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Fundamental theory of statistical particle dynamics

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
(Received 8 June 2009; revised manuscript received 29 March 2010; published 1 June 2010)

We present a fundamental theory for the kinetics of systems of classical particles. The theory represents a
unification of kinetic theory, Brownian motion, and field theory. It is self-consistent and is the dynamic
generalization of the functional theory of fluids in equilibrium. This gives one a powerful tool for investigating
the existence of ergodic-nonergodic transitions near the liquid-glass transition.
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I. INTRODUCTION

We present here a theory1 for the dynamics of classical
particles which solves the chronic problem of self-
consistency. This theory unites the desirable elements of ki-
netic theory [1], Brownian motion [2], and modern field
theory [3].

Kinetic theory is one of our oldest [4] theoretical
disciplines. Despite its many successes it has never been
constructed in a fully self-consistent form [5]. Thus one of
the most famous approximations in all of science, the
stosszahlansatz of Boltzmann [6] and the treatment of the
collision integral in the Boltzmann equation [7] have not
been investigated systematically. The theory introduced here
provides the tools to remedy this situation.

The stosszahlansatz, also referred to as the assumption of
molecular chaos, is representative of decoupling approxima-
tions appearing in many [8] problems and characterized as
uncontrolled by the approximation police. Of particular cur-
rent interest is the validity of mode-coupling theory (MCT)
[9] used in theories of the liquid-glass transition [10]. We
should be able to answer the question: is the liquid-glass
transition accompanied by an ergodic-nonergodic (ENE)
transition [11]? The construction [12] of mode-coupling
models using traditional kinetic theory is ad hoc and short of
convincing. It has been completely ineffective in exploring
corrections to conventional mode-coupling theory. The field
has moved away from kinetic theory treatments and turned
instead to field theoretical models [13] where one has the
promise of perturbative control. Thus we recently introduced
the random diffusion model which can support an ergodic-
nonergodic transition [11] at one loop order. However going
to two-loop order one finds that the system cannot sustain the
ENE solution. The problem with such models, compared to
microscopic models organized in terms of a pair potential, is
that the short-distance structure is not treated naturally. In the
case of colloidal systems, there has been some convergence

'The title of this paper suggests that the theory is more widely
applicable than to Smoluchowski dynamics. This is true. The basic
development goes through for Newtonian dynamics, Fokker-Planck
dynamics and trapped systems. However, presenting the theory in
its most general form makes the development more complicated.
Instead, I have chosen to present the theory in its simplest applica-
tion, the case of Smoluchowski dynamics. The case of Newtonian
dynamics will be available soon (S. Das and G. Mazenko).
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on the Dean-Kawasaki (DK) model as the simplest field
theoretic model that describes the kinetics of the colloidal
systems operating under Smoluchowski dynamics. It has
been difficult, for technical reasons, to establish whether the
Dean-Kawasaki model supports an ENE transition even at
one loop order.

It is demonstrated here how mode-coupling theory [14]
naturally occurs in the application of our theory to colloidal
systems governed by Smoluchowski dynamics. The ap-
proach, which allows for compatible approximations for
higher-order correlation functions [15], is applicable to a
large set of dynamical systems [16], reversible [17] and dis-
sipative, including Newtonian [18], Fokker-Planck [19], and
Smoluchowski [20] dynamics. The theory is organized in
terms of a coupling to time and space dependent external
fields. This allows for great flexibility in using functional
methods in developing various types of perturbation theory.

A key point is that the equilibrium equal-time fluid struc-
ture [21] has been understood from a self-consistent field
theoretical point of view for a long time. The work presented
here is the natural extension to the dynamic regime of the
beautiful diagrammatic/functional development for the static
properties. The theory in the static case proceeded first
through the introduction of graphical methods by Mayer [22]
and others [23] in the 1940s and then greatly profited from
graphical resummation techniques [24] which were subse-
quently supplemented by functional methods [25] as dis-
cussed below. Of particular interest here is the functional
formulation of Percus [21,26] which cleanly connects with
the widely applied self-consistent approximations named
Percus-Yevick [27] and hypernetted chain [28] which fit
prominently into the tool kit of anyone studying the statics of
fluids. The theory, which has been applied to a large variety
of systems, is in the form of nonlinear integral equations
connecting the radial (pair) distribution function, the direct
correlation function and the Ornstein-Zernike relation [29].

Why has it taken 40 years to extend the static theory to
the dynamic regime?

Part of the answer is connected with the difficulties in
developing an efficient field theoretical [30] description for
classical field dynamics. It was not until the work of Martin,
Siggia, and Rose [31], introducing field doubling via conju-
gate response fields, and its generalization by Janssen [32],
De Dominicis [33], Graham [34], and others [35] that we had
a self-consistent treatment for field-theoretic models such as
the time-dependent Ginzburg Landau models [36] and all of
the models representing dynamic critical phenomena univer-
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sality classes [37]. In organizing these dynamical theories it
is important to carefully incorporate causality. This is related
to the issue of the proper treatment [38] of the Jacobian of
the transformation from a Langevin description in terms of
noise to the path-integral description in terms of physical
fields. There are some apparent ambiguities in determining
the Jacobian. This Jacobian was identified at least qualita-
tively in the early work of Onsager and Machlop. The treat-
ment of the Jacobian has led to a fascinating set of exten-
sions of the theory to include the topics such as ghost
fermions [39], supersymmetry [40], Onsager’s Reciprocity
relations [41], and Jarzynski and fluctuation theorems [42].
We intend to return to these topics in future work since they
can be explored in the case of particle models of the type
studied here. Kinetic theory is complicated [43] compared to
conventional field theories because the collective variables,
particle density and phase-space density, are distributions
(sums of & functions) not smooth fields. This leads to non-
linear constraints like

p(xy)p(xy) = plx;) 8(x; — xp) + two particle terms. (1)

One important aspect of the kinetic theory problem is that
static development in terms of the density is strongly non-
Gaussian [44]. By this we mean that the density fluctuations
of an ideal gas are not Gaussian and one has an set of irre-
ducible vertex functions which cannot be treated as small.
The connected vertex functions for an ideal gas are not
small. We return to this important point below.

II. SMOLUCHOWSKI DYNAMICS

Let us begin by defining the dynamical system of interest.
Consider a system of N particles with configurations speci-
fied by the coordinates R; which satisfy the equations of
motion

R;=DF;+ 1, )

where the particles experience force

14
F;=——U(R), 3
TR, (R) 3)
with total potential
1
UR) =2 V(R;~R)), (4)
i)

where we choose V(0)=V'(0)=V"(0)=0 and we have sup-
pressed vector labels to unclutter the equations. There is a
noise source 7;; for each coordinate which is taken to be
Gaussian with variance

(i) mi(t")) = 2kgTD St — 1) 55, (5)

where D is a diffusion coefficient. It is conventional to de-
velop kinetic theory in terms of the phase-space density
f(l)=2ﬁl5(xl—Ri(tl))5(pl—P,~(tl)) and its cumulants. For
the case of Smoluchowski dynamics this would suggest us-
ing the particle density p(1)==Y, 8(x;—R,(t;)) as the Martin-
Siggia-Rose (MSR) field. The key to our development is that
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we break with tradition and treat the particle coordinates as
our MSR fields with accompanying conjugate response
fields.

In the approach developed here we keep track of degrees
of freedom by coupling to them with external source fields.
In principle we can keep track of all the degrees of freedom
in the system. In practice, however, we are interested in fol-
lowing a small set of collective variables we label ®. For this
system, the density p is essential since it governs the static
equilibrium behavior and, from the point of view developed
here, is always included in ®=(p,...). For reasons that will
be developed below we must also include in @ a field B
which is constructed and interpreted below. The set of col-
lective variables treated [®=(p,B,...)], is flexible and con-
trolled by pairing each observable with a conjugate external
field (H=H,,,Hp,...). The set ® must include the fields p and
B since we need both to control and manipulate the interac-
tions in the system. One can include other observables in the
problem, like the potential energy density, but they play a
more passive role in the development.

