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We show that the relative entropy, Srel, suggests a fundamental indicator of the success of multiscale studies,
in which coarse-grained �CG� models are linked to first-principles �FP� ones. We demonstrate that Srel inher-
ently measures fluctuations in the differences between CG and FP potential energy landscapes, and develop a
theory that tightly and generally links it to errors associated with coarse graining. We consider two simple case
studies substantiating these results, and suggest that Srel has important ramifications for evaluating and design-
ing coarse-grained models.
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The development of multiscale, coarse-grained �CG�
physiochemical models is central to many studies of soft
matter, driven by the need for models and tractable simula-
tions at supra-atomic scales �1–5�. Such has long been the
spirit of simple models of spin systems, fluids, polymers, and
biomolecules �6–8�. More recent efforts have spawned so-
phisticated numerical coarse-graining algorithms for opti-
mizing pseudomolecular models that enable larger scale
simulations �9–11�.

Despite such numerical advances, missing is a central,
fundamental formalism for the physics of multiscale prob-
lems: how one quantifies the relevance of arbitrary CG mod-
els to “first-principles” �FP� interactions and how corre-
sponding CG errors reflect emergent features in FP driving
forces. As a basic task, consider a CG molecular model de-
signed to mimic a reference FP one, described by an arbitrary
set of fundamental interactions. We propose that errors in CG
model’s ability to replicate the equilibrium FP properties are
tied to a single statistical-thermodynamic quantity, the rela-
tive entropy,

Srel = �
�

pFP���ln� pFP���
pCG�M����� �1�

Here, p denotes ensemble probabilities and the summation
proceeds over all configurations � of the FP system; M is a
mapping function that gives the CG microstate correspond-
ing to a FP one. We introduced Srel for multiscale purposes in
a previous paper �12�; via a likelihood approach, we argued
that the relative entropy measures information lost upon
coarse graining. Based on the working assumption that the
relative entropy should be at a minimum for optimal CG
models, we developed a coarse-graining methodology that
we later used to create spherically symmetric models of wa-
ter �12,13�. We also found that Srel-minimization recovers
some important principles in statistical physics �e.g., the
variational mean-field principle and the uniqueness theorem�
�12�, yet the physical significance and generality of this in-
formatic property has remained unclear.

Here, we now rigorously show that Srel plays a more
physical role in multiscale studies: it measures the Hamil-
tonian fluctuations associated with coarse graining, and more
practically, it systematically predicts the errors due to coarse
graining in many system properties. We show this by devel-

oping a thermodynamiclike framework for multiscale phys-
ics centered around Srel. To test this theory, we examine two
very simple but instructive case studies, dealing with the
ideal gas and lattice gas, in which interactions rather than
degrees of freedom are coarse grained. Both cases confirm
that the relative entropy signals errors in the ability of the
CG descriptions to capture true FP behavior, providing evi-
dence for its basic role in coarse graining.

Theory. We first develop a basic formalism for multiscale
thermodynamics in the canonical ensemble using Srel �14�.
Substituting the canonical configurational probabilities �12�,

Srel = ��UCG − UFP	FP − ��ACG − AFP� + Smap �2�

where U is the potential energy, A the free energy, and �
=1 /kBT. Smap is the log of the number of FP configurations
mapping to a single CG configuration, a property rigorously
independent of either Hamiltonian and temperature �we fur-
ther assume it is constant in phase space�.

Equation �2� can be reformulated using standard free en-
ergy perturbation �15� to admit an instructive �and numeri-
cally more convenient� expression based on averages alone,

Srel = − ��	FP + ln�e�	FP = ln�e�−��	FP	FP �3�

Here, ����=�
UFP���−UCG�M����� is simply a dimension-
less potential energy difference between a given FP configu-
ration and a corresponding CG one. If � is bounded through-
out phase space, we can gain further insight by assuming that
� is Gaussian distributed, yielding

Srel �
1

2
���2	FP − ��	FP

2 � . �4�

Thus, an important interpretation emerges: Srel measures the
fluctuations of the difference between the two potential en-
ergy landscapes; as an approximation, it is just half of the
variance. For perfect replication the fluctuations vanish, but
they intensify as differences in ensemble probabilities grow.
The above equation is also retrieved via a cumulant expan-
sion of Eq. �3�, rendering the Gaussian approximation valid
for low Srel. In addition, Eq. �4� suggests that Srel is a linear
combination of the variances and covariance of the FP and
CG potential energies �with 1

2�2 as a prefactor�. Note that for
�→0, Srel becomes inversely proportional with the square of
the temperature, indicating that CG models can better repli-
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cate FP ones at higher temperatures, irrespective of other
state variables.

