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We analyze the phonon spectra of periodic structures formed by two-dimensional mixtures of dipolar col-
loidal particles. These mixtures display an enormous variety of complex ordered configurations �J. Fornleitner
et al., Soft Matter 4, 480 �2008��, allowing for the systematic investigation of the ensuing phonon spectra and
the control of phononic gaps. We show how the shape of the phonon bands and the number and width of the
phonon gaps can be controlled by changing the susceptibility ratio, the composition, and the mass ratio
between the two components.
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Materials with a band gap in their spectrum of transmitted
sound waves have been the focus of intensive research re-
cently. Most often, these “phononic crystals,” termed in anal-
ogy to the more familiar photonic crystals, are analyzed and
fabricated on the basis of macroscopic approaches: following
methods from scattering theory, materials with a periodic
modulation in their elastic properties and/or density are as-
sembled, so that mismatches in the speed of sound and de-
structive interference lead to the desired gaps �1–4�. Instead
of treating the whole system as a continuous medium with
periodically modulated elastic moduli, we employ a micro-
scopic approach based on interparticle interactions, which
directly determine the particle motions. The latter uniquely
determine both the ground-state configuration of the system
and its elementary excitations above the same, i.e., the
phonons. A class of materials where this microscopic ap-
proach is particularly fruitful are colloidal crystals. In such
systems, the interactions are tunable and versatile. It has
been shown that the dispersion curves of two-dimensional
colloidal crystals can be shaped and controlled by suitable
external substrate potentials �5–7�. Here, we focus on sys-
tems that exhibit phononic gaps without the presence of ex-
ternal fields, namely, mixtures: the nontrivial unit cells of
their ground states give rise to optical branches in the pho-
non band structure �PBS�, thus, opening the possibility to
induce gaps by suitable adjustments in the interactions. Here,
we explore the possibilities to tune the PBS’s of a binary
mixture of dipolar colloids via changes in the susceptibility
ratio and composition.

Binary dipolar monolayers are readily available to experi-
ments �8–13� and exhibit a rich wealth of stable ordered
structures �14,15�. Experimental realizations employ super-
paramagnetic particles of different susceptibilities �, which
are trapped at the interface of a pendant water droplet to
ensure a planar geometry �13�. An external magnetic field B
applied perpendicular to the water-air-interface induces mag-
netic moments in the colloidal particles parallel to the exter-
nal field, Mi=�iB, with i=A ,B labeling the particle species.
We emphasize that here the external field serves only as a
means to influence the two-body interactions in the Hamil-
tonian and does not act on the systems as a one-body poten-

tial, as is the case of laser beams in Refs. �5–7�. Thus, the
structures form naturally in the system by means of self-
assembly. For the sake of simplicity, we assume that the
physical size of the two-particle species is the same and
given by their common diameter �, the disparity in their
interactions arising from different degrees of doping with
ferromagnetic material, such as Fe2O3. Setting mi=�i /�A
�1, the ideal dipole-dipole repulsion acting in the mixture
can be written as �ij�x�=�mimj /x3, i , j=A ,B, with x=r /�
and �=�0�A

2 �B�2 / �4��3�. The ground state is, thus, deter-
mined by the asymmetry in dipole strength, given by m
=�B /�A	1, and by the composition of the mixture, C
=nB / �nA+nB�, with nA�B� being the number of strong �weak�
dipoles per unit cell.

Colloids in solution obey Langevin dynamics and their
full equations of motion include the interparticle forces, the
random collisions with the solvent and hydrodynamic inter-
actions �16�, involving the masses of the particles, the fric-
tions constants and the solvent properties via the Navier-
Stokes equations. Accordingly, the full dynamics of colloidal
crystals have been thoroughly analyzed by theory and ex-
periment in the past �16–19�. Here, we focus only on the
excitation spectrum of the crystal, which is expressed in
terms of the dispersion relation 
�q�, where q denotes a
wave vector in the first Brillouin zone. Although oscillations
in a colloidal crystal are overdamped, the quantities 
�q� are
still experimentally measurable by means of the equipartition
theorem �5�, a strategy that has been successfully applied to
the one-component version of the system at hand �11�.

