

4
��cJ� +

�cJ�

sinh�4�cJ���
−1

, �6.4a�

�0,� =
1

4
��cJ� +

�cJ�

sinh�4�cJ��
�−1

, �6.4b�

with the ratio �2.60�, where we have used the condition
sinh�4�cJ��sinh�4�cJ��=1 for d=2 bulk criticality. From
Sec. II C we obtain the nonuniversal Casimir force scaling
function of the anisotropic Gaussian model for d
2
above Tc

Xaniso�t�L/�0,��1/�;J�,J�� = ��0,�/�0,��d−1Xiso�t�L/�0,��1/�� .

�6.5�

We have verified that this relation holds also for d=2 dimen-
sions �i� for the Gaussian model with periodic, antiperiodic,
DD, NN, and ND bc and �ii� for the Ising model for periodic
and antiperiodic bc. There is little doubt that it also holds for
the two-dimensional Ising model with corresponding other
bc. Right at Tc this was established already in �20� for the
case of free bc, as noted in Sec. II C.

VII. �4 FIELD THEORY AT d=3

In this section we present the first �one-loop� step within
the framework of the minimally renormalized �4 field theory
at fixed dimensions 2�d�4 �33,36� for the calculation of
the Casimir force scaling function in film geometry in the
regime T	Tc for all five bc defined in Sec. II. As noted
in Sec. II C, our Gaussian results for the various scaling
functions G�x̃� and X�x̃� can be incorporated in such a theory
based on the isotropic �4 Hamiltonian �2.41�. We emphasize,
however, that we do not set u0 equal to zero from the outset
and that our one-loop treatment goes beyond the simple
Gaussian model in that it includes the effect of the renormal-
ized four-point coupling u via the exact exponent function
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�0.5
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(a)

FIG. 4. �Color online� Casimir force scaling functions �6.1� and
�6.2� of the Gaussian and Ising models in d=2 dimensions. �a�
Scaling functions XGauss

�p� ��L /��2�=−XIsing
�a� �L /�� �solid line� accord-

ing to Eq. �6.3a� and XIsing
�p� �L /��=−XGauss

�a� ��L /��2� �dashed line� ac-
cording to Eq. �6.3b�. �b� Scaling functions XGauss

�DD� ��L /��2� �solid
line� and XIsing

�free��L /�� �dashed line�.
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�r�u� �see Eq. �7.4� below�, whose fixed-point value
determines the exact �non-Gaussian� critical exponent
�. The one-loop approximation manifests itself only in ne-
glecting the �two-loop� O�u*� contribution to the amplitude
function of the free energy density. Such a treatment has
recently been presented in Sec. X A of �36� for the case
of cubic geometry with periodic bc. For the specific heat
in film geometry with Dirichlet bc a corresponding treat-
ment was given in �12�. As suggested by the earlier successes
�12,17,36�, the minimally renormalized �4 theory at fixed
d is expected to constitute an important alternative in
the determination of the Casimir force scaling function in
comparison to the earlier � expansion approach �8,9,15�.
Our quantitative results presented in Fig. 5 support this
expectation. Other fixed-d renormalization schemes are, of
course, conceivable which would lead to the same one-loop

results at d=3 as obtained in our approach. We believe,
however, that the fixed-d minimal subtraction scheme has
considerable advantages in extending the finite-size theory to
two-loop order and to the temperature regime below Tc
�17,36�.

As a temperature variable we use the shifted parameter
r0−r0c=a0t, where r0c=−4�n+2�u0�k

�d�k−2 is the critical
value of r0 up to O�u0�. In the following we sketch the rel-
evant steps of calculating the singular part of the minimally
renormalized free energy density in one-loop order for film
geometry with periodic or antiperiodic bc. After subtracting
the regular bulk part up to linear order in r0−r0c and per-
forming the limit �→� at fixed r0−r0c we obtain the bare
one-loop expression of the remaining part �f of the free en-
ergy density per component divided by kBT in 2�d�4 di-
mensions as

