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In this work, we introduce two models of Feynman’s ratchet and pawl system. Molecular dynamics is carried
out to simulate the two designs for Feynman’s ratchet and pawl systems followed by a Langevin dynamics
simulation of the reduced system. We find that the ratchet will rotate as designed when the temperature of the
pawl chamber is lower than that of the ratchet chamber, which is consistent with the second law of thermo-
dynamics. Different parameters and configurations are tested, and the results show that the efficiency of the
ratchet depends on the applied torque. We find further that efficiencies of the Feynman’s ratchet and pawl
systems depend greatly on the details of the systems.
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I. INTRODUCTION

Maxwell’s demon was introduced by Maxwell in 1871
�1,2�. In his setting, there are two chambers filled with mov-
ing gas particles and separated by a wall with a hole in the
center. Maxwell’s demon is an intelligent being sitting beside
the hole. It allows only hot particles go to the left chamber
and cool particles go to the right chamber. After some time,
most of the hot particles will go to the left chamber and the
cool particles will go to the right chamber. As a result, there
will be a temperature difference between the two chambers.

According to the second law of thermodynamics, there
should not be such a demon that reduces continuously the
entropy of the entire isolated system. On the other hand,
when a system is out of equilibrium, a demon of this kind
may work under special conditions.

There have been many debates on the existence of such a
demon and its functionality. Recently, with the developments
of nanotechnologies, the prospects of testing fundamental
hypotheses of thermodynamics and realizing Maxwell’s de-
mons at nanoscale have been contemplated �3–9�.

Smoluchowski, in his paper �10�, pointed out that thermal
fluctuations would prevent any automatic device from oper-
ating successfully as a Maxwell’s demon in 1912. Up to now,
most of investigations on Maxwell’s demon have been
thought experiments. Lasting interests in Maxwell’s demon
and incessant quests have been documented in the literature.
However, only a few microscopic simulations have been car-
ried out to examine the detailed behavior of Maxwell’s de-
mons. Zhang and Zhang �11� formulated a set of sufficient
conditions for the survival of a Maxwell’s demon. In 1992, a
trap-door device was studied for the first time via numerical
simulation by Skordos and Zurek �12�. Their results show
that the trap door can act as a pump and cannot extract useful
work from the thermal motion of hot molecules. Leff and
Rex �13� later searched the different configurations of the
trap door, and found an optimal configuration for which the
net entropy change is zero.

In 1963, Feynman et al. introduced a ratchet and pawl
system �14�. The system is consisted of two chambers. In one

chamber, a ratchet can rotate easily in one direction but will
be hindered by an asymmetric pawl in the other direction.
The ratchet is immersed in a bath of molecules with tempera-
ture T1. In the other chamber, there is a paddle wheel which
is immersed in another bath with temperature T2. The ratchet
and the paddle wheel are rigidly connected by frictionless
rod with zero mass. In this setting, both the ratchet and the
paddle undergo Brownian motions with mean kinetic ener-
gies which are determined by the temperatures of the related
baths. After colliding between the molecule and the paddle,
the rod will impulse a torque to the ratchet. Since the pawl
prefers the ratchet to rotate in one direction, after a long run,
the net rotation of the ratchet will be observed in the ex-
pected direction. The rotation of a ratchet can be used to do
work. Although the expected work extracted from this device
should be very small, it extracted the thermal energy of the
bath and did useful work.

Feynman demonstrated that the ratchet should not work
when T1=T2. The pawl has the same temperature as the en-
vironment. As a result, the pawl itself vibrates randomly and
fails to operate as designed.

Subsequently, many researchers derived simplified mod-
els to test Feynman’s proposal. Jarzynski and Mazonka �15�
introduced a simple realization of Feynman’s ratchet and
pawl system, and indicated that their model can act both as a
heat engine and as a refrigerator. However, there is no
molecular-dynamics result to support their conclusion.
Meurs and his co-workers �16� mentioned several models to
show rectifications of thermal fluctuations, but only analyti-
cal results have been presented. Other attempts include �1�
employing the overdamped Fokker-Planck equations with
stochastic variables to simulate Feynman’s ratchet and pawl
�17� and �2� modeling asymmetric Brownian particles im-
mersed in thermal baths �18,19�. The former one overly sim-
plifies the gas-particle dynamics, and the latter one has no
well-defined Maxwell’s demon. Velasco and his co-workers
�20� carefully considered the efficiency of the Feynman’s
ratchet, but the model is too simple to represent Feynman’s
system and there is no simulation result. Schneider and his
co-workers �21� simulated Brownian motion of interacting
particles which couples with a periodic potential and is
driven by an external force. However, in their simulation, the
Brownian particles are driven by Langevin force and their
system is quite different from Feynman’s setting.*ghc@everest.hku.hk
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Magnasco �22� considered a Brownian particle in a peri-
odic potential under heavy damping, and obtained analytical
results by using Fokker-Planck equation. He found that the
Brownian particle cannot get any net drift speed, even if the
symmetry of the potential is broken. Subjected to an external
force with time correlations, the particle can exhibit a net
drift speed. Magnasco and Stolovitzky �17� later presented
an analytical result to test Feynman’s ratchet and pawl sys-
tem. However, in order to obtain analytical solution of
Fokker-Planck equation, they concentrated on the over-
damped region. Schneider and his co-workers �21� simulated
a Brownian motion of noninteracting particles with an exter-
nal force in a periodic potential. Risken and Voigtlaender
solved the Fokker-Planck equation for the extremely under-
damped Brownian motion in a double-well potential �23�.
Astumian and Bier �24� also did similar analysis on heavily
damped Brownian particle in a periodic potential and found
that even the net force is zero a net flow can be induced by
adding a fluctuation of the energy barrier. However, in their
simulation, the potential applied to the Brownian particle is
too simple to represent original Feynman’s system.

