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Soliton interaction in a complex plasma
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The interaction of two counterpropagating solitons of equal amplitudes has been studied experimentally and
numerically in a monolayer strongly coupled complex plasma. Complex plasmas are microparticle suspensions
in ion-electron plasmas. It was found that the solitons are delayed after the collision. Solitons with higher
amplitude experience longer delays. The amplitude of the overlapping solitons during the collision was less

than the sum of the initial soliton amplitudes.
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In a complex (dusty) plasma, particles ranging from nan-
ometer to micrometer sizes are introduced into an electron-
ion plasma. The particles become charged and interact col-
lectively, arranging themselves to form orderly structures
[1-4]. Complex plasmas exist in gas, liquid, and crystalline
states. They also sustain different kinds of linear and nonlin-
ear waves.

A soliton or a solitary wave is a localized wave that re-
tains its shape as it propagates through a medium. It was
observed first by Russell [5], then later described theoreti-
cally by Korteweg and de Vries (KdV) [6]. The KdV ap-
proximation assumes a small amplitude perturbation with a
long wavelength in a continuous medium. The shape of the
solitons in the KdV model is retained due to counterbalance
of dispersion (which spreads the wave) and nonlinearity
(which steepens or focuses it). Solitons have been found to
exist in an ion-electron plasma [7,8]. Compressional, or
“bright” solitons have previously been observed in complex
plasmas [9], however rarefactional perturbations have not
evolved into dark solitons [10]. Both bright and dark solitons
(compressional and rarefactive solitons, respectively) have
been known to exist in other media such as Bose-Einstein
condensates [11], optical waveguides [12,13], and fluids
[14]. A large number of theoretical models have been sug-
gested for solitons in complex plasmas [15,16], among many
others (see [17] for further references).

Collisions of solitary waves have been extensively studied
in liquids theoretically [18,19] and experimentally [14]. It
has been reported that solitons on shallow water interact
elastically (in KdV approximation) or nearly elastically for
the full set of Euler equations. A counterpropagating colli-
sion [14] results in a phase lag (delay) of both solitons with
the smaller soliton delayed more significantly than the larger
one. The amplitude of the overlapping waves is greater than
the algebraic sum of the individual solitons before the colli-
sion. In addition to that, the amplitude slightly dips immedi-
ately after the collision and returns to its value before the
collision at a later time. The magnitude of the phase shift
reportedly depends on the initial wave amplitudes [20] with
larger amplitudes causing larger delays.

Interaction of solitons is interesting in relation to the
Fermi-Pasta-Ulam problem (outlined in Ref. [13]). The ob-
servation that a discrete nonlinear system exhibits recurrent
states instead of an ergodic behavior was explained by
Zabusky and Kruskal [7,8] who realized that the nonlinear
chain is described by the KdV equation in the continuum
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limit (the fact that we also rely upon in our treatment of
complex plasmas [9,15,21]). Thus any deviation from the
KdV approximation in real systems will affect the thermali-
zation time and break the recurrence of the initial state.

Here we report an experimental and numerical study of
interaction of two equal amplitude counterpropagating com-
pressional (bright) solitons in a monolayer complex plasma.
The experiment (Fig. 1) was performed in a vacuum cham-
ber which was kept at a pressure of 1.4 Pa by a steady argon
flow of 3 sccm. A capacitively coupled 13.56 MHz radio-
frequency power of 1 W was applied between the lower
powered electrode (20 c¢cm in diameter) and the grounded
chamber. Due to the asymmetry of the electrodes the pow-
ered electrode had a dc self-bias voltage of —33 V. Plastic
microspheres with a diameter of 9.19*+0.1 um were intro-
duced into the plasma, where they charged up and levitated
in the sheath above the electrode forming a monolayer hex-
agonal lattice. The presence of neutral argon gas in the cham-
ber causes the plastic microspheres to experience a small
amount of damping. A rim around the outer edge of the
lower electrode confined the particles radially. The particle
cloud was 64 mm in diameter.