We take advantage of the fact that, while the density is
strongly non-Gaussian, the positions R; may be more profit-
ably thought of as Gaussian variables. Therefore, in develop-
ing our theory we do not work in the Langevin description,
but instead work in the MSR representation. (As discussed in
Appendix A, one has at least three approaches to choose
from: Langevin, Fokker-Planck and Martin-Siggia-Rose.)
The generator of cumulants in the MSR representation is
given by Wy[H] which is related to the N-particle partition
function by

N

M = 7 0H] = | TT[DR)D(R)ad‘ROIPy(RV)e R,
i=1

(6)

where we have a probability distribution PO(RI(.O))
governing the system at the initial time #,. The short-
hand notation H-® means fddxledt,[Hp(xl 1) p(xy,1)
+Hpy(x;,1)B(x;,1;)+*--]. In most of our discussion here we
assume the system is in equilibrium initially and the initial
distribution for a set of N particles is canonical,

Py[Ry] = e PV R 7, (7)

where U is the potential energy defined by Eq. (4) and B is
the inverse temperature. The MSR action for the problem is
given by

N

AR:J dn >, {éi(h)kBTDéi(fl)
to i=1
+iR (1)) - [Ri(t)) = DF (1))} + Ay, (8)

where the contribution to the action A; is from the notorious
Jacobian [38]. (The steps leading from the Langevin descrip-
tion to the MSR field theory description are discussed in
Appendix A.) The Jacobian plays a crucial role in this kinetic
problem and is defined by
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o) o <8R,~(t’) , )
J =det 5R (1) = det RO\ o —DF(t')
:da@{j}&tt) DMJtZU—fﬂ. 9)

Exponentiating to write the Jacobian as a contribution to the
action gives [45]

- o IF (1)
A,=—an=—JtO dtﬁ(O)(%D&Ri(t) . (10)

where 0(0)=1/2. Together, Egs. (6), (8), and (10) define the
problem of interest.

Now we want to make a separation of the degrees of
freedom into two groups; one group consists of some collec-
tive variables to be chosen, and the second group consists of
all the rest of the degrees of freedom. The first step in this
separation is to rewrite Eq. (10) in terms of the particle den-
sity, p(1)==Y, 8[x; —R,(t;)]. We find

A= t9(0)foo dtf dxd DVzp(x 1)V(x—y)p(y,t) + const

=f dtf dxd®yB,(x,1)V(x — y)p(y,t) + const, (11)
11

where we have defined the quantity
B (x,1) = 0(O)DV “p(x,1) (12)

and the constant can be absorbed into the normalization of
the partition function.

Next, notice that the dynamic part of the interaction con-
tribution to the action can be rewritten in the form

D f th iR,(1)F (1) = f dt f d¥xd®yBy(x,))V(x — y)p(y,1),
(13)

where

N
Bo(x,1) = D2 iR,(1) - Vg x = Ri(1)]. (14)
i=1

We can then combine this contribution to the action with the
contribution from the Jacobian to obtain the dynamic part of
the interaction in the form

A,=fd1d2B(1)V(12)p(2), (15)

where B(1)=By(1)+B,(1) is the field discussed above,
fdl =f§;dt1ddx1, and
V(12) = V(x| = x,) 8t = 1,). (16)

Writing things out explicitly, the conjugate field is given by
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N
B(1)=DX {[RiV, + 600)Viltdlx, = R(1))].  (17)
i=1

We can then write the partition function given by Eq. (6) in
the form

N

[TIDR)DR)ARP PR e Ao,

i=1

(18)

where A, is the quadratic part of the action excluding the
quadratic contribution to the initial probability distribution

. N
Ay= f dt, >, [RikzTDR; +iR; - R;]. (19)
v =1

Notice that we have constructed things such that the coordi-
nates are constrained to have the values REO) at t=t,. We then
average over these values. Here we are explicitly treating the
case where the system is in equilibrium at t=t;, but more
general situations are clearly compatible with the develop-
ment. The interaction part of the action (including the initial

probability distribution) is given in the compact form
1
AFEEfdwmmnaﬂm@@L (20)

where the Greek labels range over p and B and we introduce
the interaction matrix

o(12) = [- BV(ID)][pup, 01, — 16) = B (peB, + Bop,)].
(21)
where we have introduced the useful notation
ﬁa = 501,[) (22)
and
B,= 6,5 (23)

The canonical partition function can be written in the conve-
nient form

Zy=TrVe Ari®, (24)

where we have introduced the average

N

[T [D(R)D(R)aROTPy(RV)e0O(R).
i=1

r'NO =

(25)

Notice that the single-particle contribution to the action A,
[Eq. (19)] is included in the weight in Tr. Thus the class of
problems of interest are defined in terms of a path-integral
formulation.

Note that the case where there is a strong external poten-
tial acting on the system of particles is easily treated within
the development. Suppose that the total force acting in Eq.
(2) on particle i is of the form
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FI=F,+F¢f (26)

and the external force is generated by a potential

Fi=-Vg j dxUg(x,0p(x,1) == Vg U[R,(1),1]. (27)

An important practical example is the case of optical twee-
zers where this external potential or trap can be taken to be
of the form

U = 5 k(0= Ro0) P, (28)

where «(f) is a controllable amplitude for the potential and
R(?) is the position of the trap. If one follows the develop-
ment of the previous section, one finds that the external force
generates a term in the action

AUEzjdlB(l)UE(l), (29)

which can be included in the one-body term in the action. In
this case, the initial conditions can be influenced in several
ways. If the trap is turned on for times 7>t, there is no
change in initial conditions, while one could prepare the sys-
tem in a static trap where one would need to add a term to
the initial potential energy,

U—U+ f dxUg(x,1,)p(x), (30)

and Ug(x,t)=Ug(x,t,) for t<<t,. There are many other pos-
sibilities. The net result of introducing this external potential
Uj, that couples to the density is to physically produce the
dynamic coupling to the field B(1),

HB(1)=UE(1)~ (31)

If one is interested in fluctuations in equilibrium
in the presence of a time-independent inhomogeneous
potential u(x;), then one makes the replacements
H,(1)=u(x,)8(t,~1,) and Hp(1)=u(x,). H, adjusts the initial
condition and Hy has the effect of changing the equation of
motion to include the force due to u(x).

We have succeeded in writing our nonequilibrium prob-
lem as a path integral characterized by a field-dependent par-
tition function written in the very compact symmetrical form
in the grand canonical ensemble,

T (N)Jd1H(1)- @ (1) ,112]d120(1)-0:0(2) (37

Z,[H]= E

which emphasizes the role of the collective fields p and B.
We have yet to show that this can be expressed in a form
which produces a self-consistent form of perturbation theory.

III. SELF-CONSISTENT DEVELOPMENT
FOR THE GENERATING FUNCTIONAL

We now want to rewrite the partition function in a form
that allows us to formally carry out the average in Eq. (32).
We can use the functional identity [46]
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e—A]+H~(I>: eATeH-q)’ (33)

where we define the operators

Ap= % J d1d22, 0,5(12)H (1) H4(2) (34)
ap
and
. 5
H(1) = — o (35)

The interaction matrix o,z is given by Eq. (21). Then, using
Eq. (33) in Eq. (24) gives
Zy= e’;TTr(N)eH'(D. (36)

Next, we restrict the set of fields ®; to those that are one-
particle additive,

D= ¢, (37)

which is true for the particle density p and conjugate field B,
and notice that the sum over the degrees of freedom in Eq.
(36) factorizes into a product of sums over the degrees of
freedom of each particle. Together, these observations lead to
the result

7 =TrMet® = ()N, (38)
where the noninteracting partition function for a single par-
ticle is

)
Z,= TrDH 4 (39)

Working in the grand canonical ensemble, the grand partition
function for the interacting problem is given by

o ©

z=3 i =3 2 iy - Arz 27y ehroh,
N!' oo MN!
(40)
where p, is the fugacity or bare density and
Wo = poTrVeft® " = Tret?, (41)

where in the last line we have dropped the particle label on
the trace and the field ¢. The cumulants of the fields ®; are
generated by taking functional derivatives of the generating
functional

W[H]=1n Z; (42)
with respect to H;. The one-point average in a field is given

by

8
= —W[H
' SH, ,

where we have used a compact notation where i labels space,
time and fields p or B. Substituting for W[ H] using Eq. (40)
we find
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1 1) 1 ~ :
G== AreWo—Ww, = —.Tr ,»eATe‘f"HeW0
ZTe SH, 0= 5T ®
1 - . PO
= ETTr¢ieATe¢'He_ATeATeW0. (43)

It is not difficult to prove the functional identity,
ArpH byAr — JH- b [ E¥SFH, , (44)

where
1
= 52 Uij¢i¢j (45)
ij
is a self-interaction contribution and
Fi= E O'ij¢j (46)
j

will play an important role as we go along. Using Eq. (44)
back in Eq. (43), we obtain

Gi= %TTV et el HIWUH) = Ty e HEAWIHL L (47)

where

AW[H]=W[H + F]- W[H]. (48)

An interesting check on the theory is to show that the self-
interaction E given by Eq. (45) vanishes. This follows if the
potential is constructed to be zero at the origin [V(0)=0].
Our most important result is given by