In our previous work �3�, we have introduced a simplified
trap-door Maxwell’s demon, and molecular-dynamics calcu-
lations were carried out to evaluate detailed behavior of such
a system. Results show that no temperature differentiation is
established when the trap door and the particles are in ther-
mal equilibrium. When the trap door is coupled to low-
temperature bath, as expected, the operation of the trap door
leads to a temperature and a density gradient between the
two chambers.

After dramatic improvement of nanotechnology, it is fea-
sible to fabricate the structures with feature size less than 10
nm �25–28�. However, the construction of functional nano-
electromechanical systems �NEMSs� is hindered by the in-
ability to provide power sources to NEMSs �29–36�. As we
know, thermal fluctuation plays a very important role at nan-
ometer scale. However, in most of existing designs for
NEMSs, thermal fluctuation is usually neglected. The
molecular-dynamics simulation of NEMSs provides useful
information about the effects of thermal fluctuation at such
scales. Since there is no realistic molecular-dynamics simu-
lation on Feynman’s ratchet and pawl system, we propose
here two simplified Feynman’s systems and perform the de-
tailed molecular-dynamics and Langevin dynamics simula-
tions to study their dynamics.

II. MODEL I

Model I contains two identical chambers which are filled
with random distributed gas particles. Several pawls are
placed in the upper chamber and the ratchet is consisted of a
simple stick and another perpendicular joint stick. The angle
of two sticks is fixed as shown in Fig. 1. The gas molecules
are hard dishes moving in a two-dimensional space and can
collide with each other. All collisions of gas molecules are
energy and momentum conserving. After particle-wall colli-
sions, the particle momentum reverses its component perpen-
dicular to the wall. Geometrically, the pawl, the ratchet, and
the perpendicular stick are line segments of zero width and

impenetrable by the molecules �the mass of the perpendicu-
lar stick is zero�. A spring with an angular force constant K�

is fixed in one end of the pawl. In the equilibrium position,
the pawl angle is �0.

The ratchet is a free rotor. It changes its angular velocity
upon collision. The change in the angular velocity is given in
Appendix A. The Lagrangian of the pawl can be written as

L =
1

2�
i=1

N

mgasvi
2 +

1

2
Ipawl�̇

2 −
1

2
K��� − �0�2 − Vint, �1�

where vi is the velocity of the ith gas particle; � ��0� is the
pawl angle �equilibrium pawl angle�; �̇ is the angular veloc-
ity; K� is the elastic constant of the pawl spring; mgas and
Ipawl are the mass of the gaseous particles and the momentum
of inertia of the pawl, respectively; and Vint is the interaction
potential energy among all rigid bodies in the system, which
is constant except when particle-pawl and ratchet-pawl col-
lisions occur. The third term on the right-hand side of equa-
tion describes the interaction between the spring and the
pawl. Equations of motion for the particle velocities and the
pawl angle � are then derived from the Lagrangian. For in-
stance, in the absence of collisions, the pawl angle ��t� fol-
lows

��t� = �0 + ���ti� − �0�cos�� K�

Ipawl
�t − ti��

+ �̇�ti��Ipawl

K�

sin�� K�

Ipawl
�t − ti�� , �2�

where t� ti, where ti denotes the starting time.

A. Molecular-dynamics simulation

A FORTRAN code is written for the molecular-dynamics
simulation. Figure 2 is the flowchart of the program. The
whole program consists of four major subroutines �read pa-
rameters, initialization, main loop, and finalization�. “Read
parameter” is for reading the simulation conditions and ini-
tial parameters. “Initialization” is for initializing the gas par-
ticles with Maxwell’s distributed velocities. “Finalization” is

FIG. 1. �Color online� An illustration of the ratchet and pawl
system. Left: top view. Right: side view. Both chambers are filled
with gas particles, a spring is attached inside one end of each pawl,
and the ratchet in lower chamber can rotate freely.
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used for saving simulation parameters in order to resume
interrupted calculations. The detail of main loop is shown in
the right part of Fig. 2. After entering the main loop, the
forces, accelerations, velocities, and coordinates are updated
with a given time step. Then, by comparing with the last
step, a subroutine called “find collision” is called to search
colliding events occurred in the current step. If there are
collisions, all updated information is restored to previous
step and the program enters the “small time step updating
loop.” In this loop �right middle part of Fig. 2�, first, the
program updates all valuables with smaller time step; the
find collision subroutine is called and it records all collisions
happened in this step. Finally, the “treat collision” subroutine
is called to treat all recorded colliding events. After the small
time step updating loop, the program will go back to the
main loop and update the coordinates and velocities with
original time steps.

