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Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes
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The phase behavior of hard superballs is examined using molecular dynamics within a deformable periodic
simulation box. A superball’s interior is defined by the inequality |x|??+|y|??+|z|??=1, which provides a
versatile family of convex particles (¢=0.5) with cubelike and octahedronlike shapes as well as concave
particles (¢ <<0.5) with octahedronlike shapes. Here, we consider the convex case with a deformation param-
eter ¢ between the sphere point (g=1) and the cube (g=). We find that the asphericity plays a significant role
in the extent of cubatic ordering of both the liquid and crystal phases. Calculation of the first few virial
coefficients shows that superballs that are visually similar to cubes can have low-density equations of state
closer to spheres than to cubes. Dense liquids of superballs display cubatic orientational order that extends over
several particle lengths only for large g. Along the ordered, high-density equation of state, superballs with
1 <g <3 exhibit clear evidence of a phase transition from a crystal state to a state with reduced long-ranged
orientational order upon the reduction of density. For ¢ =3, long-ranged orientational order persists until the
melting transition. The width of the apparent coexistence region between the liquid and ordered, high-density
phase decreases with g up to g=4.0. The structures of the high-density phases are examined using certain order
parameters, distribution functions, and orientational correlation functions. We also find that a fixed simulation
cell induces artificial phase transitions that are out of equilibrium. Current fabrication techniques allow for the
synthesis of colloidal superballs and thus the phase behavior of such systems can be investigated

experimentally.
DOI: 10.1103/PhysRevE.81.061105

I. INTRODUCTION

As the ability to control size, shape, and structure of nano-
particles [1-3] and colloids [4-6] improves, computer simu-
lation and theory of hard-particle systems become increas-
ingly important to the identification of technologically useful
bulk properties. Hard convex particles have been used as
models for simple atomic liquids and solids as a means to
connect the particle shape and excluded volume to the en-
tropy and to the equilibrium phase diagram of a system. The
hard-sphere model has a rich history and continues to pro-
vide deep insights into fundamental physical phenomena
[7-15]. However, nonspherical hard particles exhibit more
complex phase behavior than hard spheres, since the possi-
bility of anisotropic phases arises, including smectic, nem-
atic, columnar, and cubatic liquid crystals [16].

The cubatic phase has garnered recent attention because,
unlike other liquid-crystalline phases, it is characterized by
ordering in three mutually perpendicular directions while the
particles retain translational mobility [17]. Such unusual or-
dering may lead to novel optical, rheological, or transport
properties. The cubatic phase has been discovered in several
hard-particle systems. Cut hard spheres of certain aspect ra-
tios form small stacks that align perpendicularly to neighbor-
ing stacks [18]. The Onsager cross, a particle consisting of
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three thin rods aligned along orthogonal axes and intersect-
ing at their midpoints [19] and tetrapods, hard bodies formed
by four rods connected at tetrahedral angles [20], are ex-
amples of nonconvex particles that exhibit cubatic ordering.
The cubatic phase also arises in systems of perfect tetragonal
parallelepipeds [21] as well as systems of cuboids, noncon-
vex particles consisting of an array of tangent hard spheres
that approximate tetragonal parallelepipeds [17,22]. Perfect
tetragonal parallelepipeds have sharp corners and flat faces
while the cuboid is “bumpy” to approximate friction. Monte
Carlo simulation studies of these particles revealed a cubatic
phase, or parquet phase for aspect ratios other than 1:1:1,
that arises between the liquid and crystal phases [17,21,22].

In this paper, we use molecular dynamics (MD) to inves-
tigate the equilibrium phase behavior and the onset of cu-
batic ordering in systems of cubelike superballs. A superball
is a centrally symmetric particle defined by [23]

I+ [y + 2 = 1, (1)

where x, y, and z are Cartesian coordinates and ¢q is the
deformation parameter [24]. Superballs can take on concave
shapes ranging from a cross (¢=0) to the convex octahedron
(g=1/2) to a sphere (g=1) and finally to a cube (g=). We
focus on the “cubelike” range 1 =g =< to examine the in-
terpolation from spheres to cubes and reveal the role of par-
ticle shape and curvature on cubatic ordering. As ¢ is in-
creased from unity, the particle takes on more cubelike
characteristics as edges and corners sharpen while faces flat-
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FIG. 1.
represent the three equivalent principal axes.

ten. Figure 1 displays several superballs with their principal
axes for the deformation from unity to infinity.

For a system of superballs, the packing fraction is the
fraction of space occupied by the particles, ¢=pvg, where p
is the number density, vy, is the volume of a superball,

2 (1 2g+1 1 g+1
vxb=—28<—, d )B(—,q—), 2)
9 \2q 2q 29 q

B(x,y)=I'(x)I'(y)/T'(x+y), and I'(x) is the Euler gamma
function [23]. In this study, we do not consider the family of
superballs for which ¢<<1. Superballs are well-suited to
study the effect of the curvature of edges and corners. Al-
though experimentalists have the ability to control shape and
symmetry of colloidal particles, controlling the curvature
may be a larger challenge. Scanning electron micrographs of
nanoparticles reveal that edges and corners are not necessar-
ily sharp like perfect hard polyhedra [3]. Therefore, under-
standing the effects of curvature of hard particles on the
phase diagram is not only of fundamental interest, but also of
practical importance.

In this study, we detail the phase diagram of hard super-
ball systems as a function of ¢ and ¢ using molecular dy-
namics. To characterize the equilibrium phase behavior, it is
useful to start a system in an equilibrium state and allow the
particles to grow or contract (or equivalently, allow the simu-
lation cell to shrink or expand). The ideal gas is a suitable
initial condition to study low-density phases. Fast growth
rates applied to liquids of hard superballs generate nonequi-
librium, randomly jammed packings with novel characteris-
tics [25,26]. However, slow growth rates can also result in
nonequilibrium glasses and defective crystals and can limit
access to complex, high-density equilibrium phases.

The densest-packing arrangement is a suitable initial con-
dition for high-density phases since this arrangement mini-
mizes free energy for a hard-particle system. This study was
motivated by and made possible by the recent development
of optimal packings for the entire family of superballs
[23,27]. Jiao et al. determined the densest known, and likely
optimal, packings of superballs [23] and superdisks, the two-
dimensional analog [28]. The optimal packings of spheres
were proved rigorously only recently [29] and advances in
the densest-known packings of aspherical particles, including
ellipsoids [30] and the Platonic and Archimedean solids
[31,32], will allow researchers to explore the entire phase
diagram of these hard particles.