Accordingly, we apply harmonic lattice theory �20,21�
and obtain the dispersion curves 
�q� by solving the eigen-

value equation 
�q�c�i=���i�D̃�i,��i��q�c��i�, where D̃�i,��i��q�
is the Fourier transform of the dynamical matrix
D�i,��i��n ,n��, defined as:

D�i,��i��n,n�� =
�2��rN�

�un�i � un���i�
�uN=0. �1�

Here, the index n is used to label the unit cell in the lat-
tice and � runs over all particles within one unit cell,
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�=1, . . . ,nA+nB, with un� being the displacement of the �th
particle in the nth unit cell of the lattice from its equilibrium
position. Finally, the index i denotes the Cartesian compo-
nents, i=x ,y, and ��rN� is the total potential energy of the
crystal at the harmonic approximation. The dimensionless
eigenvalues 
�q��2 /� are determined for q values along
those axes of the first Brillouin zone that link the points of
high symmetry within the same. For the case of Newtonian
dynamics, and for typical values of B and colloidal proper-
ties �13�, the 
�q� �and the associated gaps� correspond to
frequencies of 1–50 kHZ.

In addition to affecting the ground states, the susceptibil-
ity ratio m can be used to fine-tune the appearance of a PBS
corresponding to a given ground state, as the stable configu-
rations are robust against small variations in m. In the fol-
lowing discussion, we focus on mixtures with C�1 /2, as the
complexity in the emerging patterns increases with the num-
ber of weak dipoles in the system and the PBS’s reflect re-
currences in the ground states.

We start by demonstrating the influence of the suscepti-
bility ratio m on the PBS for mixtures with a composition of
C=1 /2. We vary the susceptibility ratio in a range from m
=0.003 to m=0.41 and calculate the PBS’s for the ground
states predicted in Refs. �14,15�. In Fig. 1, we show the
phonon spectra for C=1 /2 and increasing susceptibility ratio
from top to bottom �m=0.018, 0.04, 0.18, and 0.41�. The
corresponding ground states, together with their first Bril-
louin zones and the path along which the PBS’s were deter-
mined, are depicted in Fig. 1 as well. At the chosen compo-
sition, the dipolar mixture develops three different types of
ground states depending on m. For very low m values, the
stronger dipoles form a hexagonal lattice unaffected by the
presence of the weaker species, the latter arranging them-
selves in lanes and occupying interstitial sites. The associ-
ated PBS is characterized by a nonuniform distribution of
dispersion curves: the topmost four branches span a much
broader eigenvalue range than the remaining four modes at
the bottom of the band structure. In addition, the “unfurled”
upper branches are separated from the compressed lower re-
gion by a distinctive gap, see Fig. 1�a�. Small increases in the
susceptibility ratio m leave the ground state unchanged, de-
spite of the fact that interactions involving the weaker spe-
cies intensify �14,15�. In the PBS, a small increase in m is
reflected by a widening of the gap and a gradual expansion
of the lower dispersion curves. Above a certain threshold in
m, the weak dipoles are able to distort the hexagonal pattern
of their stronger counterparts. This decrease in symmetry in
the ground state is also reflected in the PBS, see Fig. 1�b�. At
susceptibility ratios between m=0.06 and 0.18, a regular
square lattice is predicted to be the energetically most favor-
able arrangement of dipoles �15�. In the PBS’s associated to
the quadratic configuration, the four dispersion curves cover
the eigenvalue range in a uniform fashion: all branches are
fully unfurled and no gaps occur. Variations in the suscepti-
bility ratio that leave the ground-state unchanged result in a
stretching of the PBS without altering its general appearance.
As an example, Fig. 1�c� shows the PBS of the square lattice
formed at m=0.18. For m�0.28, the ground state of the
binary mixture changes from the regular square lattice to the
H2 structure �22�, which consists of distorted hexagons of
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c)
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FIG. 1. �Color online� Phonon band structures for a binary mix-
ture of dipolar colloids with a composition of C=1 /2 and suscep-
tibility ratios of �a� m=0.018, �b� m=0.04, �c� m=0.18, and �d�
m=0.28. Band gaps are marked by shaded regions; dashed vertical
lines mark the corners of the reduced path of q values. The corre-
sponding ground-state is depicted on the top left of each band struc-
ture, with the species of stronger �weaker� dipoles given by yellow
�red� spheres and two lattice vectors marking the chosen unit cell.
The sphere size reflects the dipole strength. On the bottom left of
each band structure, a cell of the reciprocal lattice with its first
Brillouin zone, marked by broken lines, is shown. The path of q
values along which the band structures were determined, is indi-
cated by a full line.
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strong dipoles accommodating two particles of the weaker
species. The PBS’s of the H2 lattice are again characterized
by the occurrence of distinct eigenvalue bands. The number
of these bands and the width of the gaps separating them
from each other are tunable via the susceptibility ratio: at
m=0.28, i.e., close to the transition from the square to the H2
lattice, three gaps are observed, see Fig. 1�d�.