In the simulation, a set of parameters is chosen as follows:
the number of particles in each chamber N=8, the number of
pawls NP=6, the radius of each chamber R=3.5, the equilib-
rium pawl angle �0=46°, the mass of the gas molecules in
lower chamber mgas1=20, the mass of the gas molecules in
upper chamber mgas2=mgas1

�T2 /T1 �mass of particle in pawl
chamber should be scaled down to have similar velocities as
particles in ratchet chamber�, the length of the ratchet RB
=2.0, the length of the pawl RL=0.8, the mass of the ratchet
mB=20, the mass of the pawl mL=10, the distance between
the fixed point of pawl and the center of chamber RP=2.4,
the temperature of ratchet chamber T1=1000, and the force
constant K�=3500. Our simulation takes typically several
hours using a standard Pentium 4 processor. The com-
pounded numerical error in the total energy of the system is
kept below 10−10.

The initial positions of gas molecules are randomly given,
and their velocities are initialized according to the Boltz-
mann distribution as discussed in our previous work. The
“velocity Verlet” algorithm is used in these simulations. The
time evolution of the system is simulated by adopting the
following algorithm: to minimize numerical errors, adaptable
time steps are used. There are two kinds of time steps. Our
program iterates a main cycle which starts from t0 to the end
of simulation with a time step �t=0.0001. Within each cycle,

the velocities and positions of all particles, the ratchet, and
the pawls are updated assuming there is no collision. After
the update of this time step, a subroutine is called to examine
the colliding events. Four types of collision events are con-
sidered: particle-particle, particle-wall, particle-ratchet, and
particle-pawl collisions. Information of the previous step is
recorded to make a restoration. The criteria are �1� particle-
particle collision: the distance between two particles is less
than the diameter of a particle; �2� particle-ratchet collision
�particle-pawl collisions are the same�: the distance between
particle and ratchet is less than the radius of a particle; �3�
ratchet-pawl collision: the rotating end of ratchet cross the
pawl.

Take a particle-particle collision as an example. At the
end of each time step, the center-of-mass distance between
two particles is measured to determine whether they collide.
If there is no collision, the simulation is carried on to the
next time step. Otherwise, the simulation is restored to pre-
vious state, and the time step is reduced to �t�=10−3�t. After
the restoration, the program performs 103 steps using �t�.
One regular step is divided into 103 small steps when colli-
sions occur. After the collision, the simulation returns to the
main loop with the original time step �t. If a three-body
collision is to occur, our program will record all the relevant
information and stops. However, such a three-body collision
event has not been encountered in our system which is com-
posed of 16 particles with a time step �t� as small as 10−3�t.
Details on all collision events are handled and explained in
Appendix A. For a particle-wall collision, the normal com-
ponent of the particle’s velocity reverses its direction while
the tangential counterpart remains unchanged.

We set no temperature difference between the ratchet and
the pawl chambers. Figure 3 shows 1000 individual runs of
this model. In these trajectories, some of them rotate clock-
wise while others rotate counterclockwise. In an individual
trajectory, we observe two ratchet-pawl collision events.
First, the rotor gets enough energy from hot particles and
crosses the barrier of bending potential of the angle �. Sec-
ond, the vibrating pawl hits the rotor and then the rotor
bounces back.

Figure 4 shows the averaged results. The solid line is the
net rotation of the rotor averaging the 1000 trajectories, and
the dashed line represents their standard deviation. After av-
eraged over 1000 individual trajectories, the net rotation of

FIG. 2. Flowchart of the program. Left: structure of main pro-
gram. Right: detailed structure of main loop procedure.

FIG. 3. 1000 individual simulation trajectories for model I.
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the ratchet is zero when applying lower temperature to
pawl’s chamber �T2�. As expected, the averaged result of the
rotor rotates clockwise as shown in Fig. 5. The temperatures
of two chambers are controlled by resetting the overall ki-
netic energies of their gaseous particles. Considering indi-
vidual trajectory of this case, there are also two visual pro-
cesses as we discussed. After applying lower temperature to
the pawl’s chamber, the vibrations of the pawl are greatly
depressed by colliding with cool particles. Therefore, the first
process becomes dominant, and the ratchet rotates as de-
signed.

After fitting with a straight line, we calculate the angular
velocity of the ratchet. Figure 5 shows three different results
of the ratchet with different T1 /T2. The angular velocity be-
comes larger when bigger temperature difference is applied.

After testing several combinations of T1 /T2 while T1 is set
to 103, as shown in Fig. 6, when T1 /T2 goes to 1, the ratchet
has no net rotation. Angular velocities of the ratchet in-
creased when T1 /T2 became larger. When T1 /T2 is larger
than 103, the temperature of the pawl, T2, is less than 1, it is
low enough to suppress its fluctuation, and the angular ve-
locity of the ratchet reaches its saturation value, which is
determined by the average frequency that the ratchet hits the
pawls.

