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We study the evolution of cooperation under the assumption that the collective benefits of group membership
can only be harvested if the fraction of cooperators within the group, i.e., their critical mass, exceeds a
threshold value. Considering structured populations, we show that a moderate fraction of cooperators can
prevail even at very low multiplication factors if the critical mass is minimal. For larger multiplication factors,
however, the level of cooperation is highest at an intermediate value of the critical mass. The latter is robust to
variations of the group size and the interaction network topology. Applying the optimal critical mass threshold,
we show that the fraction of cooperators in public goods games is significantly larger than in the traditional
linear model, where the produced public good is proportional to the fraction of cooperators within the group.
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The emergence of cooperation among selfish individuals
within the framework of evolutionary game theory is an in-
tensively studied problem �1�. While the prisoner’s dilemma,
snowdrift, and the stag-hunt games typically entail pairwise
interactions, the public goods game traditionally considers
larger groups of interacting players �2�. Essentially, however,
all mentioned social dilemmas can consider either pairwise
or group interactions, as was suggested in Refs. �3,4�. In-
deed, it is expected that the possibility of multiplayer inter-
actions can bring about phenomena that cannot be observed
in case of pairwise interactions, especially when the under-
lying topology of players is structured rather than well mixed
�5,6�.

In the classical public goods game setup, individuals en-
gage in multiplayer interactions and decide whether they
wish to contribute �cooperate� or not �defect� to the common
pool. The accumulated contributions, equaling one each, are
summoned and multiplied by a factor large than one, i.e., the
so-called multiplication factor, due to synergy effects of co-
operation. Subsequently, the resulting assets are shared
equally among all group members, irrespective of their initial
contribution to the common pool �7�. Although the benefits
of mutual cooperation, especially if compared to individual
or independent cooperative efforts, are widely accepted, they
do not apply in all situations. More specifically, the accumu-
lated public good does not always depend proportionally on
the fraction of cooperators within the group. In the beginning
the start-up costs need to be absorbed and offset, therefore
decimating the expected return to the initial contributors. On
the other hand, when the output limit of a joint venture ap-
proaches, the impact of additional contributors becomes mar-
ginal �8� In extreme situations the sparse occurrence of co-
operators in the group makes it impossible to produce public
goods. Instead, a minimal number of cooperative contribu-
tors is required, i.e., the so-called “critical mass,” to elicit the
full advantage of group action. There exist several real-life
examples supporting such a binary outcome assumption. For
example, the building of a bridge �or something that is of
value to the majority� within a community requires a certain
minimal fraction of supporters. However, if the critical mass
of those is not reached, all good aims will go to waste. Group
hunting of predators can also be mentioned as an example of

a “gain all-or-nothing” activity. In this work we explore how
the size of the critical mass within a group influences the
global level of cooperation in a society where the relations
between players are defined by spatial interactions �9�.

In the studied public goods game players occupy the
nodes of an interaction graph where, for simplicity, every
node has the same degree z. The focal player forms a group
of size G=z+1 with its nearest neighbors, although the
group size can be extended by considering more distant
neighbors as well. Importantly, each player belongs to G
different groups, as it is illustrated in Ref. �10�. Initially ev-
ery player on site x is designated either as a defector
�sx=0� or cooperator �sx=1� with equal probability. The total
payoff Px of player x is the sum of partial payoffs Px,i, which
are collected from groups around every focal player i where
x is also a member �x�Gi�. Such a payoff is given by

Px,i =� r̃G − sx, if M � �
j�Gi

sj

− sx, otherwise
� , �1�

where r̃=r /G is the normalized multiplication factor origi-
nating from the synergy effects of mutual cooperation, and
the sum runs over all the players j that are members of the
group centered around the focal player i. Here 1�M �G
denotes the threshold value of the critical mass. More pre-
cisely, group members can benefit from the joint venture
only if the number of cooperators within a group is equal or
exceeds this threshold. In the opposite case the cooperators
loose their investments while the defectors gain nothing. A
similar assumption was made in earlier works, where the
evolution of cooperation in well-mixed populations was
studied �4,11�. There a group of players G is chosen ran-
domly, and the mentioned threshold condition is introduced
to harvest collective benefits. Due to this a new fixed point
emerges where cooperators and defectors can coexist. Souza
et al. �4� have shown that the fraction of cooperators in the
coexistence regime increases with the critical mass. In our
case, however, the possibility of repeated interactions within
the realm of structured populations yields a different thresh-
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old dependence of the cooperation level, as we will report
below.