A thin sheet of light from a diode-pumped solid-state laser
(532 nm, 300 mW) illuminated the particle layer horizontally
from a window on the side of the chamber, while a high-
speed digital camera recorded the kinetic motion of the par-
ticles from above at a rate of 500 frames/s. The camera’s
field of view captured a 28.7x28.7 mm? (1024 pixel
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FIG. 1. Sketch of the apparatus. (a) Oblique view showing the
microspheres levitating above the lower electrode and forming a
monolayer lattice. (b) Side view showing the two wires placed be-
neath the monolayer. Waves are excited by applying short negative
pulses to the wires.
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TABLE 1. Parameters of the compressional waves obtained in the experiment for different excitation
voltages at 0.2 s before the collision (five-frame average). The wave amplitude is calculated as the maximum
compression factor, the pulse width is taken at half the maximum amplitude.

Excitation
voltage Amplitude Width L Wave speed V.~ Mach number

(V) A=n/ng (mm) (mm/s) M Soliton parameter AL?
20 0.630.08  4.03*+0.50 328+1.8 2.5 10

25 0.72*£0.04  4.33*+091 35.8%£2.6 2.7 14

30 046*+0.08 3.98*+1.02 38.3+2.1 2.9 8

35 0.32*£0.08  3.52*+0.58 40.0£2.0 3.0

40 0.70*£0.23 2.30£0.51 425+2.38 32 4

X 1024 pixel) region of the crystal lattice. The centers of the
field of view, of the electrode, and of the lattice were aligned.

Two parallel tungsten wires, both 0.1 mm in diameter
were situated horizontally below the particle layer, at a dis-
tance of 25.5 mm on both sides from the center of the elec-
trode (51 mm apart). Both wires were normally grounded to
minimize their influence on the particles. Two equal ampli-
tude compressional waves were excited in the particle lattice
by applying a brief negative potential lasting 100 ms to both
wires simultaneously. A time interval of 100 s allowed the
lattice to come to an equilibrium between experimental runs.
The pulse amplitude ranged between —20 and —40 V. The
average number density of the lattice n, at equilibrium was
measured for each experiment and found to be
1.57*0.1 mm™2. It was uniform in all directions. The aver-
age interparticle spacing was 0.84 mm for all experiments.
The dust-lattice wave speed was 13.3*+ 1.6 mm/s. Param-
eters of observed pulses are listed in Table I.

A molecular dynamics (MD) simulation was performed in
order to understand and interpret the experimental results.
The three-dimensional equations of motion [9] were solved
using the fifth-order Runge-Kutta integration with the Cash
Karp adaptive step size control. We used a monolayer lattice
formed of 3000 particles in a three-dimensional parabolic
confinement potential ®,=mQ’z%/2+m;(x>+y?)/2. The
lattice was strongly confined in the vertical direction (£},
=50 Hz) and weakly in the horizontal plane ({,=0.5 Hz).
Since the charge and the screening length were not measured
in the experiment we chose typical values reported in Refs.
[9,10]. The particles with the charge Q=16 000e (where e is
the electron charge) and mass of m=5X 10713 kg interacted
with each other via a screened Coulomb (Yukawa) potential
with a screening length Ap=1 mm and their motion was

damped by neutral gas friction with a damping constant of 1
Hz. The particle charge and screening length were kept con-
stant during the simulations. The grains were initially placed
at random positions and allowed to equilibrate by running
the code until a stable hexagonal lattice 9 cm in diameter was
formed. The unperturbed number density was inhomoge-
neous: ny=0.7 mm~? at the center of the crystal and it de-
creased to 0.64 mm™ at the edge of the analyzed region
(34 X34 mm?). The particle separation was between 1.28
and 1.35 mm, which corresponded to the screening param-
eter « (interparticle distance divided by the Debye length) of
1.28-1.35. The dust-lattice wave speed was between 17.5
and 18.5 mm/s in the analyzed central part of the lattice,
which is close to that measured in the experiment. The
boundaries of the lattice were assumed to be free. The crystal
was then excited by two pulsed Gaussian force fields di-
rected inwards with the maxima separated by 34 mm. The
amplitude was chosen so that it produced the same particle
speeds as in the experiment. The temporal shape of the ex-
citation pulse was an inverted truncated parabola with a du-
ration of 130 ms (defined as full width at half maximum of
the pulse). This produced a pair of counterpropagating waves
similar to those observed in the experiment. Parameters of
the observed waves are listed in Table II.