The low-density and liquid-crystalline phases of many
hard-particle systems have received significant research at-
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(Color online) Superballs for certain deformation parameter ¢. (a) g=1, (b) g=1.5, (c) ¢=2.0, (d) g=4.0, and (e) g=0°. The lines

tention including those for cylinders [33], spherocylinders
[34], ellipsoids [35-38], cut spheres [18,39], tetragonal par-
allelepipeds [21], and parallel superellipsoids, a perturbation
from ellipsoids to cylinders [40]. However, for many of these
shapes, the optimal packings are yet to be identified (e.g.,
ellipsoids [30]) and, therefore, exploring the high-density
equilibrium phases remains challenging.

In the following, we examine the liquid equation of state
(EOS), structure of the liquid phase, and the virial expansion.
For ordered, high-density phases of superballs, we examine
the crystal branch EOS and use suitable order parameters and
correlation functions to characterize the entropy-driven phase
transitions and cubatic ordering. We find that:

(i) Excluded volume effects are dominated by edges and
corners (Sec. IV A).

(ii) There exists a phase transition along the ordered,
high-density branch of the EOS that is associated with
changes in long-ranged orientational order (Sec. IV B).

(iii) The extent of orientational order increases with g at
all densities (Sec. V).

(iv) Fixed system boundaries can produce apparent phase
transitions in the ordered, high-density systems (Appendix).

The remainder of this paper is organized as follows. We
present the deformable box molecular-dynamics methodol-
ogy, order parameters, and correlation function in Sec. II and
review the equations of state for the hard-sphere and hard-
cube systems in Sec. III. In Sec. IV A, we compare the virial
expansion and approximate equations of state to simulation
data. In Sec. IV B, we present the EOS for the ordered, high-
density, and crystal phases as generated with deforming box
MD simulations and show the onset of cubatic ordering as a
function of ¢. The freezing transitions are examined in Sec.
IV C while the phase diagram is illustrated in Sec. IV D. The
structural characteristics are investigated in Sec. V and dis-
cussions are provided in Sec. VI. In the Appendix, we dis-
cuss the role of system geometry on the isotropy of the in-
ternal stresses, particularly how fixed boundaries can induce
apparent, misleading phase transitions.

II. METHODS
A. Molecular dynamics

Simulation studies of the phase behavior of nonspherical
particles typically use Monte Carlo simulation methods, pri-
marily due to the simplicity of implementation. One draw-
back of Monte Carlo methods is the difficulty in achieving
collective motion among the particles, which is often an
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important characteristic in systems of anisotropic phases.
To generate the pressure equations of state for cubelike
superballs, we use the Donev-Torquato-Stillinger (DTS)
molecular-dynamics algorithm [41-43]. The DTS algorithm
generalizes the Lubachevsky-Stillinger sphere-packing algo-
rithm [44] to nonspherical, convex particles including super-
balls and ellipsoids. In this algorithm, particles are allowed
to grow at a specified nondimensional rate y (or contract for
v<0) or, equivalently, the system is compressed (or ex-
panded). Contact between particles is predicted using gener-
alized overlap potentials.

The algorithm allows for shape deformation of the bound-
ary using an approach similar to Parrinello-Rahman MD
[45]. In Parrinello-Rahman MD, the “coordinates” of the
simulation cell are continuously driven by the internal
stresses of the system which are directly related to particle
interactions. However, in an event-driven simulation of hard
particles, particles only interact upon contact and cannot di-
rectly interact with the cell. In this paper, a Parrinello-
Rahman-like algorithm is employed where the “velocities”
of the lattice vectors are updated after a certain number of
collisions based on the anisotropy of the stress tensor
[41,43]. The mass assigned to the cell is equal to that of the
total mass of the particles.

In the work presented here, we have verified that the pres-
sure tensor remains isotropic on average when employing the
deforming box algorithm. Although this algorithm may not
rigorously sample an isostress or constant-pressure en-
semble, it is a reasonable approximation. We note that simu-
lations using fixed boundaries exhibited pressure tensors that
were anisotropic and gave rise to nonequilibrium phase be-
havior as detailed in the Appendix.

We limit our study to ¢ =4 since the algorithm is numeri-
cally unstable for ¢>4.0 [43]. Periodic boundary conditions
were employed. The reduced pressure is defined as Z
=p/pkgT, where p is the system’s pressure, p is the number
density, and kT is the usual energy scale for hard-particle
systems. Particles are of unit “diameter,” the surface-to-
surface distance of a chord along one principal axis (i.e., the
shortest chord).

To obtain the liquid EOS, particles were placed randomly
in a low-density configuration inside a cubic box. They were
given random linear and angular velocities and allowed to
grow at a specified rate 7y until the system reached a defined
pressure. For the crystal branch, particles were initialized in
a slightly expanded form of the densest lattice configuration,
with the number of particles N chosen to be commensurate
with the lattice, assigned random linear and angular veloci-
ties, and simulated using a contraction rate y<<O.

The densest-known packings of cubelike superballs occur
in one of two families of Bravais lattices, denoted as C, and
C, [23]. For 1=¢=1.1509, the densest packings of super-
balls are achieved with the C lattice, a perturbation of the
fce lattice. For superballs with ¢=1.1509, the C; lattice, a
deformation of the simple-cubic lattice, represents the dens-
est arrangement. Since the MD algorithm is slow at high
densities due to the high frequency of particle collisions, the
initial crystal configurations were unsaturated, typically near
80% of the maximum possible packing fraction.

Growth rates in the range 107=|y| =103 were utilized.
The simulation data for spheres were compared to widely
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accepted data and we find that equilibrium was well approxi-
mated with |y|=107>. Obtaining a full sweep of the density
at |y|=107> required over two weeks of computation time
with 1000 particles and therefore significantly slower growth
rates over the entire density range were not practical.

We more closely examined parts of the phase diagram in
which phase transitions were evident by running the algo-
rithm with slower rates using near-equilibrium configurations
as the initial conditions. In some cases, we averaged over
constant-density (y=0) MD trajectories consisting of nearly
103 collisions per particle. We find that the phase transitions
in the y=0 cases are slightly sharper than those in cases
using slow growth or contraction rates but generally occur at
the same densities. Growth rates of y>10~% usually pro-
duced jammed, metastable structures. These are explored in
separate studies [25,26]. For each ¢, we obtained multiple,
independent sweeps of the density for both the liquid and
solid branches to examine the variability of the results. The
results presented in this paper were obtained using 1000 par-
ticles. We have varied the system size between N=216 and
1728.

It is important to point out that no simulation method can
effectively determine rare events. Even detailed free-energy
calculations may encounter the inability to find states asso-
ciated with rare events. Unfortunately, hard-particle MD re-
quires serial calculations and advances in the parallelization
of these algorithms are required to produce longer trajecto-
ries. Until then, these algorithms are the most efficient use of
computer resources and can complement Monte Carlo meth-
ods that lack the ability to capture dynamics of collective
motion.