To visualize the impact of introducing the critical mass
threshold, it is instructive to compare different profiles of
actually produced public goods in dependence on the frac-
tion of cooperators within a given group, as shown in Fig. 1.
Most commonly, the produced public good is assumed to be
directly proportional with the number of cooperators, thus
yielding a linear profile �dashed blue line�. However, Mar-
well et al. and Heckathorn �8� argued that such a relation is
not necessarily in agreement with actual observations, and
that in fact an “S”-shaped dependence �dotted green line� is
much more fitting to reality. The introduction of critical mass
yields a simplification, or rather an extreme version of the
latter dependence, giving rise to a steplike function �solid red
line� going from zero to the maximal value at the threshold
�M /G in Fig. 1�. The saturation beyond the threshold ac-
counts for the fact that the growth of cooperators may not
necessarily lead to an enhanced social welfare.

Primarily applied interaction graphs are the square
�z=4� and the triangle lattice �z=6�, the two being represen-
tative for networks having zero and nonzero clustering coef-
ficient, although our observations were tested on random
regular graphs having z=4 as well. Different group sizes G
are also considered, which we will specify when presenting
the results. The applied system size ranged from 104–106

players. Following the standard dynamics of spatial models,
during an elementary Monte Carlo step a player x and one of
its neighbors y are selected randomly. After calculating their
payoffs Px and Py as described above, player x tries to en-
force its strategy sx on player y in accordance with the prob-
ability W�sx→sy�=1 / �1+exp��Py − Px� /K�	, where K�0 is a
noise parameter describing the uncertainty by strategy adop-
tions �5�. As is natural, better performing strategies are
adopted with a large probability, although at nonzero values
of K strategies performing poorly can spread too. In what

follows we will use a fixed value of K=0.5 without loss of
generality. As it was previously shown, the introduction of
multiplayer interactions gives rise to a robust topology-
independent noise dependence of the cooperation level �12�.
During a Monte Carlo step �MCS� all players will have a
chance to spread their strategy once on average. The typical
relaxation period was up to 2�104 MCS before the station-
ary fraction of cooperators �fC� was evaluated, although sub-
stantially faster relaxation times were also observed, as will
be described below.

It is important to note that the introduction of critical mass
results in a setup that is different from the so-called threshold
public goods game �13�. In the latter case, players are pro-
vided with an endowment and subsequently they must decide
how much of that to contribute for the provision of a public
good. If the sum of all contributions reaches a threshold,
each individual receives a reward. Here, the cooperators con-
tribute a fixed amount, whereafter the constitution of the
group determines whether their initial input will be exalted
or go to waste. Moreover, threshold public goods games
were studied only in well-mixed or single-group populations.