In order to analyze the experimental data recorded as a
series of still frames, the positions of each particle in all
video frames were identified using an intensity weighted mo-
ment method [22,23]. All particle positions were then traced
from one frame to the next to obtain the velocities of each
particle. The local two-dimensional lattice number density
was determined as the inverse area of the Voronoi cells for
both experiment and simulation. The compression factor was
determined as the ratio of the wave number density to the
unperturbed number density.

TABLE II. Parameters of the simulated compressional waves 0.2 s before the collision for different
excitation forces. The wave amplitude is calculated as the maximum compression factor, the pulse width is

taken at half the maximum amplitude.

Excitation force ' Amplitude

Width L  Wave speed V

(arb. units) A=nlng (mm) (mm/s) Mach number M Soliton parameter AL>
1.8£0.1 2.5+0.2 301 1.67 11
2.3*0.1 22+0.2 32+2 1.78 11
7.5 3.6x0.1 2.1£0.2 381 2.1 16

057401-2



BRIEF REPORTS

t(s)
t(s)

t(s)
t(s)

v, (mm/s)

-15 -10 -5 0 5 10 15
X (mm) x (mm)

0 5 10 15 20 25

FIG. 2. Trajectories of interacting waves produced from the
number density 7 in the (a) experiment and (b) simulation, as well
as from the x component of particle velocity v, in the (c) experi-
ment and (d) simulation. The excitation amplitude was —40 V in
the experiment and 8 arb. units in the simulation. The wave fronts
are represented by crossing stripes. The interaction results in a tem-
poral delay after the collision (see Fig. 3 for more details).

The experimental and simulational data were visualized
by plotting the grayscale maps of the particle number density
and the x velocity (in the direction perpendicular to the
wires) as functions of x coordinate and time. In these coor-
dinates wave phenomena look as straight lines with the slope
depending on the propagation speed. The counterpropagating
wave trajectories are then represented by two crossing stripes
(Fig. 2). It should be noted that the wave amplitude slightly
decreases in time due to neutral damping as reported in Ref.
[9]. Tt appears that there is a small temporal delay between
converging (lower part of the plots) and diverging (upper
part of the plots) waves. The angles of the stripes indicate
that the diverging waves propagate slightly slower than the
converging ones. This is more likely to be an effect of the
neutral damping (which reduces the wave amplitude and
slows them down) than the wave interaction.

In order to measure the propagation delay of the waves
we fitted their trajectories with straight lines separately be-
fore and after the collision obtaining two pairs of lines (Fig.
3). The lines cross at two different points. The delay time At
was determined from the offset between the crossing points.
It was then plotted vs excitation amplitude for experimental
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FIG. 3. Temporal offset observed in the paths of two compres-
sional waves from the visualization of the double wire experiment
with pulse amplitude —40 V. Plot shows time versus distance,
where darker regions correspond to an increase in number density.
Temporal delay is obtained at the point of collision.

PHYSICAL REVIEW E 81, 057401 (2010)

0.06F @) 1t b)
0.04f
2002

<

0.00 -t

0.02F

0.06} C) 1k d)
0.04f 1F
2 0.02f 1F
<

0.00

0.02

20 25 30 35 40 3 4 5 6 7 8

pulse amplitude (V) pulse amplitude (arb. units)

FIG. 4. Soliton interaction temporal delay as a function of the
excitation amplitude. The delays obtained from the number density
in the (a) experiment and (b) simulation coincide with those ob-
tained from the particle x velocity in the (c) experiment and (d)
simulation.

and simulational data in Fig. 4. We used both number density
and particle x-velocity data to obtain the delay time which
was positive in all our experimental and simulational runs.
The error bars were estimated from the widths and lengths of
the wave trajectories which limit the precision of the fits. We
have found that the delay time increased with the excitation
amplitude.

The soliton parameter AL> was measured for each frame
of the video recording, where A and L are, respectively, the
wave amplitude (maximum compression factor) and its
width taken at half the maximum amplitude. Following the
KdV theory, this value should be almost constant in weakly
damped inhomogeneous case [9]. It was observed in each
experiment that AL? became increasingly steady before the
collision, reaching an equilibrium value. However, with in-
creasing pulse amplitude the soliton parameter appeared to
be taking longer to reach a steady value. It was also observed
that the soliton parameter is reduced (Table I) at large am-
plitudes (35-40 V excitation), this is most likely due to
breaking of the KdV approximation, which assumes that the
amplitude of nonlinear waves is small, that the wavelength is
large, and that the lattice is continuous. All these three as-
sumptions will break as the excitation amplitude is increased.