G; = Trepe!! #+AMH], (49)

Another result useful in this description follows from tak-
ing the derivative of Eq. (40) with respect to p,, following
steps similar to those leading to Eq. (49), and integrating
with respect to py which leads to the result

Po
WIH, po] =f dxTre! #+WHFXI-WIH AT (50)
0

It takes a little calculus to show that the derivative of Eq.
(50) with respect to H leads to Eq. (49). Equation (50) can be
rewritten in terms of the more fundamental identity

J
ﬁ—ZT[H pol = Tre' *Z,[H + F,p,). (51)
Po
What about response functions? The response of the den-
sity to an external potential Uy which couples to the density
is given by

Xpp(12) = (p(1))=———(p(1)) = G(12)

6UE(2)
o
~ oH,(1) 5HB(2)

SHp(2)

WIH]. (52)

We must now work to show why Eq. (49) is very desir-
able. There are several ways one can use Eq. (49) to build an
approximate theory. In comparison with the static theory one

PHYSICAL REVIEW E 81, 061102 (2010)

would guess that density expansions would be the most suc-
cessful. This may be so, but working with expansions in the
pair interaction is conceptionally simpler and more direct. It
seems clear that in developing density expansions one will
be able to make contact with the hypernetted chain and
Percus-Yevick approximations. There appears much one can
do about coupling constant renormalization. We return to dis-
cuss density expansions elsewhere.

The dependence of the theory on the pair potential is con-
trolled by the quantity AW[H]=W[H +F]-W[H]. We can ex-
pose the dependence on the potential by constructing the
functional Taylor-series expansion

AW[H F—W|H F; H
LGIED W[]+22 ,5H5HW[]+
(53)
and we can conveniently introduce the set of cumulants,
6 0
G, ,=——— s —— 54
ij...k— (SH 5H 5HkW[ ] ( )

to obtain

1 1
i ij ijk <

(55)

with F; given by Eq. (46). Clearly, in this form we can take
AW to be a functional of G;. One can then use functional
differentiation to express higher-order cumulants in terms of
the one- and two-point correlation functions G; and G;;. One
has, for example, the manipulation expressing the three-point
cumulant in terms of lower order objects,

Gijk 2 Gtm

mnp

karmnp’ (56)

where the irreducible three-point vertex is given as a func-
tional derivative of the two-point irreducible vertex

o
_Fi

: 57
5G, 0 (57)

rijk =
and I';; is precisely the matrix inverse of the two-point cu-
mulant

> Ly Gyj= 6. (58)
%

The beauty of the modern field theoretical development is
that an approximation for the two-point vertex as a func-
tional of the G; and G;; generates self-consistent approxima-
tions for all higher-order correlation functions. The method is
set up to carry out various types of renormalization like re-
placing the bare interactions with effective interactions. This
will be exploited elsewhere. We expect the situation here to
be similar to quantum many-body theory. Self-consistency
and conservation laws can be brought together to suggest
ways of generating approximations as done by Kadanoff and
Baym with their ®-derivable [47] approximations. A key
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constraint is equilibrium is the fluctuation-dissipation theo-
rem.

Some of the structure of the theory can be appreciated via
the establishment of a dynamic generalization of the static
Ornstein-Zernike relation [29]. Starting with the functional
equation for the two-point cumulant, one can use the chain-
rule for functional differentiation to obtain

13

G;i=—G,;
Y 6H,

S S
=Treipie P2V + E Trepe H¢(5—er W) o —G

= gl/ + 2 Cikaj’ (59)
k
where

G, =Trope 2V (60)

is a single-particle quantity and we have the memory func-
tion [48], self-energy, or dynamic direct correlation function
given by

c;j=Tree H¢+AWEAW (61)

Since AW can be treated as a functional of G; we see at this
stage that we have available a self-consistent theory. If we
define the matrix inverse

E ’)’lkgkj ’J (62)

then the two-point vertex is given without approximation as
Ly=v;+K;, (63)

where

== YikCrj- (64)
k

IV. NONINTERACTING SMOLUCHOWSKI SYSTEM
The first step in applying this theory is to work out the
noninteracting cumulants for the fields ®=(p,B). This cal-

culation for the fundamental objects R, R is carried out in
Appendix B. The cumulants for the collective fields are
worked out in detail in Appendix C.

The final results are

0
GE}) Bp.. p(

= po(zw)dé(E ql>

i=1

AL+, .0 n)
< b(€)eNn (65)
where

N,= -DE E qi-qjlti- (66)

i=1 j=1

and
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b(j)=D > qi-q;0(t;—1;) (67)

i#j=1
and where D=k,TD. Explicitly, the two-point cumulants are

N2 ’
GWq.q"s1.1") = po(2m)*8(g +q")e PTI1 (68)

4 / ’ ’ 2yt
G;JOB)(QJ'I 1Lt )=—p0(27T)d5(q+q )qug(t_t )e Dq“(t—t )’
(69)

’ ’ ’ ’ _Da(t' -
Gin(g.q:.t") == po2m)*8q + q')Dg*o(t’ — 1)e 7 ')
(70)

and
Gipg.q'st.1') =0. (71)

Notice that G is retarded and proportional to g%, while
Gg... p=0. The results for density cumulants agree with the
results from recent work [49] that shows statistical dynamics
of the density of noninteracting Brownian particles can be
described by a cubic field theory where the density is the
fundamental field.

V. PERTURBATION THEORY FOR THE TWO-POINT
CUMULANT

The perturbation theory can be organized in terms of the
irreducible vertex functions. It is clear from the generalized
Ornstein-Zernike equation [Eq. (59)] that the matrix inverse
of the two-point cumulant is given by Eq. (63) with the ma-
trix y defined by Eq. (62) and the self-energy K;; by Eq. (64).
To get started, one constructs the nomnteractmg two-point
cumulant using Eq. (65) and one finds the matrix inverses to
be given by

Jd
Yga(12) = kz(a +Dk>5(tl—t2), (72)
0 1
Y9(12) = - ! ( 7 Dkz)é( —1y) (73)
- poDki\ a1y o
2D
Yep(12) == ——=8(1; — 1), (74)
poDki
Y =0. (75)

Working to first order in zero external field,
AW=X F,G, and one has contributions to G;; given by

Gy=Trep(1 + AW +---)
= ’fr(ﬁi(ﬁj(] + E FuGu)

0
= GL( ) + Z thka-ku u*

It takes some manipulation to carry out the various contribu-
tions, as will be discussed in detail elsewhere, but ultimately
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Gi= ij”,
where p=(p) is the physical average density, corrected at first
order to be p=py/[1+pyBV(g=0)]. This follows from the
perturbation theory analysis of G;.

Turning to the dynamic direct correlation function, we
have at first order

EAW EEFG =F;= 2 i (76)

Putting this result directly into the defining equation for the
dynamic direct correlation function, Eq. (61), gives

Cl(jl) = Tr¢12 U/k¢k - 2 le o-kj (77)

The contribution to the two-point irreducible vertex is given
by the very simple result

1 0) ~(0
Kl(j) == Yge)G%/g‘Tk/ - 0. (78)
k.
Let us look at the first-order theory for the two-point cor-
relation function. It satisfies, where it is understood that py is
replaced by p, the matrix kinetic equation

G;=GY + E GGy (79)

This is a matrix equation which holds for times #;,7;= 1, and
the two-point cumulant is written more explicitly as

— (2m)*8(g; + qj)Gal.aj(Qi’ti’tj)’ (80)

where ¢; takes on the values p and B and the translational
invariance of the system is reflected in the multiplying &
function.

Traditionally, there have been two recipes or protocols
[50] for evaluating the two-point cumulant. Both reduce the
problem to effectively a one-time problem. The kinetic
theory protocol (KTP) is to treat the problem as an initial
value problem with the system in equilibrium at time f,
and we determine the single-time correlation function
G,,(q.t;=1y). This quantity is available in the current ap-
proach by setting #,=1, in Eq. (59) and using Laplace trans-
forms. Traditionally, one organizes kinetic theory via the
time correlation function

Cas(q.) = (B_,e™A,), (81)

where L is the Liouville operator [51] in the case of New-
tonian dynamics.

In the second protocol, called the field theory protocol
(FTP), one takes f,— — and builds up the equilibrium struc-
ture from the noise. One of the technical advantages of this
approach is that one can maintain time-translational invari-
ance over the time line and there is only one time in the
problem, ¢, —¢,. It is natural to work in terms of time Fourier
transforms in this case. This allows one to understand the
causal structure in terms of properties on the complex plane.
Our theory here is similar to quantum many body theory

PHYSICAL REVIEW E 81, 061102 (2010)

where one builds up the equilibrium correlation using ther-
mal Green’s functions [52]. A difference is that in the quan-
tum case in equilibrium one must satisfy the KMS boundary
[53] conditions. Both protocols are included in the develop-
ment here. It offers the opportunity of developing approxi-
mations that are internally self-consistent and one would pre-
fer both procedures to produce the same results.