At higher concentrations of weak dipoles, more exotic
particle arrangements with a low degree of symmetry appear
among the ground states. For the PBS’s, the trends described
above become more pronounced. In Fig. 2 we show selected
PBS’s obtained for mixtures with C=7 /9 and susceptibility
ratios in the range from m=0.003 to m=0.28. At small values
of m, the non-uniform distribution of dispersion curves is

b)
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c)

d)

e)

FIG. 2. �Color online� Phonon band structures for a binary mix-
ture of dipolar colloids with a composition of C=7 /9 and sus-
ceptibility ratios of �a� m=0.003, �b� m=0.018, �c� m=0.04, �d�
m=0.09, and �e� m=0.28.
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FIG. 3. �Color online� Phonon band structures for a binary mix-
ture of dipolar colloids with a composition of C=4 /5 and m values:
�a� m=0.003, �b� m=0.018, �c� m=0.09, �d� m=0.18.
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recovered. The four curves at the top of the PBS again cover
a much broader eigenvalue range than the rest of the
branches and a gap separating the compact from the ex-
tended dispersion curves is observed, even at very low val-
ues of m. The susceptibility ratio can again be used to tune
the gap width, see Figs. 2�a� and 2�b�. In contrast to the
previous case, C=1 /2, the distortion of the underlying hex-
agonal lattice induced by an increase of m, does not destroy
the separation of the PBS into distinct bands. A further in-
crease in m opens, on the contrary, additional gaps, first, by
causing branches from the lower, compressed region to de-
tach and then, with the pattern of weak dipoles approaching
a circular arrangement, by a progressive flattening of the
topmost curves, as the 
�q� decreasingly depend on the di-
rection of propagation in the crystal �see Figs. 2�c� and 2�d��.
At m=0.09, Fig. 2�d�, a maximum of five distinct bands is
reached. If the susceptibility ratio is increased above a cer-
tain threshold, i.e., m�0.18, the ground state of the mixture
undergoes a transition to lane-like arrangements. This change
forces all gaps to close and leads to a uniform distribution of
well modulated dispersion curves, see Fig. 2�e�, reflecting
the growing similarity of the two species and mirroring the
dominant hexagonal structure of the crystal.

The general trends become even clearer in the sequence
of PBS’s obtained at C=4 /5, see Fig. 3, for PBS calculated
at m=0.003, 0.018, 0.09, and 0.18. The band structures at
low values of m are characterized by two distinct bands, the
width of the gap separating them is well tunable via the
susceptibility ratio, Figs. 3�a� and 3�b�. At intermediate val-
ues of m, the dispersion curves flatten out and multiple gaps
appear between the less modulated branches, see Figs. 3�c�
and 3�d�, which vanish again with the onset of lane forma-
tion observed at high-susceptibility ratios.

Thus far, we have not considered a possible mass asym-
metry of the two species in our calculations. This is done
because the colloidal systems that allow for an experimental

realization of our findings are mostly Brownian systems, in
which the mass of the particles is rendered irrelevant by
overdamping �5,11�. Nevertheless, an experimental setup in
which the colloidal particles are confined between two par-
allel plates is readily available �23�, and evaporation of the
solvent from the cell would lead to Newtonian dynamics for
the colloids. Including the particle masses M� by multiplying

expression Eq. �1� for the dynamical matrix with 1 /�M�M��,
we can easily switch to Newtonian systems in our theoretical
approach and gain the mass ratio M =MB /MA as an addi-
tional parameter to tune the PBS’s with. In ongoing investi-
gations we have found that mass asymmetry �as it occurs, for
instance, in dusty plasmas� enhances the effects described
above: by lowering M, the topmost 2nA branches can be
decoupled from the rest of the band structure and shifted to
higher eigenvalues, thus opening a gap of variable width. In
addition, the flattening of dispersion curves gets more pro-
nounced with increasing mass-asymmetry, so that even com-
pletely flat branches can be induced on the PBS’s.

In summary, we have investigated the possibility to con-
trol the PBS’s of a dipolar binary mixture via the parameters
determining the interactions and the ground state of the sys-
tem. By calculation of the dispersion curves for the stable
particle arrangements, we could show that, for systems with
a majority of weaker dipoles, multiple gaps can be opened by
suitable adjustments in the susceptibility ratio m. In addition,
remarkably flat branches were observed in the PBS featuring
multiple gaps. Our results are easily verifiable in experimen-
tal setups that employ two-dimensional binary magnetic col-
loids, where dispersion curves can be measured by means of
the equipartition theorem �5,11�.
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