Starting with the basic setup entailing the square lattice
with G=5, we present the fraction of cooperators �fC� as a
function of r for different threshold values in Fig. 2. First, it
can be observed that using a minimal critical mass for the
threshold �M =1�, it is possible to sustain a small fraction of
cooperators even if the multiplication factor is extremely low
�for comparison, note that defectors always dominate com-
pletely below r /G=0.7 �see Fig. 3 in Ref. �12�� when the
linear model is used�. At such low r values, the modest total
amount of produced public goods is supplied by a single
cooperator within every group. Consequently, the frequency
of cooperators is proportional to G−2 �one cooperator per
G-sized group, whereby every cooperator is a member of G
groups�. Second, however, when r is increased the advantage
of aggregated cooperators can be utilized more efficiently
only at larger threshold values �M �1�. Yet the increase in
the overall cooperation level for intermediate values of r
cannot be sustained if the critical mass becomes too high,
thus suggesting the existence of an optimal threshold for the
evolution of cooperation.
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FIG. 1. �Color online� Comparative plots of benefit functions in
dependence on the fraction of cooperators within a group. The dot-
ted green “S”-shaped curve corresponds to the actual profile �8�,
while the linear dependence �dashed blue line� is the one assumed
most frequently in public goods games. The steplike gain all-or-
nothing function �red solid line� is used at present, where group
benefits can be harvested only if the critical mass of cooperators
exceeds the threshold value �M /G�. For comparisons, all functions
are normalized by their maximal values.
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FIG. 2. �Color online� Fraction of cooperators as a function of
the normalized multiplication factor r /G for different threshold val-
ues. The outcome of the linear model is shown as well. The inter-
action graph was a square lattice with G=5.
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To explore the robustness of our observations we have
also used larger group sizes G, thereby gaining the advanta-
geous possibility of fine tuning the threshold value more pre-
cisely. Specifically, the applied group sizes were G=9, 13,
and 25 for the square lattice, and G=7, 13, and 19 for the
triangular lattice. Figure 3 shows the results, indicating
clearly the existence of an optimal intermediate critical mass
for which the cooperation level is highest, independently
from the group size or the underlying interaction graph.

The robust existence of an optimal critical mass can be
explained if we distinguish cooperators based on whether
their initial contributions are exalted, hence increasing the
produced public good, or go to waste. Depending on this, we
designate cooperators accordingly as being either “active” or
“inactive.” An inactive cooperator is always vulnerable in the
presence of defectors because the moderate aggregation of
other cooperators in its vicinity is insufficient for spatial reci-
procity to work �1�. This happens frequently if the threshold
is set too high, having as the inevitable consequence the fast
extinction of the cooperative strategy. In the opposite limit,
i.e., when the threshold is very low, practically all coopera-
tors are active. Then, however, the cooperators do not have a
strong incentive to aggregate because an increase in their
density will not notably elevate their individual fitness. Con-
sequently, in this case only a moderate fraction of coopera-
tors coexists with the prevailing defectors. At intermediate
thresholds the status of cooperators may vary depending on
their location on the graph. In particular, there are places
where their local density exceeds the threshold, and thus the
cooperators there are active. These cooperators can prevail
efficiently against defectors. Yet there are also places where
the cooperators are inactive because their density is locally
insufficient. In these areas defectors can easily defeat coop-
erators. Importantly, however, after the initial reconfigura-
tions the emerging domains of active cooperators start
spreading prolifically in the sea of defectors and are ulti-
mately victorious. The final cooperation level obviously de-
pends also on the multiplication factor, whereby this depen-
dence is similar as was reported in previous works
employing the linear public goods function �9,12�.

Figure 4 demonstrates the preceding argumentation effec-
tively. It shows how the system evolves for three different
representative threshold values on a square lattice with G
=25. The thresholds are M =2 �top row�, 17 �middle row�,
and 22 �bottom row�. Time evolution goes from the left to-
ward the right snapshots, starting with the random initial
state and ending with the stationary state. Black color is used
for defectors, while white and yellow depict active and inac-
tive cooperators, respectively. It is interesting to note that,
despite appearances, the leftmost panels depicting the initial
state are completely identical �exactly the same random ini-
tial conditions were used�. Importantly, however, the appli-
cation of different threshold values yields an adverse classi-
fication of cooperators on those that are active �white� and
those that are inactive �yellow�, which obviously has an im-
pressive impact on the final state �compare the rightmost
snapshots�.