��
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FIG. 5. �Color online� Scaling functions G
and X of the finite-size part of the free energy
density and of the Casimir force, respectively, for
T	Tc in a three-dimensional film of thickness
L with isotropic interactions for the various bc as
a function of the scaling argument L /�. Solid
lines: one-loop results of the fixed d=3 �4 theory
according to Eqs. �4.9�, �4.26�, �4.46�, �7.5�, and
�7.6� for G��L /��2� and according to Eqs. �5.6�,
�5.9�, and �5.4� for X��L /��2�. Dashed lines in left
panels: two-loop � expansion results �+per�L /��,
�+aper�L /��, �+SB,SB�L /��, �+O,O�L /��, and
�+O,SB�L /�� at �=1 for n=1 for periodic, anti-
periodic, NN, DD, and ND bc, respectively,
according to Eqs. �6.12� and �6.13� in �8�. Dashed
lines in right panels: two-loop � expansion
results �+per�L /��, �+aper�L /��, �+SB,SB�L /��,
�+O,O�L /��, and �+O,SB�L /�� at �=1 for n=1,
obtained through Eq. �3.9� in �9�. Dotted line in
�a�: improved � expansion result ��per��L /�� at
�=1 for n=1 according to Eq. �4.57� in �15�,
compare Fig. 6 of �15�. Dot-dashed line in �a�:
Fex��L /��1/� ,�=1 /4� in fixed d=3 according to
Eq. �17� in �17�. Data point in �a�: From MC
result �P�0�=−0.3040�4� in �6�. Dotted line in
�b�: improved � expansion results  �per��L /�� for
n=1, obtained through Eq. �1.7� in �15�. Dot-
dashed line in �b�: X��L /��1/� ,�=1 /4� in fixed d
=3 according to Eq. �19� in �17�. The L /�=0 data
point in �b� is twice the L /�=0 data point dis-
played in �a�. Other data points in �b�: MC results
from Fig. 15 in �6� for L=20 and �=1 /6. Dotted
line in �e�: improved � expansion result
��sp,sp��L /�� at �=1 for n=1 according to Eqs.
�4.47�, �4.50�, �4.53�, and �4.56� in �15�, compare
Fig. 8 of �15� �where the variable on the abscissa
should read �L /����L�. Dotted line in �f�: im-
proved � expansion results  �sp,sp��L /�� at �=1
for n=1, obtained through Eq. �1.7� in �15�. Data
point in �g�: MC result for L=20 and �=1 /6 by
dividing the L /�=0 result displayed in �h� by
2. Data points in �h�: MC results for L=20 and
�=1 /6 from the inset of Fig. 13 in �6� �where the
� expansion line is misrepresented�.
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�f�r0 − r0c,u0,L� = −
Ad

d�
�r0 − r0c�d/2 + L−dG��r0 − r0c�L2�

+ O�u0� �7.1�

for periodic and antiperiodic bc, where G�p��y� and G�a��y� are
given by Eqs. �4.5a� and �4.5b�. The renormalized param-
eters r and u are defined in the standard way �36� as r
=Zr

−1�r0−r0c� and u=!−�AdZu
−1Z�

2u0 with an inverse refer-
ence length !=�0

−1, where �0 is the correlation-length ampli-
tude above Tc. The additively renormalized counterpart fR of
�f is defined as �36�

fR�r,u,L,!� = �f�Zrr,!�ZuZ�
−2Ad

−1u,L� −
1

8
!−�n−1r2AdA�u,�� ,

�7.2�

where A�u ,��=−2n /�+O�u� is the additive renormalization
constant of the minimal renormalization scheme. After inte-
gration of the renomalization-group equation �see Eqs. �5.6�
and �5.7� of �36�� and with the choice !2l2=r�l� of the flow
parameter l, the finite-size part of fR is then given by

fR�r,u,L,!� − fR�r,u,�,!� = L−dG�r�l�L2� + O�u�l�� ,

�7.3�

with the effective temperature variable �33�

r�l� = r exp��
1

l

�r�u�l���
dl�

l� � . �7.4�

This variable contains the field-theoretic function �r�u�
=!��! ln Zr

−1�0 �33� with the fixed point value �r�u*�=2
−�−1. Asymptotically �l→0�, this leads to the scaling form
of the singular part of the excess free energy per component
in one-loop order

fex,s�t,L� = L−dG�L2/�2� + O�u*� �7.5�

for periodic and antiperiodic bc, with G�p��y� and G�a��y�
given by Eqs. �4.5a� and �4.5b� where now �=�0t−� is the
correlation length above Tc with the exact critical exponent �
of the �d ,n� universality class.

A complication appears to arise at d=3 for NN and DD bc
because in these cases the limit �→� at fixed r0−r0c does
not exist which in the dimensionally regularized form of the
free energy density shows up as pole terms at d=3. These
divergent contributions, however, are restricted only to the
surface part L−1fsf which does not contribute to the Casimir
force. Thus fex�t ,L�−L−1fsf�t� is well behaved at d=3 in the
limit �→� at fixed r0−r0c. Consequently there exists no
problem in the calculation of the finite-size part scaling func-
tion G and of the Casimir force scaling function X in the
framework of the minimally renormalized theory at fixed
d=3 for NN and DD bc. This holds also for ND bc. The
resulting asymptotic scaling form in one-loop order is

fex,s�t,L� − L−1fsf,s�t� = L−dG�L2/�2� + O�u*� �7.6�

for NN, DD, and ND bc, where G�NN��y�, G�DD��y�, and
G�ND��y� are given by Eq. �4.20� with Eq. �4.5a�, and by Eq.
�4.36� with Eq. �4.5b�, respectively. Again, the correlation

length � in Eq. �7.6� contains the exact critical exponent � of
the �d ,n� universality class. The results �7.5� and �7.6� can be
applied directly to d=3 dimensions. The Casimir force scal-
ing functions X�L2 /�2� follow from Eq. �5.4�. Thus we are in
the position to perform a reasonable comparison both with
MC data for the three-dimensional Ising model �6� and with
earlier �=4−d expansion results �8,15� of the �4 theory
evaluated at �=1 as well as with the recent result of an
improved d=3 perturbation theory �17� �in a L�

2�L slab ge-
ometry with a finite aspect ratio �=L /L� =1 /4� for periodic
bc. This comparison is one of the central results of this paper.