B. Quantifying order

Superballs have three equivalent principal, mutually or-
thogonal axes labeled A, B, and C. For each axis j=A, B, or
C of superball i, there is an associated unit vector u;
=[u; v, u;jy,u;.]. For a nematic-forming system, there is at
least one “director,” m=[n,,n,,n.], which represents the
most aligned direction in a system. For sufficiently aniso-
tropic (large ¢) superballs, one might expect systems to have
at least one nematic direction in a low-density phase and
three orthogonal directions in a crystal phase.

Order parameters are useful to characterize the local and
global order in a system of particles and several have been
employed for particles with cubic symmetry [21]. We find
that the nematic and cubatic order parameters, Sy and Sy,
respectively, are the most useful scalar metrics for quantify-
ing orientational order. For cubatic ordering, a nematic order
parameter can describe ordering in each direction A, B, and
C. The nematic order parameter for a particular set of axes j,
S, j is defined as

1 3 1
S, . =max — —u~~n-2——>, 3
2,j n, N214<2| ij _/| 2 ( )
where N is the number of particles, u;; is a set of particle
axes, and n; is the director for direction j. The solution to
Eq. (3) can be found by solving the eigenvalue problem
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3 1
Aj;[,m = ;\IZI uij,luij,m - Eé\l,ma (4)

where ¢ is the Kronecker delta function. S, ; is the maximum
eigenvalue A, and the nematic director vector n; is the
eigenvector associated with \p,,,.

Since all principal axes of a superball are equivalent, we
must “relabel” the particle axes prior to calculating S, ; in
order to obtain meaningful data. A set of three mutually or-
thogonal unit vectors is chosen as a reference, typically the
principal axes of one randomly chosen particle or the stan-
dard laboratory axes. For each particle, we relabel the par-
ticle axes based on the best alignment with the reference
system. For example, we identify the axis of each superball
that is best aligned with the [1,0,0] vector, label these axes as
A axes, then continue with the [0,1,0] vector and B axes. The
remaining axes are labeled as C axes. A schematic of this
procedure is shown in Ref. [17]. The relabeling scheme in-
troduces artificial correlations so that S, ; in an isotropic sys-
tem is approximately 0.55. For perfect cubatic ordering,
$y;=1 in each of the three orthogonal directions. Here, we
report S, as the maximum of the S, ;’s since the §, ;’s were
nearly equal to each other in all of the cases considered. This
suggests that we encountered isotropic and cubatic phases
and not phases with strict uniaxial or biaxial order.

The cubatic order parameter S, is a more appropriate sca-
lar metric for ordering in three orthogonal directions and is
defined as

1

S4 = max
n 14N

> (35w -n[*=30[w;-n*+3).  (5)
ij

Here, n is a unit director for which S, is maximized. The
prefactor of 1/14N arises from the accounting for the 3N
principal axes and normalizing S, to unity for perfect align-
ment. This can be formulated into an eigentensor problem as
in Ref. [39]. However, we use an approximate solution. We
choose the maximum S, from a large set of trial directors n.
Here, we take the set of trial directors to be the set of all
particle axes u;;, providing 3N trial directors. We report the
maximum S, from this set of trial directors. For perfect cu-
batic ordering, S4;=1, and for a system with no long-range
cubatic order, S,=0.

We use an orientational correlation function G,(r) to mea-
sure the mutual alignment of particles as a function of dis-
tance r between particle centers. As a specific instance of a
general class of orientational correlation functions [18],
G,(r) is defined as

3
Gy(r) = a<35[uuj(0) : ubj(r)]4 - 30[uaj(0) : ubj(r)]z +3),

(6)

where the (---) denotes the average over all axes j and par-
ticle pairs a and b. The prefactor of 3/14 accounts for all nine
combinations of axes between particle pairs which is similar
to the normalization of S,. In the limit that r—oo, Gu(r)
approaches Si. This function allows us to determine local
correlations whereas S, determines global order.
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The local alignment between “neighbor” particles can be
characterized by the angular distribution function f(6) de-
fined for 0°=6<180°. The probability of finding two
neighbor particles whose axes are aligned at an angle be-
tween 6 and 6+d6 is given by f(6)df. We consider two
particles to be neighbors if they are separated by less than
1.35 diameters, since for most particles, this is between the
first and second neighbor shells of the associated crystal.
However, f(6) is relatively unaffected by small variations of
the cutoff radius. For the perfect crystal of cubelike particles,
S 0):%5(0)+%5(0— 90°), where &(0) is the Dirac delta func-
tion. At equilibrium, f(6) is symmetric about #=90°.

The order parameters derived from the spherical harmon-
ics [46] were calculated but do not add significantly to our
analysis. The use of a different reference crystal for each ¢
precludes our ability to compare superballs at different g.
Also, changes in these order parameters as a function of ¢
closely matched changes in S, and S,.

To examine translational order, we use the radial distribu-
tion function g,(r), which is the normalized pair density dis-
tribution function such that for a disordered system it tends
to unity for large pair separation r. In addition, one-
dimensional particle distribution functions were calculated in
each of the three associated one-dimensional directions of
the crystal. When simulating the melting of the crystal, these
particle distribution functions remained periodic until the
crystal melted. This confirms that lower-dimensional transla-
tional order, such as that found in columnar or smectic
phases, was never present.

C. Virial coefficients

The virial expansion for hard particles in terms of reduced
pressure Z is given by

oo

Z=plpkT=1+ >, (B/v'™") ¢, (7)
=2

where p is the pressure, B; is the ith virial coefficient, and v
is the volume of a single particle. For hard, convex particles,
the second virial coefficient is known analytically as B,
=RS+v [47], where R and S are the radius of mean curvature
and surface area of a particle, respectively. Evaluating ana-
lytic expressions for these quantities is highly nontrivial, as
was the case for ellipsoids [48], but numerical calculation of
the second and higher virial coefficients is straightforward
given a suitable overlap function. We calculate the first few
virial coefficients using Monte Carlo integration [8]. Trial
configurations were generated using the method of Ree and
Hoover [10]. For B,, 1.5X 10° random trial configurations
were used. For Bz, random configurations were generated
until 2 X 10° configurations satisfied the condition that par-
ticle 1 overlaps particle 2, 2 overlaps 3, and 3 overlaps 1. For
B, random configurations were produced until 2 X 10 con-
figurations satisfied the condition that particle 1 overlaps 2, 2
overlaps 3, 3 overlaps 4, and 4 overlaps 1. The standard
deviations of ten subaverages were less than 0.5% of the
virial coefficient. The algorithm was tested against known
results for hard ellipsoids [49]. We have calculated hard-cube
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virial coefficients to a higher accuracy than in Ref. [50] using
the separating axis theorem to check for overlaps.