To test the efficiency of the ratchet, temperature differ-
ence T1 /T2=103 is used in the relevant simulations. We ap-

ply a constant torque to the ratchet against the desired rotat-
ing direction. The heat flow from the ratchet chamber to
pawl chamber is calculated by summarizing the energy
change of ratchet �or pawl� on each ratchet-pawl collision.

Figure 7 shows the efficiency of the system when differ-
ent torques are applied. The result shows that the maximum
efficiency is 0.262% when the torque is equal to 1.5�10−4.
When the torque exceeds 3.1�10−4, the rotor rotates to the
opposite direction; hence, the efficiency becomes negative.

The number of particles included in each chamber is con-
sidered. Figure 8 shows that the angular velocity of the
ratchet decreases when a large number of gas particles are
used. It is because that the rotation will be heavily blocked
by gas particles when density of particles is too high.

After introducing and simulating this simplified ratchet
and pawl system, a clear picture of such a system is shown.
When there is no temperature difference between the ratchet
chamber and the pawl chamber, no net rotation will be ob-
served. After lowering the temperature to the pawl chamber,
the fluctuations of the pawls are greatly depressed, and hence
the ratchet rotates as designed. Different simulation tempera-
tures are used, and we found that higher temperature differ-
ence results in higher rotation speed for T1 /T2�103, and the
average angular velocity saturates for T1 /T2�103. The effi-
ciency of the system has also been examined. The maximum
efficiency is 0.262% when the external torque is equal to

FIG. 4. Averaged rotation of the ratchet in one chamber
system.

FIG. 5. Rotation of ratchet with different temperature
configurations.

FIG. 6. Angular velocity of ratchet with different temperature
configurations.

FIG. 7. Efficiency of the ratchet and pawl system when applying
different torques.
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1.5�10−4. This is much lower than the efficiency of the
corresponding Carnot cycle, and thus implies that the net
change of the total entropy is positive. External torque ex-
ceeding 3.1�10−4 results in counterclockwise rotation of the
ratchet as the effect of the external force dominates over the
rectification effect of the ratchet.

B. Langevin dynamics simulation

Langevin equation is commonly used to simulate the
Brownian motion of systems subjected to fluctuation. It is a
stochastic differential equation. A form of the Langevin
equation for Brownian motion is as follows:

dv
dt

= − �v + F�x� + 	�t� , �3�

where v is velocity, x is position, F�x� is the force acted on
the particle, and 	 is a Langevin force which is a stochastic
form and satisfies 		�t�
=0 and 		�t� �	�t��
=q
�t− t�� �q is
correlation constant�. To solve this equation, one way is to
count many individual trajectories or introduce a distribution
density function and solve the related Fokker-Planck equa-
tion.

Figure 9 is an illustration of the simplified model of Fey-

nman’s ratchet and pawl system. The ratchet and pawl are
both nonpenetrable straight sticks with zero width and cer-
tain mass, m� and m�. The ratchet can rotate freely around
the center as well as the pawl can rotate around the fixed
point with a spring attached on the point. The equilibrium
position of the pawl is �0. There are Gaussian-type random
forces on both the ratchet and the pawl.

The related Langevin equation can be written as

�̇� = − ��� − f���,�, �̇,�̇� + 	��t� ,

�̇ = ��,

�̇� = − ��� − f���,�, �̇,�̇� + 	��t� ,

�̇ = ��. �4�

Here, the random forces acted on � and � are uncorrelated
and both are distributed in Gaussian type; we have

		��t�	��t��
 =
2��kT�

I�


�t − t�� ,

		��t�	��t��
 =
2��kT�

I�


�t − t�� ,

		��t�	��t��
 = 0, �5�

where k is the Boltzmann constant, T� and T� are the tem-
peratures of the ratchet and the pawl, �� and �� are friction
coefficients, and I� and I� are the momentum inertia of the
ratchet and the pawl, respectively.

The related Fokker-Planck equation can be written as fol-
lows �37�:

�

�t
W��,�, �̇,�̇,t� = �−

�

��
�̇ +

�

� �̇
�f� + ���̇� + ��

kT

I�

�2

� �̇2

−
�

��
�̇ +

�

��̇
�f� + ���̇�

+ ��

kT

I�

�2

� �̇2
W��,�, �̇,�̇,t� . �6�

Here, f�= f��� ,� , �̇ , �̇� and f�= f��� ,� , �̇ , �̇� are forces
acted on ratchet and pawl. There are abrupt changes in these
functions when the ratchet collides to the pawl. �Here, f�

=
�̇I� and f�=
�̇I�−k���−�0�.� Detailed definitions of 
�̇

and 
�̇ are in Appendix A. Equation �6� is a four-variable
time-dependent Fokker-Planck equation. There is no analyti-
cal solution �37�. To numerically solve the equation and de-
termine the distribution function, one way is to use finite grid
space, guess an initial distribution density function, and
solve it by iteration. However, for a four-variable Fokker-
Planck equation, it is very time consuming. The easiest way
is to statistically solve the related Langevin equation �37�
�calculate a large number of individual trajectories� and cal-
culate the distribution function of the system.

FIG. 8. Effect of different numbers of gas particles.