One can work out the full solution to the set of matrix
equations given by Eq. (79) with the simple result

Gpp(q’tl’ (82)
where
Flg,1) = e P04, (83)
The static structure factor [54] is given by
P
S(g)=——"— (84)

[1+pBV(g)]

and the physical wave number dependent diffusion coeffi-
cient is given by [55]

D(q)=DppS'(q). (85)

Notice that we can, at this level of approximation, introduce
the notion of an effective potential. Comparing Eq. (84) with
the static Ornstein-Zernike [29] relation we can identify the
effective interaction

Vierr(q) = — B_ICD(Q)’ (86)

where cp(g) is the physical direct correlation function which
is assumed to be known by other means. We can, for ex-
ample, assume that cp(g) is given in the Percus-Yevick ap-
proximation for hard spheres [56]. With this effective inter-
action one can work out the results of perturbation theory in
Verr(q)-

One can also use the two protocols discussed above to
analyze Eq. (79). In the KTP one sets 7,=t, and notices that
only retarded quantities remain in the kinetic equation which
can be solved directly by taking the Laplace transform. In the
FTP where one takes t,— —, ones sees, after taking the
limit, all reference to the equilibrium static structure is gone
and one has time translational invariance. After Fourier
transforming over time, the equations are reduced to a set of
algebraic equations which are simply inverted to give the
same solution in the frequency regime. Inverting the Fourier
transform leads back to results found from the complete two-
time solution.

To demonstrate the versatility of the method, consider a
system initially (z=t,) in equilibrium at temperature T, but
with noise driving the system at T for > ¢,. At first order in
perturbation theory, the system still satisfies Eq. (79) but
with the #=1, contribution in ¢ at temperature 7. The solution
of this problem is only slightly more complicated than the
equilibrium case. One finally has the solution
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Gl 11,12) = S(@)F (g, |1 = 1))

+[So(q) = S(@)F(q.t, — tg)F(q,t, — 1),
(87)

where Sy(g) is the static structure factor at temperature 7T,
and S(g) is the static structure factor at temperature 7. Now
time-translational invariance is broken but is restored as the
system decays to equilibrium at temperature 7.

It was claimed earlier that this method could provide self-
consistent approximations for higher-order cumulants.
Within the first-order theory one can generate expressions for
the triplet correlation functions. We easily find for the first-
order theory that

Gijk == 2 Giijqup?’,()(Bp» (88)

vup

where these are the first order Gs on the right hand side and
the zeroth-order three-point vertex is given by

0 0).(0)_.(0 0
71()14)17 == E Fygv)’y](‘u) yl(cp)Gl(m)p’ (89)

vup

where all zeroth-order quantities can be evaluated using Eqs.
(65) and (72)—(75).

At second order in the effective potential we have two
contributions to the two-point vertex. The first piece comes
from the self-energy contribution to the dynamic Ornstein-
Zernike equation, Eq. (61), where, keeping the second-order
terms, we have

iAWm_i

5, = 5Gk2 FiFiGy; =~ E FiFj% Giel 06 Gy

i ij

(90)

and, in the simplest second-order approximation, we replace
the three-point vertex with the zeroth-order result. After
some simple manipulations that will be described in detail
elsewhere, the second-order contributions to the two-point
vertex coming from the self-energy can be written in the
mode-coupling form

1
Iy == 5 2 Y0Gi0Ge Y oD
kptn

where the new element is that the high wave number conver-
gence of the integrals comes not from the three point vertices
but from the subtraction in [12(a)]

Gy, =Gy, G, (92)

In some field theoretical treatments of the DK model one
obtains memory function kernels which do not vanish in the
noninteracting limit. To complete the second-order model we
must also work out the second-order terms coming from G.
This term is linear in the full two-point correlation function
and if there is an ENE transition at this order, it could show
the stretching phenomena found phenomenologically in Go-
etze’s F, model [57]. The complete second-order model will
be treated in a separate publication.
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VI. CONCLUSIONS

We have presented here a reformulation of kinetic theory
which is self-consistent. It allows one to study problems
which are difficult to treat using other methods.

(1) We outlined a clean derivation of the mode-coupling
model at second order in perturbation theory. We will ana-
lyze whether this model supports ENE transitions elsewhere.

(2) The method presented here allows for a systematic
method for analyzing corrections to this second-order result
including higher-order correlation functions.

(3) The method allows one to treat nonequilibrium prob-
lems like temperature quenches as demonstrated above.

(4) Completely unexplored is the fact that the perturbation
theory has been developed in the presence of space and time-
dependent external fields. Thus this method could be useful
in problems of optical pinning and highly inhomogeneous
situations.

(5) It seems likely that this method will be useful in treat-
ing meta- and unstable systems. A first approach within per-
turbation theory is to formulate a dynamical van der Waals
theory. Similarly it seems likely that this approach will be
useful in developing a dynamic theory of melting once a few
ideas from density-functional theory are integrated into the
development.

(6) Our focus here, because of its simplicity, has been on
Smoluchowski dynamics, but as will be discussed elsewhere,
the method developed here can be applied both to Newtonian
dynamics and Fokker-Planck dynamics as well as a broader
class of models. In the case of Newtonian dynamics, this
approach offers an alternative to the conventional develop-
ment in terms of the Liouville operator. It may be important
that in this approach it is not necessary to use basis states in
perturbation theory labeled by a continuous momentum in-
dex.

(7) Tt is clear that we can study using these methods the
mapping of Fokker-Planck dynamics onto Smoluchowski dy-
namics in the large mass limit. This is of course an elabo-
rated version of the calculation leading to Einstein’s relation
[58] between the friction coefficient and the diffusion coef-
ficient. Of particular interest to us is whether in integrating
out of the momentum degrees of freedom one generates den-
sity dependent diffusion coefficients. The effects of such
density dependence have been shown to be physically impor-
tant within the random diffusion model [13].

(8) All of this development is compatible with the bizarre
developments initiated with the introduction of ghost fermi-
ons [39] into the treatment of stochastic dynamics. We ex-
pect the subsequent developments like supersymmetry [40]
to manifest themselves as in field theories where one can
make a connection with Onsager’s reciprocal relations [41]
and the fluctuation theorems [42] found in the strongly non-
equilibrium regime.

(9) Independent of the relevance of point 8, the connec-
tion to the fluctuation theorems and Jarzynski equalities
should be explored carefully.

(10) These methods allow one to study one-point quanti-
ties in more complicated situations. In the calculation out-
lined above for homogeneous systems we did not mention
the self-consistent determination of the equation of state be-
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cause the results are rather dull. This will not be the case for
inhomogeneous systems.

(11) It seems clear that a more quantitative method can be
established if one determines the best way of expanding AW
in a density expansion. This would make close contact to the
work of Percus and the standard approximations of Percus-
Yevick and hypernetted chain.

(12) This method allows us to investigate the claim by
Das and Mazenko that momenta are associated with a
mechanism which cuts off any possible ENE transition in
conventional fluids.

(13) Even in the case of Smoluchowski dynamics, the
connection between the theory at the microscopic level and
fluctuating nonlinear hydrodynamics has not been estab-
lished. Can the noninteracting field theory of Ref. [49] be
extended to the interacting regime and connected up to the
microscopic theory treated here?

(14) The existence of fluctuation-dissipation theorems is
very important in equilibrium. This will be explored in depth
elsewhere.
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APPENDIX A: LANGEVIN, FOKKER-PLANCK,
AND MSR DYNAMICS

1. Langevin model

The Langevin model we study is given by

IR (1
PO _pryoy+ no. (A1)
at
which is valid for #> ¢, and has the initial condition
Ri(ty) = Rl('o) (A2)

governed by the probability distribution PO[REO)]. Fi(¢) is the
force acting on R, (r) and is a local function of R;(z). We
assume that the noise 7,(¢) is Gaussian white noise with vari-
ance

(mi(t)m;(t")) = 2kgTD 5;8(t - '), (A3)
where D is a diffusion coefficient. The associated probability
distribution is given by

. 27

P[n]=N, exp| — dt— — ,
1 4D

(A4)

where N, is a normalization factor. The partition function in
an external field is given by
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Z[h] = f DyP[ 7] J DROPJRVIS(h-R),  (A5)

where the time-dependent external field couples to the sys-
tem via

% N
S(h-R)= exp[ f dry, R,-(t)h,-(t)] (A6)
It i=1

0

and where, via the Langevin equation and its initial condi-
tion, the field R; is a functional of the noise and the initial
condition Rgo). Our goal is to determine the generator of cu-
mulants, W[h]=1n Z[h].