III. REFERENCE SYSTEMS: HARD SPHERES
AND HARD CUBES

Since superballs interpolate between a sphere and cube
for g ranging from unity to infinity, we review the phase
behavior of these reference systems. The hard-sphere liquid
and crystal have been well-characterized by simulation and
theoretical treatments. The hard-sphere EOS as generated by
the DTS algorithm with y= + 107 and g=1 is shown in Fig.
2(a). Although the DTS algorithm does not achieve true
equilibrium, which requires y=0 for long MD trajectories,
the slow growth rate approximates equilibrium well. The
DTS algorithm correctly produces the well-known and
widely accepted Carnahan-Starling EOS for liquids [12] and
the empirically derived Speedy EOS for the fec crystal [13].

The freezing and melting points of a hard-sphere system
are ¢=0.490 and ¢=0.545, respectively, with a coexistence
pressure Z=11.48 [51]. In Fig. 2(a), one can see that the DTS
algorithm produces a first-order phase transition at ¢
=0.551 to a partially crystalline system when starting the
system in a random initial configuration and allowing the
particles to grow slowly at y=1073. This packing fraction is
repeatable over independent runs and consistently occurred
between ¢$=0.545 and 0.553. Halving the growth rate to y
=5X107% (not shown in figure) resulted in a freezing event
at ¢=0.547. Starting in the FCC crystal arrangement and
using y=—107>, the simulation data trace the Speedy EOS
and the system shows a first-order transition at ¢=0.495.
The density at which the phase transitions occurred showed
little wvariability, occurring between ¢=0.496 and 0.498
across multiple runs. Halving the rate to y=-5X107°
yielded a transition at ¢=0.496. The algorithm evidently is
appropriate for determining the densities at which phase

transitions occur and identifying coexistence regions. The
DTS algorithm, however, cannot explicitly identify the coex-
istence pressure, which requires extensive free-energy calcu-
lations. An equal-area construction of the pressure-volume
equation of state may provide an approximation to the coex-
istence pressure.

There has been considerably less attention devoted to the
hard-cube system. However, several studies have elucidated
the EOS, phase transitions, and orientational ordering. Paral-
lel hard cubes undergo a continuous melting transition from
a crystal to a liquid [53,54]. The EOS for parallel hard cubes
has several gentle curvature changes but no evidence of a
first-order phase transition [55].

However, we are interested in the EOS and phase transi-
tions in systems of freely rotating hard cubes. John et al.
obtained the phase diagram for freely rotating hard cubes by
Monte Carlo methods [21] and their EOS is shown in Fig.
2(b). A first-order melting transition was first calculated to be
between ¢=0.45 and 0.52 [53]. More recent studies reveal a
narrower coexistence region between an isotropic and a cu-
batic phase to be in the region 0.437 = ¢=0.495 [21]. More
interestingly, John and co-workers suggested that there is a
cubatic-crystalline transition between ¢=0.634 and 0.674.
However, the nature of the transition was not well-
characterized and necessitated free-energy calculations for
verification [21]. The DTS algorithm is numerically unstable
for superballs with large ¢ and, therefore, these Monte Carlo
calculations are the best available reference data.

IV. EQUATIONS OF STATE
A. Isotropic liquid phase

The low-order virial coefficients describe the low-density
EOS of a system. The second, third, and fourth virial coeffi-
cients, shown in Fig. 3, monotonically increase with the de-

45

(b) !

35

"z
:
m

25

FIG. 3. The (a) second, (b) third, and (c)
fourth virial coefficients for hard superballs fit to

the equation %:ai exp(=b;/ q)+c;. Inset shows
W,-:—biln[(%—c[)/a,-]. The table of values for

the fitting coefficients is provided in the text.
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TABLE 1. Coefficients of fit for B;/v""'=a; exp(=b;/q)+c;.

By/v B;/v? B4/v?
a; 1.638 8.759 24.077
b; 2.770 3.262 3.794
¢ 3.869 9.564 17.715

formation parameter g. This is expected for B, and B; given
that the cluster integrals involved in the calculations effec-
tively measure excluded volume and a larger particle gener-
ally yields a larger excluded volume. The effects on B, and
higher-order coefficients are not intuitively obvious, since
these coefficients are not necessarily strictly positive for hard
particles. The virial coefficients are closely approximated by
an exponential equation

B.
;_11 =a,; exp(-bi/q) +c;. (8)
v

The values of the parameters obtained by nonlinear least-
squares regression are given in Table I. These parameters
were the best obtained, though they are not guaranteed to be
optimal due to the nonlinearity of the fit. The insets in Fig. 3

plot
1 B;
W,-=—b—iln[<vi—_ll—ci>/a,} )

versus 1/g to show that the scaling of W; is approximately
linear with 1/g, except near the sphere point g=1 where the
fit tends to degrade.

A significant portion of the excluded volume evidently
arises from the particles’ edges and corners. Sharpening of
edges and corners increases the excluded volume in an iso-
tropic phase faster than it increases the actual volume of a
particle. When visually comparing a superball to a moder-
ately large g value, say g=4, to the perfect cube (see Fig. 1),
one might surmise that because the two particles have such
similar appearances, the two particles would have similar
behavior in the liquid phase. However, when comparing
B,/v, the relative excluded volume, for these two particle
shapes, the superball with g=4 is closer to a sphere than to a
cube. The edges and corners evidently are dominant features
contributing to excluded volume effects.

PHYSICAL REVIEW E 81, 061105 (2010)

Figure 4(a) shows the simulation data for several g values
for low densities. We compare our simulation results to the
Nezbeda EOS [56,57], a modification of the Carnahan-
Starling EOS [12] for convex hard particles. Using only the
nonsphericity parameter a=RS/v, the Nezbeda EOS is given
as

1 . 3ag . 3a>¢? — a(6a - 5) ¢’

1-¢ (1-¢)7 (1-¢)

The Nezbeda curve, Fig. 4(b), follows simulation data of
superballs along the entire liquid branch for ¢<<2.5. For ¢
=2.5, the Nezbeda curve follows the simulation data at low
densities, slightly underestimates pressures at moderate lig-
uid densities, and slightly overestimates pressures at higher
densities. For example, with ¢=2.5, the Nezbeda curve is
accurate for ¢»=0.20, underestimates the pressure for 0.20
< ¢$<0.47, and overestimates the pressure for ¢p=0.47. Us-
ing local polynomial fits to the simulation curves, we can
compare the pressure values of the simulation curves to those
of the Nezbeda equation of state. For ¢g=2.5, Z;,,—Zy,, is
less than 0.059 at ¢=0.2, while for ¢=0.35, Z;,—Zy,, is
less than 0.138. At ¢=0.48, Z;,,—Zy,, is about —0.086. As
shown by the simulation data, superballs that are visually
similar to cubes have pressures midway between that of
spheres and that of cubes, demonstrating the effects of sharp
edges and corners on the low-density EOS.