The comparison is shown in Figs. 5�a�–5�j� as a function
of the variable L /�. The solid lines represent our one-loop
results. The � expansion results are represented by the
dashed lines �two-loop � expansion �8�� and by the dotted
lines �improved � expansion �15��, respectively, and the re-
sult of the improved d=3 perturbation theory �17� is repre-
sented by dot-dashed lines in Figs. 5�a� and 5�b�. In the
large-L /� regime �not shown in Fig. 5�, the solid and dashed
lines have an exponential approach to zero and differ very
little from each other in all cases. This statement holds also
for the dotted and dot-dashed lines for the case of periodic bc
�Figs. 5�a� and 5�b�� but not for the dotted lines for the case
of NN bc �Figs. 5�e� and 5�f��, where the � expansion result
of �15� breaks down in the large-L /� regime. Also shown are
recent MC data �6� for the three-dimensional Ising model �in
a L�

2�L slab geometry with the aspect ratio �=L /L� =1 /6
and with L=20� for the cases of periodic and DD bc in Figs.
5�a�, 5�b�, 5�g�, and 5�h�, respectively.

For periodic bc, our one-loop result for G�p��L2 /�2� and
X�p��L2 /�2� �solid lines in Figs. 5�a� and 5�b�� is in remark-
able agreement with the improved � expansion result of �15�
�dotted lines in Figs. 5�a� and 5�b�� at Tc �i.e., L /�=0� and in
the large-L /� regime. The slope of our one-loop result at Tc
is in better agreement with the slope of the MC data than the
slopes of the � expansion results at Tc. In particular, there is
no artifact of the one-loop result of the fixed d=3 theory
such as the minimum of the two-loop � expansion result
above Tc shown by the dashed line in Figs. 5�a� and 5�b�.
This suggests that, for periodic bc, the d=3 approach is a
better starting point of perturbation theory than the � expan-
sion around d=4 dimensions. This is consistent with recent
findings of finite-size effects in cubic geometry �Fig. 5 in
�36�� and in finite-slab geometry �Fig. 4 in �17��. For antipe-
riodic bc �see Figs. 5�c� and 5�d��, there is surprisingly good
agreement between our one-loop d=3 result for G�a��L2 /�2�
and X�a��L2 /�2� and the two-loop � expansion result �8�. This
is quite remarkable in view of the fact that the computational
effort in obtaining d=3 one-loop RG results is considerably
smaller than that for deriving two-loop � expansion results.

For NN, DD, and ND bc, there are considerable differ-
ences between our one-loop results of the fixed d=3 �4

theory and the two-loop � expansion results as shown in
Figs. 5�e�–5�j�. For NN bc, however, the improved � expan-
sion result of �15� at Tc is not far from our one-loop result,
but for L /�
0 our d=3 result does not agree with the strong
increase in the � expansion result of �15�.

In summary, the fixed d=3 theory yields reasonable re-
sults already in one-loop order. It would be a rewarding task
to perform a two-loop calculation of the fixed d theory for all
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bc as well as to proceed to higher-orders of the � expansion
for DD and ND bc. Also MC data for the cases of antiperi-
odic, NN, and ND bc are highly desirable for a comparison
with the predictions shown in Fig. 5 in order to clarify the
reliability of the different perturbative approaches.

VIII. DIMENSIONAL CROSSOVER: SPECIFIC HEAT

In the following, we present an explicit study of the di-
mensional crossover in the Gaussian model from the finite-
size critical behavior near the d-dimensional bulk transition
at Tc to the �d−1�-dimensional critical behavior near the film
transition at the critical temperature Tc,film�L��Tc of the film
of finite thickness L. �The equality sign holds only for peri-
odic and NN bc, whereas Tc,film�L��Tc for antiperiodic, DD,
and ND bc.� The most interesting candidate for this study is
the divergent specific heat C�t ,L�, whose d-dependent criti-
cal exponent � changes from �bulk= �4−d� /2 near bulk Tc
�see Eq. �2.28�� to �film= �4− �d−1�� /2 near Tc,film�L� in d
�4 dimensions. We shall verify that the film critical behav-
ior of a d-dimensional system corresponds to that of a bulk
system in d−1 dimensions for all bc except for antiperiodic
bc, where an unexpected factor of two appears due to a two-
fold degeneracy of the lowest mode as noted already in Sec.
II A above. It remains to be seen which effect this feature
may have in non-Gaussian models and in the �4 theory.