2. Fokker-Planck dynamics

It is convenient to analyze this set of dynamical models
using the Fokker-Planck description. We follow here the de-
velopment of Kim and Mazenko [59]. If we define the field

N
gq(t) = [T ol - R(D)], (A7)
i=1
we may then consider the time correlation functions
Gy (1) =(84(1)8 ), (AB)

where the average is over the noise and the initial condition.

Taking the time derivative of G, 4 (#) using the chain rule
for differentiation and the Langevin equation, Eq. (A1), one
is left with

9

1%
_G 1) =—
Jt s/ gﬁi

FAP)G g (1) - 2 (m(Dgp(gpr) |-
(A9)

It is then not difficult to show, remembering that # is Gauss-
ian, that

_ 4
(g p(D)gpr) =—D5T¢G¢,¢'(f), (A10)
where we have used ﬁszTD, the result
OR;(1) 1
ED _L,, (A11)
on(1) 2

which follows from Eq. (Al) and the assumption that the
initial field configuration is independent of the noise for
=0,

OR (1
ﬂ =0. (A12)
on(t)
Using Eq. (A10) back into Eq. (A9) we can write
J
E‘G('b’(/)/(l) = D¢G¢,’¢/(I), (A13)

where the Fokker-Planck operator is defined by
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D¢,=D2 i[—Fi(¢)+kBTi] (A14)

O o
The formal solution to Eq. (A13) is

G (1= 1g) = ”470G, 4, (0) = PH[5(p— ') Po(¢)].
(A15)

Integrating over all ¢’ gives the equilibrium probability dis-
tribution

P(¢.1) = f D(¢")e”s =[S~ ¢')Po(¢')] = P40 P((¢h).
(A16)

It is easy to see that the equilibrium solution is given by

e PMo
P40)=W,= 7 (A17)
where
IH
Fi=——. (A18)
dp;
Equation (A15) then takes the form
Gy (D) = V[ S(p— )Wyl (A19)

Any two-time correlation can then be written in the form
Cap(t) = (A[R(1)]B[R(0)])

= f DD P A(')B(P)G 4 (1)

= f DéB(p)ePIA(P)W,, (A20)

where in the final step we assume the system is in equilib-
rium.

In our development it is useful to introduce the adjoint
Fokker-Planck operator

- 6| &6
D,=D Fi—kpT— |—/. A21
! 2[ Bé@]&ﬁi (20
If the equilibrium average is defined as
(A)= f D(p)W4A(P), (A22)

one can show that

Cap(t) = J D(P)B(B)e"#(A(BW,) = (B($)ePIA($).

(A23)
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3. Multiple time correlations

Consider the multiple time correlation function

Gy 6,y (0s 115125 - 1)

= <g¢n(tn) ...g¢2(t2)g¢l(t1)g¢0(to)), (A24)

where g4(f) is defined by Eq. (A7) and we assume
t,=t,_1 =" =t, =t =t, Using the same approach as used

for treating the two-point quantity we have

J
(9_1"1G¢0’¢1’¢2"'"¢n(t0’tl’t2’ e ,tn)

13
= - ; 57#|:DFiG¢0’¢l’¢2"“’¢n(to’tl,t2’ ,tn)

- E kpT( ni(tn)g(bn_](tn—l) s g¢2(t2)g¢](t1)g¢0(to)) .
(A25)

Because of causality, g, (#;) for 7;<t, is independent of the
noise at f,,

()84, (1)~ 8.4,(12)8, (118 9, (£0))

— 5g¢n(tn)
=D 57’%([”)845”_,(1;1_1) e g¢2(12)g¢|(f1)8¢0(f0)
(A26)
gy, (1) .
The treatment of S 18 the same as the two-time case and
we obtain the result
J
a_G‘f’O"'/’l’d)Z""’¢n(t0’tl’t2’ o ,tn)

tl’l

:Dd’nG‘z’o’d’]"f’z’-w‘/’n(tl’tz’ ’tn)’ (A27)

where D, is the Fokker-Planck operator given by Eq. (A14).
This has the formal solution

G 4081y a8yt 0o 115125 o Ly 1)

= P titn-1)
=e" ¢, nn-1 G¢0’¢1’¢2"'"¢n—l’¢n(t0’t1’t2’ "'tn—l’tn—l)'

(A28)

However,

G¢0,¢,,¢2,...,¢n_,,¢n(f0,f1,f27 PN A Y
=(8g,(ti-1)80,_ (tas1) 84, (12)8 4, (11)8 4, (20))
= by= bu1)G 6,050, (T0:T 1120 - Tymy)-

(A29)

Clearly we can work this out recursively:
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G¢0’¢1'¢2""*‘ﬁn—l*‘ﬁn(to’tl’tz’ ...

et ty) = P05, GGy 8., (Tosl15Ts -
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= P, timtnD Py, (o17152) .. gD (12=11) oD g (11-10)

X 5(¢n - ¢n—1)5(¢n—1 - ¢n—2) T 5(¢1 - d’O)WqSO'

If we introduce the notation
U¢n;¢n71(tn - tn—l) = eD¢"(Zn_tn_l)5(¢n - ¢n—1) > (A3 1)

we can write

7tn—l)
= eD(/)n(tn—tn—l)(S(d)n _ ¢n_l)eD4)”_](ln—l_tn—Z)(S(d)n_l — ¢n—2)Glﬁ0,¢l,¢2,.‘.,¢n_2(t0’t1’t2’ . ’tn—2)
(A30)
[
€ €
f DA e ™9z X [iNg + h18(e - t)R,(1,)

s=0 s=0

=S[l’l . ¢]G¢O’¢l""'¢n(to’tl’ ’tn)' (A36)

Gyt L0s 11512 sl 1y)

= U‘f’nid)n_l(tn - tn—l)U¢n_1;¢n_2(tn—1 —ly )
XU¢2;¢1(12_II)U¢1;¢O(I1 —l())Wd,O. (A32)

This is the result we need in developing the path-integral
approach.

4. Path integral form

How is the partition function in a field related to these
multiple-time correlations? In Z[h], given by Eq. (A5), we
make the special choice for the external field

€
(1) = 2 [iN] + 18t~ 1,), (A33)
s=0

which amounts to dividing up the time interval into a grid.
Next, multiply by

¢
[
s=0
and integrate over \;. Then, we have

€ 4
f DN ez [ 2 LNy + 116(t = t)Ry(1,)
5=0 s=0

= f DyP[7) f DROP([RV]

€

XJ D)\H o~ IN B} piINRi(ty) o iR (1)
5s=0

¢
= f DyPl7] f DROPRVIL g (1) ik,
5s=0

(A34)

where again the g, are o-functions which allow us to make
the replacement
e iRi) = o E it = S - B, (A35)

which comes out from the average over noise and initial
conditions. We have

We finally obtain the result for the partition function we want
by doing the functional integral over ¢

Z[l’l] = j D¢S[h . ¢]G¢O’¢l""'¢n(to’tl’ ,[n). (A37)

The key here is to notice that we have an explicit
expression for the multitime correlation function
Gyy6,...4,Tos11, . ,1,). Inserting this result into Eq. (A37),
we obtain

2= | DSt 6104, 1)

X U¢n_1;¢n_2(tn—l - tn—2) T

XU¢2;¢1(I2—t1)U¢l;¢O(t1—to)W¢0. (A38)

There are no constraints on the choice of time slices. Let us
take the slices to be uniformly divided, 7,,;=1,+A, and we
work in the limit of small A and large n. This defines the
continuum limit for the theory. As a check on the develop-
ment, notice that the normalization as 7— 0 is preserved,

Z[O] = f D¢U¢”;¢n_l(ln - tn—l)U¢n_1;¢n_2(tn—l - tn—Z) Tt
X U¢2;¢l(t2_tl)U¢l;¢O(tl —lo)Wd,O:l. (A39)

The result given by Eq. (A38) is naturally interpreted as a
path-integral. Let us focus on the intermediate time quanti-
ties

Ug g, (= 1y) = P07 00 8, — b,1). (A40)

Using the integral representation for the J-function we can
diagonalize the Fokker-Planck operator,

U¢n;¢n—l(t" - tn—l) = thb,l(ln_tn—l)f d(%nei(;"(d)”_(ﬁ”—l),
(A41)