Bearing in mind that Srel fundamentally measures differ-
ences in CG and FP energy landscapes, we proceed to show
that it is also an indicator of “replication errors” in various
system properties. Given an arbitrary state function or aver-
age W, we define its replication error as Werr
WFP−WCG; in
the following, we give specific cases for such errors. Con-
sider a CG system whose potential contains adjustable pa-
rameters 
�� to be optimized so as to minimize replication
errors. Differentiation of Eq. �2� by some � �appearing in
UCG and ACG� yields

� �UCG

��
�

err

� �UCG

��
�

FP
− � �UCG

��
�

CG
=

1

�

�Srel

��
. �5�

This error obviously vanishes for all parameters at the rela-
tive entropy minimum, Srel

� =Srel�
�=����, which is the case
for Srel-optimized models. Normally, UCG can be expressed
as a linear combination of component functions with ener-
getic coefficients; using Eq. �5�, the following then holds,

�UCG	err
� 
 �UCG	FP

� − �UCG	CG
� = 0 �6�

which is true even without the optimization of any nonlinear
parameters. This observation, together with Eq. �2�, gives

Aerr
� − �U	err

� = �Srel
� − Smap�/� , �7�

where Aerr
AFP−ACG and �U	err
�UFP	FP− �UCG	CG. This
important result represents the multiscale analogy of the con-
ventional Legendre transform, only instead involving errors
in thermodynamic potentials. This suggests an elementary
multiscale formalism for errors paralleling traditional ther-
mal physics, in which the fundamental equation stems from
the relative entropy rather than the thermal entropy. Note that
Smap simply accounts for trivial errors associated with pos-
sible removal of degrees of freedom.

Equation �7� provides a basis for relating errors in other
properties. For optimal CG models, one can connect the di-
mensionless derivative y

�srel

�y , for any arbitrary state variable
y, to coarse-graining errors in a corresponding dimensionless
response function. For y=�, direct differentiation shows the
response function is the dimensionless heat capacity, c
=CV /kB. For y=�, where � is density, a Maxwell relation
shows the response function is the dimensionless pressure
coefficient, �= ��P /�T�V /kB�. In both cases, the errors are
tied to the per-particle relative entropy derivatives according
to

cerr
� = �

�srel
�

��
, �err

� = �
�srel

�

��
. �8�

These connections suggest that srel systematically signals er-
rors in the fluctuations of various properties of CG models,
as measured by response functions.

We end this discussion by considering the replication er-
ror associated with the average dimensionless energy differ-
ence, ��	err= ��	FP− ��	CG. � measures differences in the FP
and CG energy landscapes, and its error quantifies how well
the CG ensemble probabilities give an accurate FP sampling
of these. Employing reweighting with the Gaussian assump-

tion, we find Srel�− 1
2 ��	err. For an optimized CG model, Eq.

�6� can be substituted to obtain

�UFP	err
� 
 �UFP	FP − �UFP	CG

� � − 2Srel
� /� . �9�

Thus, while Srel optimization guarantees that �UCG	 will be
the same in either ensemble, there is a bound for the repro-
duction of �UFP	, which can be predicted by the relative en-
tropy. One way to interpret this approximate relation is that
the intrinsic deficiency of an optimal CG model stems in its
replication error of the average FP potential energy. Overall,
the connection between Srel and a number of specific repli-
cation errors �Eqs. �7�–�9�� might suggest that this single
quantity is more generally sufficient to predict many errors
from coarse graining. We proceed to address this idea with
two basic case studies.

Ideal gas. The venerable ideal-gas model provides an ap-
proximate picture of real gaseous phenomena. Can the rela-
tive entropy measure the validity of this approximation? We
let a nonideal gas be a “first-principles” system and an ideal
gas be its “coarse-grained” version. There are no interaction
parameters for the ideal gas, yet Eq. �7� still holds since
UCG=0. In fact, Srel here is identical to the excess entropy,
which thus emerges as a special case of this multiscale for-
malism in which all interactions are coarse-grained away.