In order to underline the nonlinear interaction of the coun-
terpropagating waves, we ran other simulations in the same
crystal with only one pulse propagating in either positive or
negative x direction. We noticed that the amplitude of the
single pulse was decreasing as it propagated through the lat-
tice because of damping. Moreover the amplitude of two
colliding waves was less than the sum of the amplitudes of
individual noninteracting pulses taken at the same time. After
the collision, the propagation velocities in the double pulse
simulation were also slightly smaller than those in the single
pulse cases, most likely because double pulses propagate in
the lattice perturbed by the other pulse.

The observed nonlinear waves propagate faster (see
Tables I and II) than linear compressional dust-lattice waves,
the soliton parameter is conserved (at small amplitudes after
it has reached an equilibrium value), the waves are delayed
after a collision, and they re-emerge in their original shape
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FIG. 5. Interaction of two counterpropagating solitons of equal
amplitude in the experiment with =30 V excitation pulse. Soliton
amplitude in (a) local number density and (b) particle x velocity.
The black dots are the data along the narrow stripes at the soliton
maxima (Fig. 3). The solid and dashed lines are boxcar averages
over three data points in time. The solid (dashed) line represents the
soliton traveling in the positive (negative) direction. The vertical
lines represent the begin and end times of the collision, when the
solitons appear merged together.

after a collision. For these reasons, we can consider the
waves as solitons (see also [9]).

The propagation delay observed in our experiments and
MD simulations increases with the initial amplitude of the
colliding solitons. These results are in qualitative agreement
with the prediction done for the KdV model [20]. However
the precision of our measurements is not high enough to
check whether the delay is proportional to the square root of
the initial amplitude.

The interaction of the solitons in the experiment with
—30 V excitation pulse is presented in Fig. 5, which shows
the time evolution of (a) the soliton maximum number den-
sities and (b) the maximum particle x velocities. This figure
was obtained by fitting the soliton maxima with straight lines
(Fig. 3) and then selecting the data points that were within
+0.25 mm of each line (the soliton width was larger than 3
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mm). The selected values of number density and x velocity
were plotted as black points. In order to reduce the scatter we
averaged the data in three adjacent video frames (dashed and
solid lines). The number density amplitude of the solitons
increases during the interaction by a factor of 1.4 [Fig. 5(a)],
while the particle x velocity remains nearly zero for the time
of interaction [Fig. 5(b)]. Note that the amplitude of the soli-
tons away from the collision point decreases with time due to
neutral damping [9].

Our experiment shows that the amplitude of the overlap-
ping solitons is 1.4 times the initial amplitude of the collid-
ing solitons for the excitation pulse of =30 V. This is less
than a linear superposition of the amplitudes of colliding
solitons. It is also less than the predictions based on the
second- and third-order perturbation theory (which are even
higher than the linear superposition) [24]. In contrast to our
observations the fluid dynamic experiments and simulations
reported superlinear amplitudes of the interacting solitons
(run up) [18] consistent with the theory of Ref. [24]. We have
no explanation for this, however it is likely that the KdV
model becomes inadequate due to excessive amplitude of the
lattice perturbation, or that the discrete nature of the lattice
has to be taken into account. We do not observe any dip in
the soliton amplitude after the collision nor any oscillatory
residual. However the resolution of the experimental data is
limited by the statistical noise due to random motion of the
lattice. The noise level incurred is most likely too high to
observe such residuals.

This study has shown the effect of a head-on collision of
two parallel wave fronts in a complex plasma. In each ex-
periment performed, the interaction of the soliton waves had
produced a temporal delay in propagation, which increased
with the initial amplitude of the solitons, in qualitative agree-
ment with theoretical predictions and fluid dynamics experi-
ments. The observed amplitude of the overlapping solitons
was smaller than the theoretically predicted value. The ef-
fects of this experiment have been reproduced in a molecular
dynamics simulation.
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