Then, we can evaluate

061102-11



GENE F. MAZENKO

P 1) - 5 | . i
D id, by =—| =-F +D— ip, by, :AF l¢n¢n’
W o [ Y }e "

n n

(A42)
where
F 4 =52 o
An == l¢nFn(¢) - D¢n - an(Qb) (A43)
and
U¢;z§¢n_1(tn_ tn—l) = J déSneAfAeién(%_qs’l_l) = f d&neAnAs
(A44)
where
— . \ OF,,
An:_D¢5+ l¢n|:(¢n - d’n—l)/A - Fn(¢) - 5¢ :| .
(A45)
Putting Eq. (A45) back into Eq. (A38), one has
Z[h] = f DD IDhoPo(p)e i, (A46)

where Ay is the standard MSR action in the presence of an
external field,

Ap==DG )+ id({b(1) - FLo(0)]} + h(1) (1) - ‘Z)((f)) '

(A47)

APPENDIX B: GAUSSIAN SINGLE-PARTICLE
PROBLEM

The noninteracting correlations for a system driven by
Smoluchowski dynamics is governed by the MSR action

Ay= f ’ df[R()DR(¢) + iR(OR(t) — h(t)R (1) — h()R(1)],

(B1)

where h(f) and #(f) are the external source fields and

D=kgTD. We then have the identities that hold in the range
o <t<oo,

. 5
f D(R)D(R)ddROPO[Ro]%e—Aho (B2)

and

)
—e0=0. (B3)

f D(R)D(R)d“RyPo[R,]
OR(1)

Let us begin with the initial condition
Po[Ro] = 8(Ry = Xy). (B4)

Evaluating the derivatives of A,, we obtain
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2560+ 128D _ i, (BS5)
ot
and
—i%ft):h(t), (B6)
where
G() =(R()x, (B7)
and
G(r) = <Ié(t))x0 (B8)

where the averages over R(f) and R(t) are in the range
to<t. We must now solve these equations to obtain the gen-
erating functional.

Using the initial condition R(z,)=0, we find that

GH=-i f i dh(7) = f ’ drg(,0)h(7) (B9)

and
t —_ A A
G(?) =X0+f di[2iDG(7) - ih(7)]
fo
t R _ t 00 _ _
=X0—if drh(7) +2Df dff dt'h(t")
1 to r
=X, + f drg(t,Dh(7) + f drC(t, (1),
fo fo
(B10)
where
gt t')=—i0(—1") (B11)
and
p— t « p— p—
C(t,t") =2Df d?f dr' 8t —t'). (B12)
1 T
The generating functional satisfies
. 8InZy(h,h.X,
G@t) = M (B13)
Oh(1)
and
81n Zy(h.h.X,
G(1) = M (B14)

Oh(r)

The generating functional solution to this set of equations
[Egs. (B9), (B10), (B13), and (B14)] is given by

061102-12



FUNDAMENTAL THEORY OF STATISTICAL PARTICLE...

In Zy(h,h,X,) = % f dt J dt' h(r)C(t,t Yh(t")

+ J dt f dt'h(n)g(t,t)h(t') + J dth(t)X,.

(B15)

The full generator requires averaging over the initial con-
ditions,

Zlh, fz]: f dRoPy[R,] e(1/2)h~C<h+h~g~I;+h~ig-R0
=6(1/2)h-c-h+h-g-/§f dRyP[RyJe" 0. (B16)

All of the equilibrium cumulants can be constructed from
Eq. (B12) as

t o
C(t,t')=25f dt_f ()
Iy T
_ t
=2Df dro(t' - 1)
‘o
p— t’ j— t
=2D0(t—t’)f d?+2D0(t’—t)f dr
) )
=2D0(t—1')(t' —15) +2DO(t" —1)(t — 1,).

(B17)

APPENDIX C: COLLECTIVE ¢ CORRELATIONS

We need to evaluate ¢-correlations in the noninteracting
case. We start with

Wo[H] = Tre"?, (C1)

which generates all ¢=(p,B) correlations. We proceed by
reintroducing the microscopic sources 4 and h and treating

Z()[H,h,ﬁ] = TreH"’Seh'R”;'é, (C2)

where

h-R= Jw dth(t)R(?). (C3)

0
Next, we express the ¢ in terms of R(¢) and R(t) as
(1) = ek (c4)

and
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¢p(1) == D[ (k; - R(1) + 6(0)K}) ,(1)]. (C5)

Let us introduce the operators

&p(l) — e—ikl(ﬁ/ﬁh(tl)) (C6)
and
ds(1) =b(1) (1), (C7)
where
13(1)=—le1 - +k§0(0)] (C8)
Oh(t,)
SO we may write
eH-</>eh-R+lAz-1A€ — eH-c?;eh-RHAz-I% (C9)

and

Zo[H,h i) = "7, 1), (C10)

where Zo[h,fz] was determined in Appendix B.

Taking functional derivatives, we can determine all of the
noninteracting cumulants of the complete set of densities ¢.
We have

GB,...,BP,...,p(l’ ,€,€+ 1, ,n)

— 5 Y 5 5 .o 5
C SH(1)  SHR(0) SH(€+1)  SH,(n)

XeH"f’el/Zh'C'heh'g""f d“RoPo[Ro)e™ 40| y_io

= (1) Pp(O) b€+ 1)+ py(n)
5 gU2h-Coh ghigei f dRyPo[Role" R0 ypico.
(C11)

All n-point cumulants have n factors of éﬁp and ¢ factors of b
corresponding to the number of B insertions,

GB»--,BP,---VP(I . ,€,€+ 1, ,I’l)

=b(1) - b(€) ésp(]) .. (Aﬁp(n)emh'c'heh'g-};
Xf d’RoPo[Role" 8 %0]jy. (C12)

Because the g?Jp(j) are translation operators, it is not difficult
to show that

d,(1) ... g, FIh()]=F[h(j) + L,()],  (C13)
where
L,(j)=—i> kd(t;—1,). (C14)
s=1

Thus, we have
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GB,...,Bp,...,p(l’ ,€,€+ 1, ,I’l)

= B(1) -+ B(£)e VUL ClhL,) (04T, gk

X f d'RoPo[Rylenris o, _p
—b(1)--- l;(g)e(1/2)Ln~C~LneL,,‘g‘hf d'RPo[RyJeb 0]

=1;(1)"'5(€)€N’1€L’fg'ﬁf d'RoPo[Ryle" R0,y (C15)

where we have defined

1
N,,:EL,,-C-LH. (C16)
Using the definition of l;, we similarly find that
b(j)elnsh = b, (j)elwsh, (C17)
where
b,(j) == D[k,L,(Dg(F-t;) - 6(0)k;]
2
= Dk; El k,6(t,—1;) — DO(0)k;
5=
=Dk; 2, kO(t,—1)). (C18)
s#j=1
In the average over initial conditions, we need
L, ig=—i>k, (C19)
s=1

and

f d“RyPo[R,]etn ¢ o = J ddROPO[RO]exp[— i(Z kS)RO]

s=1

= (2w)d5(2 ks> , (C20)

s=1

which enforces translational invariance in space. Finally, put-
ting this all together we have

GB,...,Bp,...,p(l’ ,€,€+ 1, ,n)

=pob(1) -+~ b(ﬁ)eN"(27T)d5(2 ks) . (C21)
s=1
The argument of the exponential contribution can be put
into a more symmetric form. Starting with N, given by Eq.
(C16) and inserting L, from Eq. (C14), we have
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1 n n
N,=- EE > kik;C(t;,t;).

i=1 j=1

(C22)

The zeroth-order correlation function for the Brownian
coordinates is given by Eq. (B17) as

C(t,1") =2D[ 0t —t')(t' —to) + O(¢' — 1) (t —10)],
(C23)

which, at equal times, reduces to

C(1,1) =2D(t - 1,). (C24)

In the zeroth-order density correlation functions we find the
quantity

1 n
N, =- EE kik,C(t,,1)) (C25)
ij

with the constraint that 2;k;=0. This quantity should be time
translationally invariant.
To see this, let us first define

Dij = Cii + CJ] - 2CU

=2D{1 0(1; - ) = 0t — 1))+ 1L 0(t; — 1) — O0(t; — 1)) ]}

=2D(t;— t))sgn(t; — ;) = 2D|t;— t}]. (C27)

Notice that this result holds if 7— r—1, in Eq. (C26).
We then have for the argument of the exponential for the
p—B correlation functions

1 n
an - _2 k,kJC(t,,tJ)
2%

1 n
=— 5(% klzczz + E k,k]C,])

i#j

1 < 1
=- _<2 ki2cii + 2 kik;=[Cii+ Cj; = Dij])
2\ iz 2

1

> kiij,-j>

21’#,‘

1 n n
== _<2 kizcii_ 2 kizcii -
2\ia i=1

—1
2#]'
For the special case of n=2, we have
N2=—5k%|t1 —t2|. (C29)
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FUNDAMENTAL THEORY OF STATISTICAL PARTICLE...