FIG. 9. An illustration of the simplified Feynman’s ratchet and
pawl system for Fokker-Planck equation.
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The setting in this simulation is very similar to the
molecular-dynamics simulation. The major difference is that
the particles in chambers are replaced with Langevin force.
Compare to the molecular-dynamics simulation, the correla-
tion between the environment and the ratchet �or the pawl� is
much higher. The Langevin force continuously acts on the
ratchet �or the pawl�, while in previous case the gas particles
only collide on the ratchet �or the pawl� occasionally. There-
fore, the masses of the ratchet and the pawls are tuned to
smaller values in order to have the similar angular velocities.
In our case, the masses of the ratchet and the pawls are 100
times smaller.

In this simulation, to achieve similar results, a set of pa-
rameters is chosen as follows: the number of pawls NP=6,
the radius of each chamber R=3.5, the equilibrium ratchet
angle �0=46°, RB=2.0, the length of the pawl RL=0.8, the
mass of the ratchet mB=0.2, the mass of the pawl mL=0.1,
the temperature of ratchet chamber T1=109, the distance be-
tween the fixed point of pawl and the center of chamber
RP=2.4, the force constant K�=3500, and the friction con-
stants of the ratchet and the pawl ��=0.5, ��=5. In order to
have comparable results, the integration time step and total
simulation time are set as dt=0.0001 and 500. Another FOR-

TRAN code is written to perform this simulation. There are
only ratchet-pawl collisions. The structure of the program is
similar to the previous one. The Langevin force is applied to
the system on all time steps. 1000 individual trajectories are
counted to determine averaged values.

We test the condition with no temperature difference
T1 /T2=1. The result shows no difference as in molecular-
dynamics simulations, as the dashed line in Fig. 10. No net
rotation is observed. When the temperature of the two cham-
ber is set to T1 /T2�1, the rectifying effect occurs; the solid
line in Fig. 10 shows that there is a net rotation when
T1 /T2=1000.

To observe the distribution density function of the system,
we calculated the distribution of angular velocity of the

ratchet ��̇�. Figure 11 is the distribution of �̇. As it shows, the
central point of the distribution is in −0.02, the average an-
gular velocity of ratchet is negative, and the ratchet rotates to
one direction as expected.

Different lengths of ratchet �other parameters are fixed�
are adopted in the simulations. Figure 12 shows the relation-

ship between the length of the ratchet and its average angular
velocity. As all collisions are rigid body collisions, the rota-
tion of the ratchet is thus mostly blocked by the pawl. Hence,
the angular velocity is approximately zero when the ratchet
length exceeds 2.2. Intuitively, there should be no rectifying
effect when the ratchet cannot reach the pawl of equilibrium
position. That means, in our configuration of the device, the
length of ratchet should be larger than 1.843 in order to
collide with the pawl. However, we found out that even
though the ratchet is shorter than 1.843, a net rotation occurs.
Figure 12 shows the angular velocity calculated in different
lengths of ratchet. It is clear that the ratchet rotates to desired
direction when the length is longer than 1.75. The reason is
that the pawls are vibrating during the simulation, and there
is a distribution of its angle. Figure 13 is the distribution of
the pawl. It shows that the pawls have visible distribution in
52° ���40°. This result shows that it has still the rectify-
ing effect even when the length of ratchet is shorter than
expected. When the length of the ratchet is shorter than 1.7,
the ratchet cannot collide with the pawls at any angles, and
the system has no rectifying effect and there is no net rota-
tion. We calculated the efficiencies of our device with all the
above configurations and found that their values are all much
lower than that of the corresponding Carnot cycle. This im-
plies that the net changes of total entropy are positive in all
these cases.

The relation between angular velocity and different T1 /T2
is also examined. Results are shown in Fig. 14. It is similar

FIG. 10. Net rotation in different T1 and T2. FIG. 11. Distribution of �̇.

FIG. 12. Angular velocity with different lengths of ratchet.
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to the case of molecular-dynamics simulation. When the tem-
perature difference is larger than T1 /T2=103, the angular ve-
locity saturates.

Different values of the friction coefficients of ratchet ����
are examined. Result is shown in Fig. 15. The angular veloc-
ity increases when friction coefficient becomes larger. How-
ever, when the friction coefficient is larger than 2.0, the
curve becomes flat. Friction coefficient ���� is a physical
parameter which measures the correlation between the object
and the environment. The larger is the ��, the larger are the
Langevin force and the friction. As shown in the Langevin
equation, the Langevin force is proportional to the square
root of �� and the friction force is proportional to ��. There-
fore, in the low damping region �lower �� region�, Langevin
force is dominant. The angular velocity of the ratchet in-
creases as �� increases. However, in large �� region �over-
damping region�, both Langevin force and friction are sig-
nificant. Langevin force is canceled by friction. Hence, the
curve became flat. The efficiency of this system is also tested
for comparison. Result is shown in Fig. 16. There is a peak
efficiency �0.152%� when the torque is equal to 5.5�10−4.