The dimensional crossover behavior is particularly simple
in the Gaussian model because the correlation-length expo-
nent �=1 /2 is independent of the dimension d and the
correlation-length amplitude is the same both for the bulk
and the film critical point. To the best of our knowledge, this
crossover behavior has not been presented in the literature so
far. Nevertheless it is worthwhile to study the exact Gaussian
crossover behavior for various bc as it provides part of the
mathematical basis also for the crossover behavior in the
more complicated mean spherical model in film geometry
in 3�d�4 dimensions that we shall study in a separate
paper �44�.

According to Eqs. �2.9� and �2.25�, the expression for the
specific heat reads

C�t,L� =
T2a0

2

2Tc
2L

�
q
�

p

�d−1� 1

�r0 + Jp,d−1 + Jq�2

−
Ta0

TcL
�

q
�

p

�d−1� 1

r0 + Jp,d−1 + Jq
. �8.1�

For small t and large L / ã, the specific heat can be decom-
posed into singular and nonsingular parts as

C�t,L� = Cs�t,L� + Cns�t,L� . �8.2�

The first term on the right-hand side of Eq. �8.1� provides the
leading singular contribution to Cs, whereas the second term
yields only subleading corrections. The nonscaling structures
of the type discussed in the preceding sections �for NN, DD,
and ND bc in d=3 dimensions� appear only in the subleading
corrections, whereas the leading part of the first term of Eq.
�8.1� is in full agreement with the finite-size scaling form
�for the subclass of isotropic systems�

Cs�t,L� = �0
−2/�L�/�C�x̃� , �8.3�

as noted already in �31� for the case of free �DD� bc. For the
Gaussian model, the scaling structure �8.3�, together with the
critical exponents �2.12� and �2.28�, holds in 1�d�4 di-
mensions for all boundary conditions. If the finite-size scal-
ing function F�x̃� of the free energy density, Eq. �2.18�, ex-
ists, the universal scaling function C�x̃� is related to it by

C�x̃� = −
d2F�x̃�

dx̃2 . �8.4�

For the simplest anisotropic case, discussed at the end of
Sec. II C, the corresponding nonuniversal result can be de-
rived from Eq. �2.55�. C�x̃� exists also in d=3 dimensions for
the cases of NN, DD, and ND bc where F�x̃� does not exist
for all x̃.

From Eq. �2.20� follows the bulk singular part

Cb,s�t� = YC,d�0
−dt−� = YC,d�0

−2/���/�, �8.5�

with the universal bulk amplitude

YC,d = −
d�d − 2�

4
Yd =

��4 − d

2
�

2�4��d/2 , �8.6�

which is valid for d
0, d�4,6 ,8 , . . . dimensions, even
though Eq. �2.20� does not hold for d=2. This implies in two
and three dimensions
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2

FIG. 6. �Color online� Solid line: double-logarithmic plot of the
specific-heat scaling function C�DD��x̃�, Eq. �8.12�, of the Gaussian
model with DD bc in three dimensions as a function of x̃+�2, with
x̃= t�L /�0�2, t= �T−Tc� /Tc. Dotted: asymptotic behavior at small x̃
+�2
0 according to Eqs. �8.13a� and �8.14a�, displaying the diver-
gent critical behavior near Tc,film�L��Tc with an exponent �=1.
Dashed: asymptotic behavior at large x̃ according to Eqs. �8.13c�
and �8.14c�, displaying the three-dimensional bulk critical behavior
above bulk Tc with an exponent �=1 /2. Near x̃=0 corresponding to
bulk Tc, C�DD��x̃� is an analytic function with the finite amplitude
C�DD��0�=1 / �48��.
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Cb,s�t�

=

1

8�
�0

−2t−1 =
1

8�
�0

−4�2, d = 2, �8.7a�

1

16�
�0

−3t−1/2 =
1

16�
�0

−4� , d = 3. �8.7b��
The finite-size scaling functions read

C�p��x̃� = − Kd
�p��x̃� + YC,dx̃�d−4�/2, x̃ 
 0, �8.8a�

C�a��x̃� = − Kd
�a��x̃ + �2� + YC,d�x̃ + �2��d−4�/2, x̃ 
 − �2,

�8.8b�

C�NN��x̃� = − Kd
�NN��x̃� + YC,dx̃�d−4�/2 + 2AC,sf

�N� x̃�d−5�/2, x̃ 
 0,

�8.8c�

C�DD��x̃� = − Kd
�DD��x̃ + �2� + YC,d�x̃ + �2��d−4�/2

+ 2AC,sf
�D� �x̃ + �2��d−5�/2, x̃ 
 − �2, �8.8d�

C�ND��x̃� = − Kd
�ND��x̃ + ��/2�2� + YC,d�x̃ + ��/2�2��d−4�/2,

x̃ 
 − ��/2�2, �8.8e�

with

AC,sf
�N� = − AC,sf

�D� = −
�d − 1��d − 3�

4
Asf

�N� =

��5 − d

2
�

8�4���d−1�/2 ,

�8.9�

as follows from Eqs. �8.4�, �4.1�, �4.16�, and �4.40�. The
functions Kd�y� are listed in Appendix D. They are given by
the second derivatives of the functions Id defined in Sec. IV,
i.e., Kd�y�=Id��y�. Equations �8.8� are valid in 1�d�4 di-
mensions. Equation �8.9� agrees with Eqs. �125� and �126� of
�31� for the case of DD bc �apart from a factor two due to a
different definition of AC,sf�.