We employ two models of nonideal gases, the square-well
�SW� and Redlich-Kwong �RK� �16�. The dimensionless vol-
ume of the square-well, �, is set at 4 throughout, and for the
SW model we invoke virial truncation at the second coeffi-
cient. The per-molecule SW and RK relative entropies are
then found by Eq. �7� to be srel

SW=���1−e��1−���+� and
srel

RK= 1
2 ln�1+���3/2−ln�1−��. Interestingly, the two models

attain analogous expressions near the ideal limit, �� ,��
→ �0,0�,

srel
SW � ��1 +

1

2
��2�, srel

RK � ��1 +
1

2
�3/2� . �10�

Apparently, the relative entropy has quasiuniversal scaling as
a gas departs ideality. If we compare the temperature scaling
exponent in these equations with that of Eq. �4� at high tem-
perature, it is identical at 2 for the SW model and close at 3/2
for the RK model. The result is surprising given that the
Gaussian assumption for �, on which Eq. �4� is based, does
not apply to this case study because of singularities in �
where molecules overlap. The inability of the ideal gas to
describe these excluded volume interactions also generates a
residual Srel for finite density even at infinite temperature:
srel��→0�=� while srel��→0�=0.

Errors in the response functions for the gases follow Eq.
�8� and, in the ideal-gas limits of Eqs. �10�, have the form,

cerr 	 �srel − srel�� = 0��, �err 	 �srel − srel�� = 0�� . �11�

To compare these ideal limits to the actual errors, we evalu-
ate srel, cerr, and �err for the SW and RK models on a grid of
state points. Figure 1 shows the errors in terms of srel. Sur-
prisingly, the behavior of the errors practically collapses onto
the line of the ideal limit of Eq. �11�. Moreover, �err

SW and cerr
RK

have the �ideal limit� linear scaling rigorously in all of state
space. In effect, when coarse-graining away interactions, the
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relative entropy linearly signals errors in response functions
and hence system fluctuations. Importantly, except for the
slight discrepancy in the slope of the heat capacity line, the
trends between the two models are almost identical, which
might suggest broader generality in these findings.

Lattice gas. The mean-field treatment of the 2D lattice gas
offers a useful scenario, as the traditional variational mean-
field �VMF� solution can be evaluated against a
Srel-optimized mean-field �SMF� model. Importantly, the
mean-field description breaks down near the critical point,
and Srel’s ability to signal this failure provides an elementary
test of it.

We consider M =162 lattice sites, by which the analysis is

normalized. With nī molecules at lattice site ī, the “first-
principles” lattice gas interacts through nearest-neighbors,
UFP���=−�īnīnī+1̄, and the “coarse-grained” one interacts by
a mean-field, UCG���=−��īnī. The value for the dimension-
less mean-field parameter, �, is the sole difference between
the VMF and SMF models. The lattice gas is coupled to a
molecule-bath through the chemical potential 
, and a grand
potential is developed for the canonical framework presented
above. Note that all properties of interest �including Srel� be-
have symmetrically about the critical chemical potential,

c=−2. The critical temperature is at �c�1.6.

For the lattice gas, Srel minimization �using Eq. �6�� pro-
vides the following optimality condition for the SMF param-
eter:

�� = − �−1 ln��n	FP
−1 − 1� − 
 , �12�

which requires the average occupancy in the FP ensemble.
Conversely, the VMF parameter is determined by the famil-
iar transcendental equation, which entails the average occu-
pancy in the CG �mean-field� ensemble �7�. For a given
value of �, determined by either approach, we compute the
relative entropy by Eq. �3� using a Monte Carlo simulation of
the FP system. This calculation also evaluates various errors
in replication by comparing numerical FP averages with ana-
lytical CG ones. We analyze a grid of state points, separately
performing ten replicates of this scheme for each. This guar-
antees statistical errors in the relative entropy less than 2%.

Figure 2 shows the relative entropy in state space for both
CG models, which have comparable behavior. At infinite
temperature, these curves collapse onto a distinct � power
law, having the expected exponent of 2 �within 1% error�.

For the critical 
-isoline, this unique �sharply increasing�
trend continues toward the critical point; for other 
, a maxi-
mum is observed just below �c. Thus, the growth of the
relative entropy in the vicinity of the critical point naturally
signals the inadequacy of the mean-field description there.
Interestingly, both mean-field models attain the same value
for � at 
c, yielding equivalent relative entropies for this
isoline. For other 
-isolines, the SMF relative entropy is
always lower than its VMF counterpart, as expected by Srel
minimization.