(10)

B. Ordered, high-density phases: Melting

To obtain the ordered, high-density equations of state,
systems were initialized in the optimal lattice configuration
and a contraction rate of y=—10"> was applied until the sys-
tem entered the fluid phase. Figure 5 illustrates the resulting
equations of state for various values of g. As seen in the
figure for ¢ =3.0, there exist two apparent phase transitions,
which result in three distinct phases. We define these phases,
going from highest density to lowest, as the crystal (K), cu-
batic (Q), and liquid (L) phases. For ¢ > 3.0, only one phase
transition is evident from the pressure EOS, separating the K
and L phases.

The K phase is characterized by long-ranged translational
and orientational orders, quantifiable by the appropriate or-
der metrics and distribution functions. We characterize the Q
phase as having a moderate degree of long-ranged orienta-
tional order compared to the crystal phase. Particles are

FIG. 4. (Color online) Liquid equation of
state for g=1.5, 2.5, and 3.5 from (a) simulation
and (b) the Nezbeda EOS. When overlaid, the
Nezbeda EOS is accurate for low densities but
accelerates its divergence at higher densities,
typically for ¢>0.25 and for ¢ >2.5.
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FIG. 5. (Color online) Crystal branches and melting transitions
for various ¢ values obtained using the contraction rate y=-107>.
The transition from the K phase to Q occurs at a lower density for
increasing ¢ until it is absorbed entirely by the K phase.

loosely braced and have an S, value above that of a dense
liquid but less than that of a crystal, between values of 0.05
and 0.20. In this phase, crystalline translational order re-
mains. While some have characterized the cubatic phase as
having no long-ranged positional order [33], others also con-
sider those phases with an “intermediate degree of transla-
tional order” as cubatic phases [17,22]. We choose to use the
latter definition of “cubatic,” since this was the definition
employed for the use of hard cubes. The L phase lacks long-
ranged positional and orientational order.

The nematic and cubatic order parameters associated with
the ordered, high-density phases are shown in Fig. 6. In all
cases, the curve for S, exhibited more noise than the corre-
sponding S, curve, possibly due to the “relabeling” scheme.
Regardless, the behavior of both order metrics follows
closely with the pressure equations of state. When the
pressure-density curve is discontinuous or shows a change in
curvature, the order parameters exhibited a corresponding
change.

Beginning in the densest crystal and moving down along
the EOS, the slope of the reduced pressure is discontinuous
at the K-Q transition. This transition point initially occurs at
high densities for small g. For increasing ¢, this transition
occurs at lower densities and by g=3.5, the transition van-
ishes. As seen by the order parameters in Fig. 6, this transi-
tion results in a reduction in cubatic ordering. While the
S,-density curve remains continuous at the transition, the
slope does not, similar to the behavior of the pressure-
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density curve. Although the Q phase has less orientational
order than the K phase, there remains significant long-ranged
cubatic order. At the melting transition from Q to L or K to
L, the nematic order parameters are discontinuous as shown
in the inset of Fig. 6.

The K-Q transition was observed in the EOS for 1.3=g¢
=3.0, however, we strongly suspect that similar transitions
occur for smaller ¢ and high pressure. Unfortunately, simu-
lating the system for g=1.2 and ¢>0.72 proved challenging,
both in the stability of the code and achieving near-
equilibrium behavior. Because of the monotonic behavior of
the location of the K-Q transition with respect to g, we sus-
pect this to continue for g near the sphere point. For g
>3.0, we do not observe a K-Q transition, although it is
possible that a K-Q phase transition exists but is of a higher
order. Higher-order phase transitions were suggested for hard
cubes [21], though in the case of nearly cubic superballs,
there is no discontinuity in the cubatic order parameters aside
from the first-order transition associated with melting. In ad-
dition, we have shown that edges and corners play an impor-
tant role in the liquid EOS and, therefore, it is not unreason-
able to expect that the high-density behavior of nearly cubic
superballs (¢=4.0) can deviate from that of hard cubes.

As the density is reduced in the Q phase, the cubatic order
parameters smoothly decreases. At the Q-L transition, the
pressure jumps while S, and S, drop close to the values
associated with random rotations. The Q-L transition is
clearly first order and is present for all g tested. The density
at which melting occurs increases monotonically from ¢
=0.494 for hard spheres up to 0.536 for g=4.0. While reduc-
ing the density along the high-density equation of state, the
translational order appears to drop continuously. The peaks
in g,(r) maintain crystal-like characteristics. We discuss
translational order in greater details in the next section. Fig-
ure 7 shows a representative sample of the system at several
densities in the K and Q phases. The decreased orientational
order associated with the Q phase is not easily distinguish-
able from the visual inspection but is clearly evident by the
order parameters.

The decrease in the density associated with the K-Q phase
transition for increasing ¢ is attributed to the broadness of
the edges and corners of particles as they relate to particle
rotations. For each ¢ in the K phase, particles are braced
against rotations. Particle rotations require large local fluc-
tuations in the density to allow for particle flips. As the rela-
tive lattice spacing is increased, the rotational mobility of the
particles increases. With increasing ¢, particles have sharper

I——T— ; : : ‘ I———
35
— 3.0
0.9 081 33
— 15 FIG. 6. (Color online) Nematic and cubatic
0.8 06L order parameters S, and S, for g=1.5, 2.0, 2.5,
g o 3.0, and 3.5, with y=—107>. Inset shows the be-
07 04k havior at the melting transition for g=2.0 and 3.0,
though the behavior is similar at this transition
06 o2k for all g. The labels on the inset are the same as
' Al the larger graph.
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FIG. 7. (Color online) Two views of particle configurations from
the crystal branch for ¢g=2.0 for a system containing 512 particles.
(a) $=0.626, (b) $=0.600, and (c) ¢$=0.558. The dark lines are the
boundaries of the simulation box. One can observe significant trans-
lational order in each. Orientational order is reduced as the density
is decreased, but translational order is maintained.

corners that are more effective in bracing against rotations
for larger density ranges. The required local volume neces-
sary for particle rotations increases with more cubelike shape
and, therefore, we observe a larger K phase for increasing g.