Although the Fokker-Planck equation of the ratchet and
pawl system is derived, we solve the problem by statistically
counting a large number of individual trajectories of Lange-

vin equation because there is no analytical solution. We ob-
tain the similar results for molecular and Langevin dynamics
by rescaling the temperatures and masses. After testing dif-
ferent configurations of parameters, we find that the ratchet
rotates even when the length of ratchet is shorter than ex-
pected, and it is because the angle of pawl is distributed in a
certain range. Different friction coefficients are also tested.
In low damping region, larger friction coefficient results in
larger angular velocity, and in large damping region friction
coefficient can only slightly affect the angular velocity of the
ratchet. The efficiency of this Langevin-force-driven system
has been tested. The result is similar to the molecular-
dynamics simulation. There is peak efficiency �0.152%�
when the torque is equal to 5.5�10−4.

III. MODEL II

There are many different designs of ratchet and pawl sys-
tems. In order to compare properties of different designs, in
this section, we introduce a different design for Feynman’s
ratchet and pawl system as shown in Fig. 17. The system
contains two identical circular chambers, placed with several
pawls and a ratchet. The gas molecules are hard dishes mov-
ing inside a two-dimensional space and colliding with each
other. All collisions of gas molecules are energy and momen-
tum conserving. After particle-wall collisions, the particle
momentum reverses its component perpendicular to the wall.

FIG. 14. Angular velocity in different temperature
differences.

FIG. 15. Angular velocity and different friction coefficients.

FIG. 16. Efficiency when applying external torque.

FIG. 13. Angle distribution of the pawl.
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The rotor consists of a branch, a leg, and a rod. The branch
and the leg are connected by the perpendicular rod. Geo-
metrically, the branch, the leg, and the rod are impenetrable
line segments of zero width, and the rod between these two
chambers is of zero mass. A spring with a force constant K�

is placed in the rod between the branch and the leg. In the
equilibrium state, the branch-leg angle is �0 as shown in Fig.
18.

The potential energy of the ratchet is

PE�ratchet� = 1
2K��� − �e�2. �7�

The equations of motion �EOMs� for � and � are

�̈ =
mLRLRB

I�
�sin ��̇�̇ +

sin �

2
�̇2 +

I2 sin �

2IL
�̇2

+
cos �K�

2IL
�� − �0�� +

K�

I�

�� − �0� , �8�

�̈ = −
mLRLRB sin �

2ILI�

�I1�̇2 + I2�̇2 + 2I2�̇�̇� −
I1

ILI�

K��� − �0� .

�9�

Here, the moments of inertia are

IB =
1

3
mBRB

2 ,

IL =
1

3
mLRL

2 ,

I1 = IB + IL + mLRB
2 + mLRLRB cos � ,

I2 = IL +
1

2
mLRLRB cos � ,

I� =
I1IL − I2

2

IL
. �10�

The detailed derivation is shown in Appendix B.
In the simulation, a set of parameters is chosen as follows:

the number of particles in each chamber N=8, the radius of
each chamber r=3.5, the equilibrium branch-leg angle �0
=46°, the length of the branch RB=2.0, the length of the leg
RL=0.8, the length between the pawl and center point RP
=2.6, the mass of the branch mB=20, the mass of the leg
mL=30, the mass of gas particle in branch chamber mgas1
=50, the mass of gas particle in leg chamber mgas2
=mgas1

�T2 /T1 �mass of particle in leg chamber should be
scaled down to have similar velocities as particles in branch
chamber�, the size of gas particle rgas=0.1, time step dt
=0.0001, temperature of branch chamber T1=1000, and the
force constant K�=3500. Collision events include particle-
particle, particle-branch, particle-leg, and leg-pawl colli-
sions. All special cases of collisions are considered �special
cases are the gas particles that collide with the joint point of
the branch and the leg, or with the tail of the leg�.

As our previous results, the ratchet has no net rotation for
T1=T2, as shown in Fig. 19. When T1 /T2=1000, the ratchet
rotates clockwise as expected.

Different temperatures are used. As shown in Fig. 20, it is
similar to model I. When T1 /T2�1000, the ratchet rotates at
the similar speed even as T2 is further lowered.

After applying different torques to the ratchet, as shown
in Fig. 21, there is a maximum efficiency �1.12�10−5� when
the torque equals 0.0008. This maximum efficiency is much
lower than that of model I.

The related Langevin equation can be written as

�̇� = − ��� − f���,�, �̇,�̇� + 	��t� ,

�̇ = ��,

FIG. 17. �Color online� An illustration of the ratchet and pawl
system. Left: top view. Right: side view.

FIG. 18. Schematic representation of the ratchet and the
pawl.

FIG. 19. Rotation of ratchet on different temperatures
applied.
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�̇� = − ��� − f���,�, �̇,�̇� + 	��t� ,

�̇ = ��, �11�

where the random forces acted on � and �. Here, f�

= f��� ,� , �̇ , �̇� and f�= f��� ,� , �̇ , �̇� are interacting forces
between branch and leg. Detailed equations of these forces
�with collision and without collision� are in Appendix B. The
parameters used to do this simulation are similar to those of
the molecular-dynamics simulation except that the masses of
the branch and the leg are set as mB=0.2, mL=0.3; the tem-
perature of the branch is set to T1=107; and the friction co-
efficients of the branch and the leg are set to 0.5 and 5.

The ratchet has no net rotation when applying same tem-
perature to the branch and the leg, as well as it rotates clock-
wise when lower temperature is applied to the leg. As shown
in Fig. 22. When T1 /T2=1000, the ratchet rotates to the de-
sired direction.