While the better performance of the SMF over the VMF
model is not surprising considering that the former uses the
exact solution, the important point is that Srel can be used to
predict errors in either model. By our hypothesis that errors
are tied to Srel, the SMF system should perform better than
the VMF one in replicating true features of the lattice gas. By
Eq. �5�, the SMF model attains perfect reproduction of the
average occupancy, �n	, while the VMF model does not. In
general, the effect of perturbing a model parameter about its
relative entropy-optimal value can be captured by a second-
order expansion of Srel with Eq. �5�. Thus, the nonzero occu-
pancy error in the VMF model can be captured to second
order by,

��n	err� ��2�−2�2srel
�

��2 �srel − srel
� � . �13�

For this case study, �−2 �2srel

��2 =M��n2	CG− �n	CG
2 �. Figure 3

shows the simulation-determined error in the average occu-
pancy for the conventional mean-field model in terms of the
relative entropy, agreeing quite well with Eq. �13�’s square
root trend. Regardless, the SMF system consistently exhibits

FIG. 1. �Color online� Replication errors of response functions
versus Srel. �LHS� Heat capacity errors, with srel offset by srel��
=0�=�. �RHS� Pressure coefficient errors, with srel offset by srel��
=0�=0. The square-well fluid �filled symbols� is examined on �
= �0.0,0.5�, while the Redlich-Kwong fluid �hollow symbols� is on
�= �0.0,2.0�. The dotted lines show the correspondingly linear re-
lationships of Eq. �11�.

FIG. 2. �Color online� Srel as a function of temperature for the
lattice gas. The Srel-optimized mean-field �solid lines� and the con-
ventional variational mean-field �dotted� models are shown; the two
coincide at 
c. We fit a power law to the data of 
c to estimate the
behavior at �→0. Arrow indicates increasing �
−
C�.

FIG. 3. �Color online� Replication error for the average occu-
pancy versus Srel, for the VMF model. For each point, srel is offset
by its minimum value at the same state point. The dotted line shows
the rough scaling of Eq. �13�, in which we approximate �n2	CG

− �n	CG
2 by its average value over all state points, 0.3393.
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better replication than the VMF system for other properties
as well �e.g., �n2	�; we restrict the remainder of our discus-
sion to the former model, meaning that srel=srel

� .
We now show that errors in the SMF model are tightly

linked with the value of the relative entropy. This model can
perfectly replicate �UCG	 by Eq. �6�, but the inadequate rep-
lication of �UFP	 is guaranteed through Eq. �9�, which gives

��n0̄n1̄	 − �n	2�err � �srel/�� . �14�

This shows that the error of replication in the correlation
between nearest-neighbors is largely given by the value of
srel /�. Figure 4 compares this approximate scaling law with
numerical results. Remarkably, the linear law describes the
data superbly, despite the fact that the Gaussian approxima-
tion invoked for Eq. �14� overestimates the true srel value by
a factor as high as 2 for several state points. Also, it is clear
that the error, just as the relative entropy, is pronounced to-
ward the critical point. Equation �14� suggests that the rela-

tive entropy increases with a growing correlation length that
renders the failure of the mean-field approach in describing
critical phenomena. This observation strengthens our hypoth-
esis that Srel measures multiscale model quality; in this case,
it signals the critical point through the correlation function.

By measuring neighbor correlations, the relative entropy
also signals errors in bulk molecule fluctuations. Assuming
that the correlation function decays exponentially with dis-
tance between neighbors while expanding �n2	 �see SI�, we
attain the following expression using Eq. �14�,

��n2	 − �n	2�err �
4

M
�srel/���1 −

�srel/��
��n	FP − �n	FP

2 ��−2

.

�15�

Thus, bulk correlation is also tied to Srel /�. Figure 4 shows
the actual computational results for this error. Despite the
crude approximation for the correlation distance decay, Eq.
�15� captures the trend in the simulation results, where the
error, just as the relative entropy, is pronounced toward the
critical point. Thus, errors in bulk fluctuations are also sig-
naled by Srel, in turn indicating proximity to the critical point.

In summary, for the first time, we rigorously show the
relative entropy is of fundamental relevance to multiscale
studies: it is tightly coupled to errors incurred upon coarse
graining. The origin of this connection likely stems in the
potential energy landscape fluctuations that Srel measures,
propagating into replication errors in various other proper-
ties. This suggests that the relative entropy should be a pow-
erful guide in multiscale studies, as a single measurement
able to predict those conditions under which simple analytic
and simulation models are accurate or break down.
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2 by its av-
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