The increased rotational mobility of the Q phase also im-
parts larger internal stresses than in the K phase, as observed
by the greater slope of the pressure-density curve in the Q
phase than the K phase at the K-Q transition. In Sec. VI, we
detail some of the tests we performed to ensure that these
results were not related to system-size, boundary, or Kinetic
effects.

C. Ordered, high-density phases: Freezing

The freezing transitions for superballs were examined by
applying a slow growth rate to particles initialized in a low-
density liquid. Figure 8 shows the pressure as a function of
packing fraction for two values of ¢ along with the crystal
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branch equation of state. In the figure, two growth rates are
displayed, y=107> and 5 X 107, We find that upon freezing,
most systems order into a partially crystalline structure rep-
resentative of a L-Q transition. Across this transition, the
pressure drops while the order parameters increase discon-
tinuously. At high pressures, the particles increase the face-
to-face contacts, but the nematic directors of the separate
crystal regions destructively interfere. Therefore, the order
parameters cannot achieve values as large as the equilibrium
branch at the same density. The pressure of the partially crys-
talline phase is greater than that of the equilibrium structure,
which is evident in Fig. 8. These systems have characteristics
of translational order of a crystal but have a large grain
boundary or vacancies. At very high pressures, the grains are
eliminated by the shear deformation of the box. The struc-
tural characteristics of jammed superballs are detailed in Ref.
[26].

The Q-K transition is sensitive to the extent of crystalli-
zation occurring at the L-Q transition. In several cases, the
system slightly overshoots the Q-K transition while in other
cases, the system never shows signs of a Q-K transition. One
might expect that using slower growth rates would alleviate
this phenomenon. However, as seen in Fig. 8(a), slower
growth rates are not necessarily better at achieving the Q-K
transition and tracing the crystal branch EOS. The density at
which the crystallization from the L phase to the Q phase
occurs is relatively insensitive to the growth rate for the slow
rates used in this study. It is of note that substantially faster
growth rates produce amorphous, jammed structures [26].

For ¢=2.5, we find that the initial freezing from a liquid
phase occurs at a density higher than that of the Q-L transi-
tion along the ordered, high-density branch which is shown
in Fig. 8(b). In these cases, both growth rates, 107 and 5
X 107°, resulted in a second transition, presumably a O-K
transition, and then approximated the curvature of the crystal
branch. The pressure remained higher than that of the perfect
crystal. The order parameters increase continuously after this
freezing transition. For ¢=3.5, we find that the L-K transi-
tions along the growth and contraction branches approach
one another. It is possible that relaxation times are faster for
these ¢ values and that transition to a liquid state is more
easily achieved.

D. Phase diagram

As with the case of spheres, we consider the density re-
gion between the L-Q transition of the growth branch and the

40 30

FIG. 8. (Color online) Freezing transition for
(a) g=1.5 and (b) g=2.5 and y=107> (blue) and
y=5%107° (green). The red curve y=—10" is
representative of the equilibrium EOS and is
shown for comparison to particle growth curves.
In all cases tested, a freezing transition resulted in
crystals with vacancies and/or grain boundaries.
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FIG. 9. (Color online) Approximate phase diagram for super-
balls spanning from cubes to spheres.

Q-L transition of the contraction branch to be coexistence
between these two phases. In Fig. 8, this coexistence region
is presumed to be the region between sharp phase transitions
along the growth and contraction branches. Using the results
of the DTS algorithm and the quantification of orientational
and translational order, the approximate phase diagram is
shown in Fig. 9.

The black circles represent the densities of the Cy and C;
lattices at maximum packing. The blue diamonds represent
the density of the K-Q transition as found along the crystal
branch. The precise boundary was determined using a linear
regression of data points on either side of the transition and
calculating their intersection. The red squares represent the
first-order phase transition associated with the melting of the
crystal. It is the last density at which the crystal was stable in
our simulations. The green diamonds represent the freezing
transition by allowing particles to grow slowly. The data
points along the cube line (1/¢g=0) represent the transitions
identified by the authors of Ref. [21] with the brown triangle
being the crystal-cubatic transition they identified.

While the K-Q transition is monotonic in g, the L-Q tran-
sition is not. For ¢=2.5, the K-Q transition of the contrac-
tion branch lies at a density below the L-K transition on the
growth branch as in Fig. 8(b). The apparent tie line grows
slightly as ¢ increases from unity and begins to narrow sig-
nificantly around ¢g=2.5. By ¢=4.0, the K-L transition ap-
proaches the same density as the L-K transition. There are
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several possible explanations to the narrowing of the appar-
ent coexistence region near g=4.0. We may not observe the
possible coexistence region due to the relaxation times in the
system. The free-energy barrier associated with melting may
be reduced for increasing ¢ and thus the crystal may be dif-
ficult to stabilize in a coexistence region. Alternatively, we
may be observing microphase separation where the melting
into a liquid phase is preferable to maintaining the crystal
phase. The system may also be large enough where certain
domains of the system are liquid while others remain crystal,
although we do not directly observe evidence for this phe-
nomenon.

Detailed free-energy calculations are necessary to deter-
mine the precise phase boundaries, refine the approximation
of the phase diagram shown in Fig. 9, and determine the
coexistence pressures. One could approximate the coexist-
ence pressure using an equal area construction of the two
pressure branches. We expect that the coexistence pressures
would be nonmonotonic in g as well. The coexistence pres-
sure for the sphere is Z=11.48 and for the cube, Z~12.5.
Using Fig. 8(b) as an example after rescaling the axes appro-
priately, one can estimate the coexistence pressure to be
much higher than 12.5. Ultimately, the free-energy calcula-
tions would definitively determine such a conjecture.

V. STRUCTURAL CHARACTERISTICS
A. Liquid phase

The liquid phase of superballs lacks long-range orienta-
tional and translational orders but can show significant local
order. Comparing systems at the same ¢ but for various val-
ues of ¢, we find that increasing ¢ yields increased local
orientational order but diminished local translational order.
The radial distribution function for dense liquids at various g
for the common ¢=0.54 is shown in Fig. 10(a). The first
peak in the g,(r) is reduced with increasing ¢, likely due to
the interaction anisotropy building up in the liquid. Because
of the anisotropy of the particles, contacting neighbors are
not restricted to r=1 as they are for spheres and thus the first
peak in g,(r) is lower than that for spheres.

The strong peak in G,(r), defined by Eq. (6) at r=1 for all
particle shapes, shown by G,(r) in Fig. 10(b), demonstrates
that particles with cubelike shape have a strong preference to
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FIG. 10. (Color online) (a) Radial distribution function g,(r), (b) orientation correlation function G4(r), and (c) angular distribution
function f(6) for various ¢ in the liquid phase at ¢=0.54 for N=1000. The peak of the radial distribution function becomes smaller with
increasing ¢ while the first neighbor peak moves farther due to excluded volume effects. The local alignment increases with increasing g, but
diminishes within four particle diameters. Mutual alignment of neighboring particles increases sharply for increasing ¢.