The scaling functions �8.8� are valid not only near x̃=0,
but also near the film transition at Tc,film�L��Tc for anti-
periodic, DD, and ND bc, i.e., near x̃=−�2 or x̃=−�2 /4,
respectively. This means that they provide an exact descrip-
tion of the crossover from the d-dimensional to the
�d−1�-dimensional critical behavior of the specific heat.
The result �8.8d� for C�DD��x̃� agrees with the result for
C�y ,0� of Eqs. �124�–�126� in �31� with the identification
x̃=y2.

Similar to Eq. �3.6�, at finite L, we define the film specific
heat Cfilm �heat capacity per unit area divided by kB� as

Cfilm�r0,L� = LC�t,L� . �8.10�

One expects that, asymptotically ��film�L�, the film critical
behavior of a d-dimensional system corresponds to that of a
bulk system in d−1 dimensions. We indeed obtain from Eqs.
�8.8� and �8.3� for small �r0−r0c,film�L�� /J"L−2 the singular
part of the film specific heat for finite L for all bc

Cfilm,s�tfilm,L� = 

YC,d−1

�0
d−1 tfilm

�d−5�/2 =
YC,d−1

�0
4 �film

5−d , periodic,NN,DD,ND bc, �8.11a�

2YC,d−1

�0
d−1 tfilm

�d−5�/2 =
2YC,d−1

�0
4 �film

5−d , antiperiodic bc, �8.11b��
with tfilm� t− tc,film�L�, in agreement with the bulk
critical behavior in d−1 dimensions �compare Eqs.
�8.5�, �8.7a�, and �8.7b��, as expected on the basis of
universality. An exception is the additional factor of 2 for
antiperiodic bc which is a consequence of the twofold degen-
eracy of the lowest mode, as already noted in Sec. III �see
Eq. �3.8��.

Since the crossover behavior is qualitatively similar in all
dimensions 1�d�4 we confine ourselves to illustrating
only the example of DD bc in d=3 dimensions which is
obtained from Eq. �8.8d� as

C�DD��x̃� =
1

16�
� coth �x̃

�x̃
−

1

x̃
�, x̃ 
 − �2. �8.12�

�Equation �8.12� follows also from Eq. �8.1� together with
Eqs. �4.29� and �4.26� or Eq. �E2�.� Its asymptotic behavior
is

C�DD��x̃�

=

1

8��x̃ + �2�
+ O��x̃ + �2�0� , 0 � x̃ + �2 " 1, �8.13a�

1

48�
−

x̃

720�
+ O�x̃2� , 
x̃
 " 1, �8.13b�

1

16��x̃
−

1

16�x̃
+ O�e−�x̃/�x̃� , x̃ � 1, �8.13c�

�
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which implies the corresponding asymptotic behavior

Cs
�DD��t,L� =


1

8�
�0

−2L−1tfilm
−1 , 0 � L/�film " 1, �8.14a�

1

48�
�0

−4L , T = Tc,L/ã � 1, �8.14b�

1

16�
�0

−3t−1/2, L/� � 1. �8.14c�
�

This indeed represents a two-dimensional critical behavior
near Tc,film with the exponent �=1 �compare Eq. �8.7a��, a
three-dimensional finite-size critical behavior at Tc with �
=1 /2, �=1 /2 �compare Eq. �8.3��, and a three-dimensional
bulk critical behavior above Tc with the exponent �=1 /2
�compare Eq. �8.7b��, respectively. The crossover is illus-
trated in Fig. 6. Similar illustrations can be given for the
other bc.
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APPENDIX A: FILM THICKNESS

Here we derive expression �2.48� for the thickness

L̄ of the transformed isotropic film. This thickness is given
by L times the height of the d-dimensional parallelepiped
spanned by the transforms x̂i���−1/2Ux̂i of the ortho-
gonal unit vectors x̂i, i=1, . . . ,d over the surface given
by the �d−1�-dimensional parallelepiped spanned by x̂i�, i
=1, . . . ,d−1. Since the volume of a parallelepiped is given
by the product of one of its surface areas and the correspond-
ing height, we may write

L̄ = �Vd/Vd−1�L , �A1�

where the volume of the d-dimensional parallelepiped has
been denoted by Vd and the surface area is given by the
volume Vd−1 of the �d−1�-dimensional parallelepiped. The
m-dimensional volume Vm of a parallelepiped spanned by the
m vectors v�1 , . . . ,v�m in an n-dimensional space with n	m is
given by Vm= �det VTV�1/2, where V is the n�m matrix
whose columns are the vectors v�1 , . . . ,v�m. Thus we obtain