Different temperatures are used. As shown in Fig. 23, it
has similar behaviors as the previous case. When T1 /T2
�1000, the ratchet rotates clockwise at the similar speed.
After applying different torques to the ratchet, as shown in

Fig. 24, when the torque is equal to 4�10−4, there is a maxi-
mum efficiency �1.79�10−5� �Fig. 25�.

IV. SUMMARY AND DISCUSSION

In this work, we propose two designs for Feynman’s
ratchet and pawl system, and we have performed both
molecular-dynamics and Langevin dynamics simulations for
two designs to examine their detailed behavior. We find out
that the ratchet rotates as designed when the temperature of
the pawl chamber is lower than that of the ratchet. Several
parameters and configurations have been tested. The results
show that the ratchet’s efficiency depends on the applied
torque. After comparing results for different designs of
ratchet, we find out that the efficiency of the ratchet depends
greatly on the design. That may help us to design new nan-
odevices in the future.
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APPENDIX A: DETAILS OF COLLISIONS FOR
FEYNMAN’S RATCHET AND PAWL SYSTEM

1. Without collision

The potential energy of the ratchet and pawl is due to the
spring attached to the pawl �leg�,

PE�RP� = 1
2K��� − �e�2, �A1�

where �e stands for the minimum position of the above para-
bolic potential. The moments of inertia of the leg with re-
spect to point P and of the branch with respect to point O are

IL = 1
3mLRL

2 ,

IB = 1
3mBRB

2 , �A2�

respectively, as shown in Fig. 25. The EOM for � is as
follows:

IL�̈ = − K��� − �e� . �A3�

The exact solution for the EOM is

��t� = �e + ���t0� − �e�cos��K�

IL
t�

+ �̇�t0�� IL

K�

sin��K�

IL
t� , �A4�

where ��t0� and �̇�t0� are the initial displacement and veloc-
ity for �, respectively.

2. General formulation for collision events between particles
and sticks

The change of velocities for the branch, the leg, and the

gas molecules are denoted by 
�̇, 
�̇, and 
ẋ�
ẏ�, respec-
tively. Upon a single collision event, they are determined via
the following relations:


�̇ = A�P ,


�̇ = B�P ,


ẋ = C�P ,


ẏ = D�P , �A5�

where �P is

�P = − 2
X

Y
,

X = AIB�̇ + BIL�̇ + CmGẋ + DmGẏ ,

Y = A2IB + B2IL + C2mG + D2mG,

A =
��h

IB
,

B =
��h

IL
,

C =
�xh

mG
,

D =
�yh

mG
. �A6�

Here, h represents the distance between the particle and the
stick.

3. Ratchet hits pawl

h = RP sin � + RB sin�� − �� ,

��h = RB cos�� − �� ,

��h = RP cos � − RB cos�� − �� ,

FIG. 24. Efficiency of ratchet when applying different
torques.

FIG. 25. For both � and �, the most convenient choice for range
would be �−
 ,
�.
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C = 0,

D = 0. �A7�

4. Gas hits ratchet

h = x sin � − y cos � ,

��h = x cos � + y sin � ,

�xh = sin � ,

�yh = − cos � ,

B = 0, �A8�

where x and y are Cartesian coordinates in the system with
OP� as the positive x axis.

5. Gas hits the end of the ratchet

This happens when the gas molecule has a finite radius R,

h = ��x − RB cos ��2 + �y − RB sin ��2 − R ,

��h =
RB�x sin � − y cos ��

R
,

�xh =
x − RB cos �

R
,

�yh =
y − RB sin �

R
,

B = 0, �A9�

where x and y are Cartesian coordinates in the system with
OP� as the positive x axis.

6. Gas hits leg

h = x sin � − y cos � ,

��h = x cos � + y sin � ,

�xh = sin � ,

�yh = − cos � ,

A = 0, �A10�

where x and y are Cartesian coordinates in the system with
PO� as the positive x axis.

7. Gas hits the end of the pawl

This happens when the gas molecule has a finite radius R,

h = ��x − RL cos ��2 + �y − RL sin ��2 − R ,

��h =
RL�x sin � − y cos ��

R
,

�xh =
x − RL cos �

R
,

�yh =
y − RL sin �

R
,

A = 0, �A11�

where x and y are Cartesian coordinates in the system with
PO� as the positive x axis.