061105-9



BATTEN, STILLINGER, AND TORQUATO

PHYSICAL REVIEW E 81, 061105 (2010)

1 T 1 T 1 T
— 0.68
0.8 - 8:2(1) : 0.8 0.8
— 06 1 . 06F . 06F
— — =
0.4} 0.4} 0.4} i\ o -
02F 02F : 02f ‘. ]
0 L 0 [ L P W O | 0 ‘\w"""" “ Yy ey e
0 0 1 2 3 4 0 1 2 3 4
(a) (b) r () r

FIG. 11. (Color online) Orientational correlation function G,(r) for various ¢. (a) g=1.5, (b) ¢g=2.5, and (c) g=3.5.

align orthogonally with contacting particles. Evidently, the
existence of cubelike shape is sufficient to produce preferen-
tial cubatic alignment at contact, even for particles with ¢
just above unity and whose cubelike shape is difficult to see
visually. The degree of curvature determines the range of
order in the liquid phase. For larger ¢, the orientational cor-
relations persist for up to three diameters. Sharper corners
effectively “brace” particles against rotations. The angular
distribution function f(6), Fig. 10(c), reinforces the notion of
bracing. With sharper edges, nearest neighbors have a greater
preference to align along mutually orthogonal directions in
the liquid phase.

B. High-density phases

While S, measures the global orientational order in the
system, the orientational correlation function G4(r) provides
insight in the locality of cubatic ordering. Figure 11 shows
G,(r) for several g values. For g=1.5 in the K phase, Fig.
11(a) and ¢=0.68, the long-ranged orientational order is evi-
dent by the large value of G,(r) for nearly all r. Particles
with “face-to-face” contacts at r=1 and those at pair dis-
tances associated with lattice sites are more strongly aligned
than those that deviate from lattice sites. However, those
pairs of particles that are separated by 1.35 diameters are
misaligned, evidenced by G,(r) which is nearly zero at this
distance. Once the system enters the Q phase, orientational
correlations remain local, although S, suggests there remains
some global cubatic order. These local orientational correla-
tions are slightly longer ranged than in the liquid phase,
which results in a larger value of S,.

For larger ¢, we observe similar trends, though particles
are better stabilized at all pair distances. The bracing of par-
ticles with sharper edges prevent rotations at the pair dis-
tance of 1.35 diameters. For ¢g=2.5, Fig. 11(b) shows that
G,4(r) has an initial maximum and minimum, followed by
weak maxima and minima associated with neighbor dis-
tances. The general shape of the G4 curve is maintained
through all densities associated with the K phase, aside from
general loss of long-ranged order. In going from the K to O
phase, the long-ranged orientational correlations vanish in
the same manner as that of g=1.5. Figure 11(c) shows that
the orientational correlations for g=3.5 are similar to those at
¢=2.5. Surprisingly, the contact value of G,(r) was relatively
unaffected by the density in all cases. The degree of curva-
ture and density have little influence on the ordering at con-
tact, but rather it is the presence of cubic symmetry that
produces alignment at r=1.

To further examine the local ordering environment, we
used the angular distribution function f(6), shown in Fig. 12
for several ¢. This measures the correlations between the
alignments of principal axes for neighboring particles. Local
cubatic ordering is present when the function has three
maxima but has minimal cubatic ordering when there is a
single maximum. Since the axes are labeled (i.e., all of the A
axes are in the same direction), the crystal system will have
an f(6) that is asymmetric in 6 at high densities. At equilib-
rium, particles will have flipped sufficiently to mix the labels
and f(6) will become symmetric about 90°. The data shown
in Fig. 12 illustrate that this symmetry is easily achieved at
these densities even in the K phase.
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FIG. 12. (Color online) Angular distribution function f(6) for various ¢. (a) g=1.5, (b) g=2.5, and (c) g=3.5.
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FIG. 13. (Color online) Radial distribution function for various ¢. (a) g=1.5, (b) g=2.5, and (c) ¢=3.5.

For g=1.5, Fig. 12(a) shows that superballs in the K phase
maintain strong neighbor bracing. Orthogonal alignment
among neighbors is the most probable alignment. Entering
the Q phase reduces the peak at #=90° and eliminates the
other local maxima. The shape of the curve is similar to that
of the dense liquid phase.

For ¢=2.5, Fig. 12(b) demonstrates that the K phase pre-
vents nearly all neighboring particle axes from aligning at
45° since the depth of the local minima approach zero. As
the K-Q transition is neared, ¢»=0.57, the shape of the curve
changes distinctly as the local minima and maxima converge.
For further increases in ¢, Fig. 12(c) shows that the peaks
become sharper and narrower, though the fundamental shape
does not change.

The radial distribution function g,(r) generally shows that
translational order is maintained through the K and Q phases.
The crystal-like characteristics, peaks in g,(r), are evident
but smear out gradually as the density is reduced. Figure 13
shows g,(r) for various ¢ and several densities. While the
peaks in the liquid phase, Fig. 13(c) and ¢=0.54, decay
quickly to unity, the peaks in the K and Q phases do not
appear to decay rapidly. Evident in g,(r) for g=2.5 and 3.5 is
a split first peak that represents the subtle difference in pair
distances of the first and second neighbors associated with
the corresponding C; lattices. In addition, the particle distri-
bution functions, in which the particle coordinates are pro-
jected onto a line perpendicular to the crystal planes, are
completely periodic throughout the K and Q phases. This
suggests that lower-dimensional translational order, such as
that in columnar phases, was not present in either the K or Q
phases.

VI. DISCUSSION

In this paper, we have determined the phase behavior of a
general class of hard convex particles with shapes between a
sphere and cube. We found that the degree of curvature plays
a significant role in the cubatic ordering and phase transi-
tions. Despite seemingly similar visual appearance among
particle shapes, subtle differences in the curvature can yield
large changes in the EOS. In the liquid phase, edges and
corners are the dominant features that contribute to excluded
volumes, while in the crystal phase, they can brace against
rotations.

Although MD has some advantages over Monte Carlo
techniques, including the ability to simulate cooperative be-
havior more efficiently, there are always questions concern-
ing kinetic effects and boundary effects. We have performed
comprehensive tests to address and minimize these issues.
The use of a deformable box helped to alleviate the possibil-
ity of anisotropic stresses and to reduce boundary effects. In
each case, we verified that the pressure tensor remained iso-
tropic throughout the simulations. The pressure tensor
showed slight anisotropy immediately before the melting
transition, likely due to the large stresses that build up and
induce the transition. In all other cases, including K-Q tran-
sitions, the pressure tensor remained isotropic. We tested
several system sizes within the limits of our computational
capabilities and we found that the curvature of the EOS re-
mains unchanged as the system size was increased. Smaller
systems produced larger fluctuations and slight variations in
the density of the melting transition compared to larger sys-
tems.