[1] By kinetic theory we mean the statistical dynamics of N clas-
sical particles. See G. Mazenko, Nonequilibrium Statistical
Mechanics (Wiley, New York, 2006) for a discussion of kinetic
theory including the modern correlation function approach.

[2] Brownian motion is interpreted here as a dynamics that is
noise driven. For an individual Brownian particle located at
position R acted upon by noise 7, one has R= 7. This is clearly
the continuum version of the random-walk problem.

[3] Field theory methods enter via the techniques for organizing
self-consistent perturbation theory in terms of the roles of ex-
ternal fields, cumulants, and irreducible vertex functions. The
fundamental reference is J. Zinn-Justin, Quantum Field Theory
and Critical Phenomena, 4th ed. (Clarendon, Oxford, 2002).
We henceforth refer to this reference as JZJ.

[4] Kinetic theory’s early history is briefly reviewed in G. Ma-
zenko, Equilibrium Statistical Mechanics (Wiley, New York,
2000), p. 101.

[5] By self-consistency we mean that the correlation and response
functions of interest satisfy kinetic equations where the colli-
sion kernels, self-energies, or memory functions can be ex-
pressed in terms of the full physical correlation and response
functions. In the areas of critical dynamics and the liquid-glass
transition, this is essential in generating symmetry breaking
solutions. This can generate a multiplicity of solutions not
available in bare perturbation theory.

[6] Boltzmann’s Stosszahlansatz is a prime example of a decou-
pling approximation. In the collision integral of the Boltzmann
equation he assumed that the two-particle distribution function
factorizes into a product of two one-particle distributions,
fa—=fif1-

[7] L. Boltzmann, Math-Naturwiss, KI 66, 275 (1872); English
translation in S. G. Brush, Kinetic Theory (Pergamon, New
York, 1966), Vol. 2.

[8] Besides Boltzmann’s establishment of the H-theorem, there are
many examples of decoupling factorization approximations
contributing to advancing our understanding of a phenomena.
Examples include, long-time tails in fluids. M. H. Ernst, E. H.
Hauge, and J. M. J. van Leeuwen, Phys. Rev. Lett. 25, 1254
(1970); K. Kawasaki, Phys. Lett. A 32, 379 (1970); Prog.
Theor. Phys. 45, 1691 (1971); Y. Pomeau and P. Resibois,
Phys. Rep. 19, 63 (1975); and dynamic critical phenomena:
M. Fixman, J. Chem. Phys. 36, 310 (1962); L. P. Kadanoff and
J. Swift, Phys. Rev. 166, 89 (1968); K. Kawasaki, Ann. Phys.
(N.Y.) 61, 1 (1970).

[9] The role of mode-coupling theory has been characterized by E.
Zaccarelli, G. Foffi, F. Sciortino, P. Tartaglia, and K. A. Daw-
son, Europhys. Lett. 55, 157 (2001). In the weak supercooling
regime, detailed predictions for the space and time dependence
of the long-time decay of density correlations have been for-
mulated using the ideal mode-coupling theory MCT, one of the
first approaches to identify the existence of the crossover tem-
perature. The agreement of MCT predictions with experimen-
tal findings and molecular dynamics simulations both for
atomic and molecular models supports the view that MCT is
indeed able to describe the slow dynamics in weak super-
cooled states.

[10] W. Goetze, in Liquids, Freezing, and Glass Transition, edited
by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-
Holland, Amsterdam, 1991); and S. Das, Rev. Mod. Phys. 76,
785 (2004).
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[11] The important idea of an ergodic-nonergodic (ENE) transition
exists independent of whether it conforms to the details of
mode-coupling theory. The defining property of an ENE tran-
sition is that as a function of a control parameter there is cross-
over from an ergodic phase [lim, .. G,,(¢,1)=0] to a region
with nonergodic kinetics [lim, .. G ,,(q,1)=A%(g)>0].

[12] Kinetic theory led to the early development of MCT. See for
example G. F. Mazenko, Phys. Rev. A 7, 209 (1973); L.
Sjogren and A. Sjolander, J. Phys. C 12, 4369 (1979); E.
Leutheusser, Phys. Rev. A 29, 2765 (1984); U. Bengtzelius,
W. Goetze, and A. Sjolander, J. Phys. C 17, 5915 (1984);
More recent efforts to make microscopic contact (derive)
mode-coupling theory are reflected in Ref. [9] where they
comment: “Despite its remarkable practical success, the pres-
ence of apparently uncontrolled approximations in the deriva-
tion of the MCT equations makes it difficult to gain insights
into possible improvements of the theory. The aim of this pa-
per is to present a new derivation of the ideal MCT equations,
starting from the microscopic equations for the evolution of
the density (Newtons equations) and writing them as a linear
generalized Langevin equation. A formally exact expression
for the memory kernel is derived and, on making the approxi-
mation that the noise in the Langevin equation is Gaussian, the
standard MCT equations are obtained. Note that the proposi-
tion of Gaussian noise implies that the density fluctuations are
also Gaussian.”; Similarly in J. Wu and J. Cao, Phys. Rev. E
67, 061116 (2003) the authors make contact with MCT using a
decoupling approximation which treats the density as a gauss-
ian variable. Their characterization of the status of the theory
is: “Although successful, the standard mode-coupling approxi-
mation has not been obtained in a systematic and straightfor-
ward fashion. A simple understanding of mode-coupling ef-
fects and their validity for describing low-temperature
dynamics is still lacking. In this paper, we explore an alterna-
tive route to obtaining ideal mode-coupling equations via the
direct Gaussian factorization of the multiple-point correlation
function in the memory kernel.”

[13] Field theory models for the glass transition are treated in S. P.
Das and G. F. Mazenko, Phys. Rev. A 34, 2265 (1986); Phys.
Rev. E 79, 021504 (2009); G. F. Mazenko, ibid. 78, 031123
(2008); D. S. Dean, J. Phys. A 29, L613 (1996); K. Kawasaki
and S. Miyazima, Z. Phys. B: Condens. Matter 103, 423
(1997); K. Miyazaki and D. R. Reichman, J. Phys. A 38, 1343
(2005); G. Biroli and J.-P. Bouchaud, Europhys. Lett. 67, 21
(2004); A. Andreanov, G. Biroli, and A. Lefevre, J. Stat.
Mech.: Theory Exp. (2006), P07008; B. Kim and K. Kawasaki,
J. Stat. Mech.: Theory Exp. (2008), P02004; A. Crisanti, Nucl.
Phys. B 796, 425 (2008) .

[14] In the case of Smoluchowski dynamics it has been shown by
B. Cichocki and W. Hess, Physica A 141, 475 (1987) that the
memory function can be rewritten in terms of an irreducible
memory function. This argument was generalized by K. Ka-
wasaki, ibid. 215, 61 (1995). For our purposes here the point
is that there is not a unique memory function form at lowest
nontrivial order in perturbation theory. Thus for a variety of
models one can rearrange perturbation theory to have model
which supports an ENE transition. One must go to higher order
to check the self-consistency of an ENE transition.

[15] The theory we develop here has great potential for treating
higher-order correlation functions. The reason why this is in-
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teresting is because there has been a significant amount of
work associated with the concept of dynamic heterogeneity,
e.g., S. C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000). Out
of this research has come the idea that the order parameter for
the structural glass transition problem is a time and space dis-
placed product of particle densities, p(r,7)p(r+ry,t+7). The
hypothesis is that the associated order parameter correlation
function Cy(r,1)=(p(0,0)p(0+ry, )] p(r,0)p(r+ry,t+7)])
scales with a length € as one goes near the liquid-glass transi-
tion such as Cy,(r,))=F(r/€)/F9 27 where 7 is a critical
index, the length € blows up at the transition {=~¢€", and
e=T-T, There is both experimental and numerical support for
this hypothesis [See L. Berthier, Phys. Rev. E 69, 020201
(2004).]; Our interest here is the theoretical work of Biroli and
Bouchaud in Ref. [13(f)]. Biroli and Bouchaud sketched a field
theoretical calculation of C,(r,z) compatible with mode-
coupling theory. This calculation leads to a diverging length
scale ¢ at the ideal glass transition. They find an upper critical
dimension of six in their calculation. This work is very pro-
vocative since at the level of the dynamic structure factor it is
well known that MCT does not contain a large length as one
approaches the ergodic-nonergodic transition. Biroli and
Bouchaud suggest that one must dig deeper into the theory,
look at the four-point quantity Cy, to find this diverging length.
However this calculation paints a picture rather than gives the
results of a rigorous calculation. One of the goals for the
theory developed here is to connect the collective behaviors
found at the two-point level to the behavior of the three- and
four-point density correlation functions.