Vd = �det��−1/2U�T��−1/2U��1/2 = �det �−1�1/2

= �
i=1

d

�i
−1/2 = �det A−1�1/2, �A2�

where A−1 may also be written as

A−1 = �x̂1� · x̂1� ¯ x̂1� · x̂d�

] � ]

x̂d� · x̂1� ¯ x̂d� · x̂d�
� , �A3�

and

Vd−1 = �det��−1/2U�T��−1/2U��1/2

= �det�A−1/2�T�A−1/2��1/2 = �det†�A−1�‡�1/2, �A4�

where ��−1/2U� and �A−1/2� are the d� �d−1� matrices that
result from removing the last column from the matrices
�−1/2U and A−1/2, respectively, and where [�A−1�] is the
�d−1�� �d−1� left upper part of A−1. Combining Eqs. �A1�,
�A2�, and �A4� gives Eq. �2.48�.

For the special case where A is diagonal, we obtain Vd

=�i=1
d Aii

−1/2 and Vd−1=�i=1
d−1Aii

−1/2 and thus Vd /Vd−1=Add
−1/2.

APPENDIX B: FREE ENERGY

Here we derive fs�t ,L� of the Gaussian lattice model in
1�d�4 dimensions for film geometry with the various bc
for both the isotropic case and the anisotropic case.

While we follow in spirit the derivation given for DD bc
in �31�, two simplifications arise. �i� In �31� a slab geometry
was investigated, of which the film geometry is only a lim-
iting case; �ii� we perform an exact separation of the surface
contributions at an early stage of the calculation and reduce
the remaining computations for all bc to the case of periodic
bc.

First we consider the isotropic case. We start from Eqs.
�2.9� and �2.10� and use ln z=�0

�dyy−1�e−y −e−yz� to write the
excess free energy as

fex�t,L� =
1

2ãd�
0

� dy

y
e−yr̃0/2B�y�d−1
BN�y� , �B1�

with r̃0 defined after Eq. �2.31�,


BN�y� � B�y� − BN�y� , �B2�

B�y� =
1

2�
�

0

2�

d� exp�− y�1 − cos ��� , �B3�

BN�y� =
1

N
�
qm

exp�− y�1 − cos qmã�� , �B4�

where the sum �qm
runs over the wave numbers given in Eq.

�2.4�. The quantity B�y�� limN→� BN�y� in Eq. �B3� is iden-
tical to B�y� from Eq. �2.33�. By rearranging the sums it is
possible to express BN

�a��y�, BN
�NN��y�, BN

�DD��y�, and BN
�ND��y�

in terms of BN
�p��y�. For example, for DD bc

BN
�DD��y� =

1

2N
��

m=0

N−1

+ �
m=N+1

2N �exp�− y�1 − cos
��m + 1�

N + 1
�	

= −
1 + e−2y

2N
+

N + 1

N
B2�N+1�

�p� �y� , �B5�

where in the first step we have exploited the symmetry of the
cosine about �, while in the second step m=−1 and m=N
terms have been added to and subtracted from the sum and
subsequently m has been renamed m−1. Similar rearrange-
ments can be performed for the other nonperiodic bc and we
obtain the exact relations


BN
�a��y� = 2
B2N

�p��y� − 
BN
�p��y� , �B6a�
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BN
�NN��y� =

e−2y − 1

2N
+ 
B2N

�p��y� , �B6b�


BN
�DD��y� =

1 + e−2y − 2B�y�
2N

+ �1 +
1

N
�
B2�N+1�

�p� �y� ,

�B6c�


BN
�ND��y� =

e−2y − B�y�
2N

+ �1 +
1

2N
�
B2N+1

�a� �y� .

�B6d�

This leads to the exact representation

fex�t,L� =
2fsf�t�

L
+

1

2ãd�
0

� dy

y
e−yr̃0/2B�y�d−1

�


BN

�p��y� , periodic bc, �B7a�

BN

�a��y� , antiperiodic bc, �B7b�

B2N

�p��y� , NN bc, �B7c�

�1 +
1

N
�
B2�N+1�

�p� �y� , DD bc, �B7d�

�1 +
1

2N
�
B2N+1

�a� �y� , ND bc, �B7e�
�

for arbitrary L=Nã with 
BN
�a� from Eq. �B6a�. For NN, DD,

and ND bc, the surface contribution 2fsf�t� /L originates from
the first term on the right-hand sides of Eqs. �B6b�–�B6d�,
respectively. It is given by fsf

�N��t�, fsf
�D��t�, and fsf

�ND��t� pro-
vided in Eqs. �4.11� and �2.14�.