In addition, we tested systems in what we knew to be poor
initial conditions. For example, for g=2.0, we initialized the
system in three distinct crystals—face-centered cubic (fcc),
simple cubic (sc), and the C; crystal. The fcc and sc cases
nearly converged to the pressure equation of state associated
with the C; crystal. This supports the notion that we have
used simulation conditions that can approximate the equilib-
rium phase behavior. The internal stresses of the fcc and sc
simulations were relieved when the system shifted toward
the C; crystal.

As with many simulation methodologies, kinetic effects
are possible due the inability to simulate long-time behavior.
We tested several growth rates and found little variation
among the EOSs generated for rates of |y|<<107. Long,
constant-density trajectories revealed slight variation in the
densities associated with freezing and melting transitions,
though not substantial enough to warrant concern. The cur-
vatures of the EOS in the K and Q phases were insensitive to
the growth rates |y| <107,

The primary extension of this work includes the refine-
ment of the boundaries in the phase diagram. As we have
shown in Fig. 9, the DTS algorithm reveals first-order phase
transitions quite well. However, detailed free-energy calcula-
tions are needed in order to provide precise phase boundaries
and identify higher-order phase transitions, if they exist. In
addition, we have yet to explore the dynamic behavior in
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FIG. 14. (Color online) Comparison of equa-
tion of states obtained using fixed and deformable
system boundaries for (a) g=1.3 and (b) ¢=2.0.
For small ¢, the curvature is sharper with a de-
n forming boundary than with a fixed boundary.
For larger ¢, series of apparent phase transitions
- are induced due to the ability of particles to rotate
about certain axes.
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hard superball systems. The diffusion coefficient may exhibit
discontinuous jumps when crossing between K and Q
phases. Additionally, rotational degrees of freedom play an
important role in the glassy phase. Understanding the extent
of curvature of corners and edges on the jamming character-
istics has undergone initial exploration [26]. It may also be
possible to manufacture colloidal particles with such con-
trolled shape via photolithography or other synthetic tech-
niques. Testing these systems for certain technologically rel-
evant properties including wave scattering characteristics and
rheology may reveal unusual behavior.

While we have used a particle-growth algorithm to under-
stand the phase behavior of hard particles, particle-growth
algorithms are often used to search for optimal particle pack-
ings. In our experience, allowing particles in a dense liquid
to grow slowly generally produces a partially crystalline sys-
tem. Our results identify one of the primary challenges asso-
ciated with searching for optimal packing arrangements since
these algorithms could hardly ever achieve the densest state.
The relaxation times are far too long for computer simula-
tions. This highlights the need for alternative methods to find
dense packings of particles [23,28,31]. Only after finding the
densest packings can researchers attempt to determine the
entire equilibrium phase behavior of hard particles by apply-
ing particle contraction.

The application of overlap potentials to generalized con-
vex particles [43] and the development of efficient MD al-
gorithms [41,42] have made available the opportunity to ex-
plore more deeply how shape influences phase behavior.
Along these lines, planned future work includes determining
the onset of nematic, smectic, and possibly parquet phases of
elongated superballs. This particular perturbation would al-
low one to explore the continuous evolution from ellipsoids
to tetragonal parallelepipeds, which exhibit various types of
liquid crystals for certain aspect ratios. With the tools avail-
able, one can determine, for example, where the crossover
point is for the appearance of a parquet phase in a system of
elongated superballs. Additionally, a study of parallel hard
superellipsoids, a perturbation from spheres or ellipsoids to
cylinders, showed the onset of a smectic phase [40]. With the
addition of rotational degrees of freedom, this system would
presumably exhibit a cubatic or parquet phase depending on
the deformation parameter. There are seemingly endless pos-
sibilities for hard-particle shapes, including polyhedra such
as the Platonic and Archimedean solids [31,32], and perhaps
a mathematical treatment of generalized particles with “su-

L | L | L | L | L | L
1945 05 055 0¢6 065 07 075

perexponents” may be enlightening. It is possible that in-
verse statistical-mechanical techniques [58] could be used to
find optimally shaped hard particles in order to obtain “‘tar-
geted” thermodynamic phase behavior.
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APPENDIX: PHASE BEHAVIOR EFFECTS INDUCED
BY SYSTEM GEOMETRY

Here we report on the importance of utilizing a deform-
able boundary in simulations of anisotropic particles. Be-
cause superballs are centrally symmetric objects, we ex-
pected that the pressure tensor would remain isotropic
throughout simulations. The EOS for the liquid does not de-
pend on the geometry of simulation box. The pressure tensor
for the liquid is isotropic since particle rotations are random.

However, in high-density phases, we find that anisotropic
stresses can build up when the boundaries are fixed, even in
the case where ¢ is near unity. Figure 14 compares the equa-
tions of state generated using a fixed box and a deforming
box for g=1.3 and 2.0. For small g, the equations of state
differ significantly in their curvature.

For g=1.4, a fixed simulation box not only affects
the curvature but also introduces a series of apparent first-
order phase transitions. As seen in Fig. 14 for ¢=2.0, the
system with a fixed simulation box has three apparent first-
order phase transitions. These discontinuities along the
branch are highly reproducible. Each apparent phase transi-
tion can be attributed to rotations of particles about certain
axes. The highest-density transition corresponds to rotations
about a single particle axis. At this density, there is enough
average spacing between particles in the lattice to allow for
rotations about a single axis. The middle transition corre-
sponds to rotations about two particle axes while the lowest-
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density transition on the crystal branch corresponds to free
rotations about three particle axes. In general, the melting
densities in the deforming box and fixed box differed
slightly, with the deforming box having a lower melting den-
sity. In all cases, melting appeared to be a first-order phase
transition.

Observing the elements of the pressure tensor as a func-
tion of density shows that anisotropic stresses build up as the

PHYSICAL REVIEW E 81, 061105 (2010)

system approaches each apparent phase transition. Deform-
ing box simulations using the Parrinello-Rahman-like algo-
rithm allow for these internal stresses to be relaxed away
quickly, as they would occur in thermodynamic systems. Al-
though the Parrinello-Rahman-like algorithm does not rigor-
ously sample an isostress ensemble because the lattice vec-
tors are not directly coupled to the particle interactions, it is
a reasonable approximation.
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