When the threshold is low �top row of Fig. 4� practically
all cooperators are active, thus supplying their groups with
the maximal payoff. As we have argued above, in this case a
higher density of cooperators would not be advantageous.
Therefore the active cooperators �colored white� do not ag-
gregate. Of course, the stationary fraction of cooperators de-
pends on the actual value of M, whereby interestingly the
resulting cooperation level is larger than the applied thresh-
old value. The difference between fC and M /G becomes rel-
evant when M approaches the optimal value. If the imposed
critical mass is too high �bottom row of Fig. 4�, the vast
majority of cooperators becomes inactive �colored yellow�.
Despite the fact that the interactions among players are struc-
tured, i.e., the underlying graph is a lattice, the spatial reci-
procity cannot work and thus the cooperators go extinct very
fast �around 102 MCSs suffice to get an absorbing D phase
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FIG. 3. �Color online� Fraction of cooperators as a function of
the normalized threshold value M /G for different group sizes and
interaction graphs �SQR=square lattice; TRI=triangular lattice� at
r /G=0.6. Note that the normalization of M and r with G is essential
for relevant comparisons.

FIG. 4. �Color online� Time evolution �from left to right� of an
identical random initial state on a square lattice having G=25 for
M =2 �top row�, 17 �middle row�, and 22 �bottom row�, at r /G
=0.6. Black are defectors, while white and yellow �light gray� are
active and inactive cooperators, respectively. Note that the partly
different coloring in the first column is due to the differences in
status of some cooperators appearing as a consequence of different
M values. All panels show a 100�100 excerpt of a larger 400
�400 lattice.
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even for large system sizes�. The leftmost bottom snapshot
shows clearly that only a tiny fraction of nearby cooperators
can initially exceed the necessary threshold �small white
area�. However, they cannot propagate because their spread-
ing would require too many defectors changing their strategy
in the vicinity of the border. Oppositely, the strategy change
of a single active cooperator can easily decrease their density
below the critical mass threshold, which leads the defectors
to full dominance, as shown in the rightmost bottom
snapshot.

In the intermediate threshold region �middle row of Fig.
4�, we can observe a fast extinction of inactive cooperators.
Because of the moderate critical mass, however, a new phe-
nomenon emerges. Active cooperators �colored white� can
easily protect themselves against the invasion, and more im-
portantly still, they can also alter their neighborhoods and
therefore spread in the sea of defectors. Eventually this pro-
cess results in a highly cooperative stationary state, as shown
in the rightmost middle snapshot. In fact, the introduction of
an intermediate critical mass paves the way for spatial reci-
procity to work extremely effectively, leading to the selec-
tion of the most beneficial state in the course of the evolu-
tion. If compared to the extinction of inactive cooperators the
mentioned process is slower because it relies on a propaga-
tion mechanism. From the defector’s point of view, however,
the negative feedback effect due to their own spreading is
more severe than in the traditional linear public goods game
�see dashed blue line in Fig. 1�. In particular, while in the
presently proposed critical mass model the invasion of de-
fectors may result in a sudden loss of collective benefits, the
linear model always ensures a small amount of public goods

in the vicinity of cooperators. This is why the fraction of
defectors remains at a very low level, even for small multi-
plication factors, if the optimal critical mass threshold is
imposed.

In sum, we have shown that the evolution of cooperation
in spatial public goods games can be promoted effectively,
even at unfavorable conditions �i.e., low r values�, via the
introduction of critical mass acting as a threshold for initial
contributions to the common pool. In contrast with well-
mixed populations, here the impact of critical mass is opti-
mal at an intermediate value of the threshold, which allows
spatial reciprocity to work more effectively than in the linear
public goods game. Notably, the optimal critical mass was
found to be robust against variations in the group size and
the underlying interaction network. The revealed mechanism
for the promotion of cooperation can be understood by tak-
ing into account the binary �active/inactive� impact of coop-
erators, which emerges spontaneously depending on their lo-
cal density. In future studies, it will be interesting to
investigate how locally diverse values of critical mass influ-
ence the global level of cooperation, and more generally, if
and how a coevolutionary model �14�, where besides the
strategy adoptions of players groups will also be able to
adopt the critical threshold value from a more successful
community, can be devised so that the optimal thresholds are
selected naturally.
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