The remaining tasks are �i� to determine the large-N be-
havior of BN

�p��y� for periodic bc and �ii� to translate the result
to the other bc. For the first task it is useful to distinguish the
regimes 0�y#y0 and y�y0 in the integral �B1�, with y0
chosen such that 1"y0"N2. Thus, for periodic bc, we sepa-
rate

fex�t,L� =
1

2ãd �f1 + f2� , �B8�

f1,2 = �
1,2

dy

y
e−yr̃0/2B�y�d−1
BN

�p��y� , �B9�

with �1��0
y0 and �2��y0

� , corresponding to Eqs. �A10� and
�A11� of �31�. As shown in Eqs. �A12�–�A17� of �31�, the
large-N dependence of 
BN

�p��y� in the regime 0�y#y0 is of
O�e−N�, thus f1 yields only exponentially small contributions.

Now consider y�y0 with y0�1. Rewrite the sum over
qm in Eq. �B4� for periodic bc by letting m run over
m=−N /2, . . . ,N /2−1 for even N and m=−�N
−1� /2, . . . , �N−1� /2 for odd N. Then only 
qmã
"1 can lead

to contributions to BN
�p��y� in Eq. �B4� that are not exponen-

tially small and we may expand

exp�− y�1 − cos qmã�� = exp�−
1

2
y�qmã�2�1 + O„�qmã�2

…�� .

�B10�

Correspondingly, we obtain in the regime y�y0, apart from
exponentially small corrections,

BN
�p��y� �

1

N
�

m=−�

+�

exp�− 2y��m

N
�2	 =

1

N
K�2y��

N
�2	 .

�B11�

For the evaluation of f2, we use Eq. �B11� and keep only
the first term of

B�y� =
1

�2�y
�1 + O�y−1�� . �B12�

Extending the lower integration limit in f2 to 0 leads only to
exponentially small corrections. Changing the integration
variable according to z=2y�� /N�2 gives for periodic bc the
result �2.22� with G�p��x̃� in Eq. �4.5a�. Due to Eqs.
�B7b�–�B7e�, we confirm Eq. �2.22� also for the other bc
under consideration here �the surface terms are absent also
for antiperiodic bc�, with the G�x̃� provided in Eqs. �4.5b�,
�4.20�, and �4.36�, with specializations to d=3 in Eqs. �4.9�,
�4.26�, and �4.46�.

Now add to L−dG�x̃� the bulk singular part of the free
energy fb,s from Eq. �2.20� and, for NN or DD bc and
d�3, the surface singular part from Eq. �4.12� �the corre-
sponding part for ND bc vanishes, see Sec. IV D�. Observing
Eq. �2.18� with C1 given after Eq. �2.19� leads to the scaling
functions �4.1�, �4.16�, and �4.40�.

For d=3 and NN or DD bc, we add to L−3G�x̃� with G�x̃�
from Eq. �4.26� the bulk singular part of the free energy fb,s
from Eq. �2.20� with Y3 from after Eq. �2.34� and the surface
singular part from Eq. �4.23� to obtain the results �4.25�.

Inserting the small-z expansion of K�z� into Eq. �4.5a�
with Eq. �4.2a� gives

G�p��x̃� = − �
0

� dz

�
��

z
��d+2�/2

e−zx̃/�2��2�
n=1

�

e−n2�2/z.

�B13�

For large x̃, the right-hand side is dominated by the first term
of the sum. The remaining integral may be evaluated in a
saddle point approximation. This yields, together with Eqs.
�4.5b�, �4.20�, and �4.36�, the exponential decay of the non-
surface terms in Eqs. �4.7�, �4.22�, and �4.38�.

For the anisotropic case, we consider two different cou-
plings J� and J�, see Eq. �2.51�. Then Eq. �B1� is replaced by

fex�t,L� =
1

2ãd�
0

� dy

y
e−yr̃0,�/2B��J�/J��y�d−1
BN�y� ,

�B14�

with r̃0,��r0ã2 / �2J��. For the leading singular finite-size
terms only the leading large-y behavior of B�y� given in Eq.
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�B12� matters, see the derivation of Eq. �4.5a� for periodic bc
above and its translation through Eqs. �B7b�–�B7e� to the
other bc, manifested in Eqs. �4.5b�, �4.20�, and �4.36�. The
same is true for the leading singular surface terms as may be
inferred from the derivation of Eq. �4.12� for d�3. Thus the
factor J� /J� in the argument of B in Eq. �B14� leads to an
additional factor �J� /J���d−1�/2 in front of the leading singular
contributions to the excess free energy fex�t ,L�. Equations
�2.31� and �2.32� are replaced by

fb�t� =
1

2ãd�ln
J�

�
+ W̃d�r̃0,�,J�/J��	 , �B15�

W̃d�z,w� � �
0

� dy

y
�e−y/2 − e−zy/2B�y�B�wy�d−1� . �B16�

Thus, because of the argument �J� /J��y of B, the same factor
�J� /J���d−1�/2 appears in front of the leading singular bulk
part. Since the temperature dependence enters only through
the parameter r̃0,�= ã2 /��

2 , where �� is the correlation length
�2.53b�, it is straightforward to confirm Eq. �2.55� for all bc
on the basis of these properties.