8. Coordinate transformation

Assume that the geometric center of a gas molecule is at
�x ,y� in the OX� coordinate system; its coordinates in OP� and
PO� systems are �xOP ,yOP� and �xPO ,yPO�, respectively. �x ,y�
can be transformed into �xOP ,yOP� via

xOP = x cos �P + y sin �P,

yOP = y cos �P − x sin �P,

ẋOP = ẋ cos �P + ẏ sin �P,

ẏOP = ẏ cos �P − ẋ sin �P. �A12�

�x ,y� can be transformed into �xPO ,yPO� via

xPO = RP − x cos �P − y sin �P,

yPO = − y cos �P + x sin �P,

ẋPO = − ẋ cos �P − ẏ sin �P,

ẏPO = − ẏ cos �P + ẋ sin �P. �A13�

APPENDIX B: DETAILS OF COLLISIONS FOR SECOND
RATCHET AND PAWL SYSTEM

1. Coordinate transformation

Transformations between XY and X�Y� coordinate sys-
tems are

x = x� cos � − y� sin � + RB cos � ,

y = y� cos � + x� sin � + RB sin � ,

x� = x cos � + y sin � − RB,

y� = y cos � − x sin � . �B1�

Velocity transformations between XY and X�Y� coordinate
systems are
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vx� = vx cos � + vy sin � − x sin ��̇ + y cos ��̇ ,

vy� = − vx sin � + vy cos � − x cos ��̇ − y sin ��̇ . �B2�

2. Without collision

The potential energy of the ratchet is

PE�ratchet� = 1
2K��� − �e�2. �B3�

Moments of inertia are

IB = 1
3mBRB

2 ,

IL = 1
3mLRL

2 ,

I1 = IB + IL + mLRB
2 + mLRLRB cos � ,

I2 = IL + 1
2mLRLRB cos � ,

I� =
I1IL − I2

2

IL
. �B4�

EOMs for � and � are

�̈ =
mLRLRB

I�
�sin ��̇�̇ +

sin �

2
�̇2 +

I2 sin �

2IL
�̇2

+
cos �K�

2IL
�� − �0�� +

K�

I�

�� − �0� , �B5�

�̈ = −
mLRLRB sin �

2ILI�

�I1�̇2 + I2�̇2 + 2I2�̇�̇� −
I1

ILI�

K��� − �0� .

�B6�

3. When a gas molecule hits the branch

Before collision the velocities are vn, vt, �̇, and �̇, respec-

tively. After collision the velocities are ṽn, ṽt, �̃̇, and �̃̇, re-
spectively. Define

RG = �xG
2 + yG

2 ,

vG = �vn
2 + vt

2,

C� = −
mGRG

I�

=
mGRGIL

I2
2 − I1IL

,

C� =
mGI2RG

I�IL
=

mGRGI2

I1IL − I2
2 . �B7�

The change in velocity of the gas molecule perpendicular to
the branch is


vn = ṽn − vn =
− 2I��vn − RG�̇�

I� + mGRG
2 . �B8�

Therefore, the velocities after the collision are

ṽn = 
vn + vn,

ṽt = vt,

�̃̇ = C�
vn + �̇ ,

�̃̇ = C�
vn + �̇ . �B9�

The transformation between vn ,vt and vx ,vy is

vn = vy cos � − vx sin � ,

vt = vy sin � + vx cos � ,

ṽn = ṽy cos � − ṽx sin � ,

ṽt = ṽy sin � + ṽx cos � ,

vx = − vn sin � + vt cos � ,

vy = vn cos � + vt sin � ,

ṽx = − ṽn sin � + ṽt cos � ,

ṽy = ṽn cos � + ṽt sin � . �B10�

4. When a gas molecule hits the leg

Before collision the velocities are vx, vy, �̇, and �̇, respec-

tively. After collision the velocities are ṽx, ṽy, �̃̇, and �̃̇,
respectively. Define

RG� = �xG�
2 + yG�

2,

Dx� =
mGRBRG� cos ��2IL − mLRLRG� �

2ILI��yG − RB sin ��
,

Dx� =
mGRG� �I1RG� − I2RG� − I2RB cos ��

ILI��yG − RB sin ��
,

Dxy = −
xG − RB cos �

yG − RB sin �
. �B11�

The change in velocity of the gas molecule along the x di-
rection is


vx = ṽx − vx =
− 2mG

I1Dx�
2 + ILDx�

2 + 2I2Dx�Dx� + mGDxy
2 + mG

vx

− 2
I1Dx��̇ + ILDx��̇ + I2Dx��̇ + I2Dx��̇ + mGDxyvy

I1Dx�
2 + ILDx�

2 + 2I2Dx�Dx� + mGDxy
2 + mG

.

�B12�

Therefore, the velocities after the collision are
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ṽx = 
vx + vx,

ṽy = Dxy
vx + vy ,

�̃̇ = Dx�
vx + �̇ ,

�̃̇ = Dx�
vx + �̇ . �B13�

5. When the leg hits the pawl

Since the pawl does not move, before and after the colli-

sion the velocities are �̇ , �̇ and �̃̇ , �̃̇, respectively. Define

D�� =
Dx�

Dx�

=
2I2RB cos � − 2IBRG� − 2mLRB

2RG� − mLRLRBRG� cos �

mLRLRBRG� cos � − 2ILRB cos �
.

�B14�

The velocities after the collision are

�̃̇ =
�ILD��

2 − I1��̇ − 2�ILD�� + I2��̇
I1 + ILD��

2 + 2I2D��

,

�̃̇ =
�I1 − ILD��

2 ��̇ − 2�I1D�� + I2D��
2 ��̇

I1 + ILD��
2 + 2I2D��

. �B15�

When �= 

2 or 3


2 , cos �=0, the velocities after the collision
are

�̃̇ = �̇ ,

�̃̇ = − �̇ − 2�̇ . �B16�
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