[16] Reversible terms in generalized Langevin equations are con-
structed in a Poisson bracket structure, see S. Ma and G. Ma-
zenko, Phys. Rev. B 11, 4077 (1975).

[17] Purely dissipative Langevin systems have long been used to
describe the order parameter dynamics in magnetic and super-
fluid systems. There is a balance between the force due to the
gradient of the effective free energy and the persistent noise in
a thermalized system.

[18] The path-integral description of classical Newtonian dynamics
is developed in a series of sophisticated papers by Gozzi and
collaborators. E. Gozzi, Phys. Lett. B 201, 525 (1988); E.
Gozzi, M. Reuter, and W. D. Thacker, Phys. Rev. D 40, 3363
(1989); E. Deotto, E. Gozzi, and D. Mauro, J. Math. Phys. 44,
5937 (2003); E. Gozzi and M. Reuter, Chaos, Solitons Fractals
4, 1117 (1994). Their interest is in the symmetry structure of
the coupled spaces when one allows the classical system to be
coupled to a system of ghost fermions. See below.

[19] Fokker-Planck dynamics in modern terms has two complemen-
tary meanings. For systems of particles governed by phase-
space coordinates and with a damping component in their dy-
namics the equation satisfied by the associated probability
distribution is called a Fokker-Planck equation. As pointed out
by Lax and Zwanzig [20], the associated equation of motion
for the phase-space variables is referred to as a Langevin equa-
tion. Subsequently the transition generally from a stochastic
equation of motion to the time evolution of the associated
probability description is called going from a generalized
Langevin equation description to generalized Fokker-Planck
description. See Ref. [16].

[20] Smoluchowski dynamics has become identified with the over
damped kinetics in colloidal systems where the momenta be-
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come equilibrated much faster than the positions and one has a
dynamics which is subsequently organized in terms of the po-
sitions. This is the point of view taken by A. Einstein, Ann.
Phys. 322, 549 (1905) in his seminal treatment of Brownian
motion; M. V. Smoluchowski, Phys. Z. 17, 557 (1916) , still
working in coordinate space, generalized Einstein’s work to
include external forces acting on the Brownian particles. These
results were valid for long times P. Langevin, Compt. Rend.
146, 530 (1908) shortly thereafter developed the Langevin
equation description for the momenta of the Brownian particle;
Working in terms of probability distributions in velocity space,
A. D. Fokker, Ann. Phys. 43, 812 (1914); and M. Planck,
Sitzungsber. K. Preuss. Akad. Wiss. 23, 324 (1917) , estab-
lished the simplest form of the Fokker-Planck equation; These
works were tied together by a treatment of position and mo-
mentum by O. Klein, Ark. Mat., Astron. Fys. 16, 5 (1922);
This work was repeated by H. Kramers, Physica 7, 284
(1940); This field has been famously reviewed by G. E. Uhlen-
beck and L. S. Ornstein, Phys. Rev. 36, 823 (1930); S. Chan-
drasekhar, Rev. Mod. Phys. 15, 1 (1943); M. Lax, ibid. 32, 25
(1960); J. Phys. Chem. Solids 14, 248 (1960); Rev. Mod.
Phys. 38, 541 (1966); The modern, linear response, correlation
function treatment of Brownian motion is due to J. L. Lebow-
itz and E. Rubin, Phys. Rev. 131, 2381 (1963); The associated
Fokker-Planck description for more than one Brownian par-
ticle was developed by J. Deutch and I. Oppenheim, J. Chem.
Phys. 54, 3547 (1971); The extension of the multiple particle
Fokker-Planck description into the over damped Smolu-
chowski regime was carried out by T. J. Murphy and J. L.
Aguirre, ibid. 57,2098 (1972) R. Zwanzig, Adv. Chem. Phys.
15, 325 (1969) using results reviewed by M. Lax, showed the
equivalence of the Fokker-Planck and Langevin descriptions;
Important papers treating the many-particle Smoluchowski dy-
namics system include B. J. Ackerson, J. Chem. Phys. 64, 242
(1976); W. Dieterich and I. Peschel, Physica A 95, 208 (1979).

[21] A modern introduction to the equilibrium theory of fluids is

given by J.-P. Hansen and I. R. McDonald, Theory of Simple
Liquids, 3rd ed. (Academic Press, New York, 2006). The static
theory of liquids includes thermodynamics as well as structure.
The static structure is characterized by the pair distribution,
p’g(r) =3, =10(r=R;)8(R))). An interesting contemporane-
ous treatment of this material is given by The Equilibrium
Theory of Classical Fluids by H. L. Frisch and J. L. Lebowitz,
Benjamin, 1964. Of particular interest are the two reviews, The
Pair Distribution in Classical Statistical Mechanics by J. K.
Percus and Cluster Expansions for Classical Systems in Equi-
librium by G. Stell.

[22] Graphical methods were introduced into the treatment of clus-

tering in equilibrium systems in a series of papers by Mayer. J.
E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and P. G.
Ackermann, ibid. 5,74 (1937); J. E. Mayer and S. F. Harrison,
ibid. 6, 87 (1938); J. E. Mayer and E. Montroll, ibid. 9, 2
(1941); and E. Montroll and J. E. Mayer, ibid. 9, 626 (1941).
This work showed how a primitive density expansion could be
used in dense systems.

[23]J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935); J. Yvon, Actu-

alités Sci. Ind. 203 (1935); H. D. Ursell, Proc. Cambridge Phi-
los. Soc. 23, 685 (1927); and M. Born and H. S. Green,
A General Kinetic Theory of Liquids (Cambridge University
Press, Cambridge, England, 1949).


http://dx.doi.org/10.1016/S0022-3093(00)00225-8
http://dx.doi.org/10.1103/PhysRevE.69.020201
http://dx.doi.org/10.1103/PhysRevE.69.020201
http://dx.doi.org/10.1103/PhysRevB.11.4077
http://dx.doi.org/10.1016/0370-2693(88)90611-9
http://dx.doi.org/10.1103/PhysRevD.40.3363
http://dx.doi.org/10.1103/PhysRevD.40.3363
http://dx.doi.org/10.1063/1.1623334
http://dx.doi.org/10.1063/1.1623334
http://dx.doi.org/10.1016/0960-0779(94)90026-4
http://dx.doi.org/10.1016/0960-0779(94)90026-4
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1103/RevModPhys.15.1
http://dx.doi.org/10.1103/RevModPhys.32.25
http://dx.doi.org/10.1103/RevModPhys.32.25
http://dx.doi.org/10.1016/0022-3697(60)90237-7
http://dx.doi.org/10.1103/RevModPhys.38.541
http://dx.doi.org/10.1103/RevModPhys.38.541
http://dx.doi.org/10.1103/PhysRev.131.2381
http://dx.doi.org/10.1063/1.1675379
http://dx.doi.org/10.1063/1.1675379
http://dx.doi.org/10.1063/1.1678535
http://dx.doi.org/10.1002/9780470143605.ch17
http://dx.doi.org/10.1002/9780470143605.ch17
http://dx.doi.org/10.1063/1.431957
http://dx.doi.org/10.1063/1.431957
http://dx.doi.org/10.1016/0378-4371(79)90052-9
http://dx.doi.org/10.1063/1.1749933
http://dx.doi.org/10.1063/1.1749934
http://dx.doi.org/10.1063/1.1750208
http://dx.doi.org/10.1063/1.1750822
http://dx.doi.org/10.1063/1.1750822
http://dx.doi.org/10.1063/1.1750964
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1017/S0305004100011191
http://dx.doi.org/10.1017/S0305004100011191

FUNDAMENTAL THEORY OF STATISTICAL PARTICLE...

[24] Graphical Summation techniques were introduced by R. J.
Riddell and G. E. Uhlenbeck, J. Chem. Phys. 21, 2056 (1953);
G. W. Ford and G. E. Uhlenbeck, PNAS 42, 122 (1956); 42,
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[39] Ghost fermions are introduced into the analysis of stochastic
dynamics with the realization that the Jacobian associated with
the change of primary field from the noise to an order param-
eter field occurs in the numerator of the generating functional
central to the development of the theory. One also notices that
the trace over a Gaussian distribution of fermions is equal to
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JZJ [3]. These are the ghost fermions and eliminating the de-
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[40] Once one has the ghost fields as described in Ref. [39] in the
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