APPENDIX C: COMPARISON WITH REF. [8]

In Sec. IV we stated the identity of G�x̃� with the func-
tions �+

�1��y+� used in �8� �as noted for periodic and antipe-
riodic bc after Eq. �4.5�, for NN and DD bc after Eq. �4.20�,
and for ND bc after Eq. �4.36��. For periodic bc, this equiva-
lence follows from using expansion �3.38� in �35� in terms of
Bessel functions, which provides another representation of
G�p�. With x̃=y+

2, we obtain

G�p��y+
2� � −

1

2�
�

0

�

dz��/z��d+1�/2e−zy+
2/�2��2

�K�z� − ��/z�

= −
1

�
�
n=1

� �
0

�

dz��/z�d/2+1e−zy+
2/�2��2

e−n2�2/z

= − 2y+
d/2�

n=1

�
Kd/2�ny+�
�2�n�d/2

= −
y+

d

�4���d−1�/2��d + 1

2
��

n=1

� �
1

�

dz�z2 − 1��d−1�/2e−nzy+

= −
y+

d

�4���d−1�/2��d + 1

2
��1

�

dz
�z2 − 1��d−1�/2

ezy+ − 1

� �+per
�1� �y+� , �C1�

valid for y+
0. The other identities between G�x̃� and
�+

�1��y+� follow similarly. They may also be derived by
showing identities �4.5b�, �4.20�, and �4.36� for the functions
�+

�1� as represented in �8�.

APPENDIX D: FUNCTIONS

For 
z
�1, the polylogarithms are defined by Li��z�
=�k=1

� zk /k� and for 
z
	1 by their analytic continuation.
They are analytic in the complex plane except at z=1 and
except for a branch cut that we take along z� �1,��.
We need Li��z� for �=1,2 ,3. Well known relations
are Li��1�=���� for Re �
1, Li��−1�= �21−�−1�����, Li1�z�
=−ln�1−z�, and Li���z�=Li�−1�z� /z for z� �1,��, where
������k=1

� k−� is Riemann’s zeta function. Combining them
we may write for z	0

Li3� � e−z� + zLi2� � e−z�

=
1

8
�1 � 7���3� + �

0

z

dxx ln�1 � e−x� , �D1�

which is needed for Appendix E.
The various functions Kd

��� appearing in Eqs. �8.8� read

Kd
�p��y� = −

1

32�3�
0

�

dz��/z��d−3�/2e−zy/�2��2
�K�z� − ��/z� ,

�D2a�

Kd
�a��y� = −

1

32�3�
0

�

dz��/z��d−3�/2e−zy/�2��2

��ez/4�K�z/4� − K�z�� − ��/z� , �D2b�

Kd
�DD��y� = −

1

2d+1�3�
0

�

dz��/z��d−3�/2e−zy/�2

��ez�K�z� − 1� − ��/z + 1� �D2c�

and Kd
�NN��y�=24−dKd

�p��4y�, and Kd
�ND��y�=24−dKd

�a��4y�.

APPENDIX E: ANALYTICITY PROPERTIES

Here we show that the d=3 expressions �4.8b� for F�a��x̃�
and Eq. �4.30� for L3fs

�DD��t ,L�+ �8��−1x̃ ln�L / ã� are analytic
for x̃
−�2 and are finite and real at x̃=−�2. Combining Eqs.
�4.9b� and �D1�, we obtain for x̃	0

G�a��x̃� = −
1

2��−
3

4
��3� + �

0

�x̃

dzz ln�1 + e−z�	
=

1

4�� 3

2
��3� +

1

3
x̃3/2 − �

0

x̃

dx̃� ln�2 cosh��x̃�/2��� .

�E1�

Since cosh��x̃�� is analytic and positive at x̃�=0, the analytic
continuation of F�a��x̃� in Eq. �4.8b� from positive x̃ to other
x̃ is analytic at x̃=0. Inspection of Eq. �E1� shows that the
integral there is also analytic for all other x̃
−�2. Thus
Eq. �4.8b� is analytic in x̃ for all x̃
−�2. Computing the
integral in Eq. �E1� for x̃=−�2 and combining the result with
Eq. �4.8b� gives the result �4.10�. Combining Eqs. �4.26� and
�D1�, we obtain for x̃	0
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G�DD��x̃� = −
1

16����3� + �
0

2�x̃

dzz ln�1 − e−z�	 = −
1

16�
���3� −

4

3
x̃3/2 + x̃�ln x̃ − 1� + 2�

0

x̃

dx̃� ln
2 sinh��x̃��

�x̃�
	 . �E2�

Since sinh��x̃�� /�x̃� is analytic and positive at x̃�=0, the analytic continuation of Eq. �4.30� is analytic at x̃=0. The integral in
Eq. �E2� is also analytic for all other x̃
−�2. Thus Eq. �4.30� is analytic in x̃ for all x̃
−�2. Using Eq. �E2� to expand Eq.
�4.30� around x̃=−�2 for x̃	−�2 gives Eq. �4.31�, with a finite value of Eq. �4.30� at x̃=−�2.
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