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This paper proposes an improved lattice Boltzmann scheme for incompressible axisymmetric flows. The
scheme has the following features. First, it is still within the framework of the standard lattice Boltzmann
method using the single-particle density distribution function and consistent with the philosophy of the lattice
Boltzmann method. Second, the source term of the scheme is simple and contains no velocity gradient terms.
Owing to this feature, the scheme is easy to implement. In addition, the singularity problem at the axis can be
appropriately handled without affecting an important advantage of the lattice Boltzmann method: the easy
treatment of boundary conditions. The scheme is tested by simulating Hagen-Poiseuille flow, three-dimensional
Womersley flow, Wheeler benchmark problem in crystal growth, and lid-driven rotational flow in cylindrical
cavities. It is found that the numerical results agree well with the analytical solutions and/or the results reported
in previous studies.
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I. INTRODUCTION

Because of its kinetic nature and distinctive computa-
tional features, the lattice Boltzmann �LB� method, which
originates from the lattice-gas automata �LGA� method �1�,
has been developed into a very attractive alternative to con-
ventional numerical methods. In the LB method, instead of
solving the macroscopic governing equations, the discrete
Boltzmann equation with certain collision models, such as
the matrix model �2,3�, Bhatnagar-Gross-Krook �BGK�
model �4–7�, multiple-relaxation-time �MRT� model �8–13�,
and the two-relaxation-time �TRT� model �14–16�, is solved
to simulate fluid flows and model physics in fluids.

The main advantages of the LB method have been sum-
marized as follows �17�: �i� nonlinearity �the collision pro-
cess� is local and nonlocality �the streaming process� is lin-
ear, while in the Navier-Stokes equation the convective term
u�u is nonlinear and nonlocal at a time; �ii� streaming is
exact; �iii� complex boundary conditions can be formulated
in terms of elementary mechanics rules; �iv� fluid pressure
and the strain tensor are available locally; �v� nearly ideal
amenability to parallel computing �low communication/
computation ratio�. Owing to these advantages, in the past
two decades the LB method has been successfully applied to
various flow problems in science and engineering �18–24�.

In recent years, the LB method for axisymmetric flows
has attracted much attention. It is known that LB simulations
of axisymmetric flows can be handled with a standard three-
dimensional �3D� LB model. However, such a treatment does
not take the advantage of the axisymmetric property of the
flow: 3D axisymmetric flows are two-dimensional �2D�
problems in a cylindrical coordinate system. To make use of
this property, much research has been conducted. The first
attempt was made by Halliday et al. �25�. The basic idea of
Halliday et al.’s method is to incorporate spatial and velocity
dependent source terms into the microscopic evolution equa-

tion to mimic the additional axisymmetric contributions in
cylindrical coordinates. Following Halliday et al.’s work,
Peng et al. �26� proposed a hybrid LB model for incompress-
ible axisymmetric thermal flows by solving the azimuthal
velocity and the temperature with a second-order center-
difference scheme. Nevertheless, it was later found that Hal-
liday et al.’s model fails to reproduce the correct hydrody-
namic momentum equation due to some missing terms. After
considering these terms, Lee et al. �27� developed a more
accurate axisymmetric LB model. Reis and Phillips �28�
have also presented a modified version of Halliday et al.’s
model by deriving the source terms in a different manner.
The modified model was subsequently validated with several
numerical tests �29�.

In the above models, some complex differential terms
were introduced into the second-order source term due to the
discrete effects on the first-order source term �identical to a
forcing term�. These complex terms may introduce some ad-
ditional errors and do harm to the numerical stability. In the
literature, He et al. �30,31� have pointed out the trapezium
rule is necessary for the integration of a forcing term to avoid
the spurious effects in the recovered macroscopic equations.
Furthermore, they introduced a new distribution function to
eliminate the implicitness resulting from the trapezium rule.
Through using the new distribution function, it can be found
that a factor dependent on the relaxation time would be in-
cluded in a forcing term and the macroscopic variables
should be redefined �30–32�. Following this strategy, Prem-
nath and Abraham �33,34� devised a LB scheme for axisym-
metric multiphase flows. The scheme was extended to axi-
symmetric two-phase flows with large density ratio in Ref.
�35�. Similarly, Zhou �36� recently proposed a simplified axi-
symmetric LB model by adopting a centered scheme to sim-
plify the source term.

Besides the above-mentioned models, an axisymmetric
LB method based on the vorticity-stream-function equations
of incompressible axisymmetric flows has also been devel-
oped �37,38�. In this method, distribution functions rf� and
f� for � and � are adopted, where � and � are the vorticity
and the stream function, respectively, and r is the coordinate*Corresponding author; yalinghe@mail.xjtu.edu.cn
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in the radial direction. The radial velocity ur and axial veloc-
ity uz are obtained from ur= ��z�� /r and uz=−��r�� /r with a
second-order center-difference scheme, where z is the coor-
dinate in the axial direction. The authors pointed out that the
main drawback of the method is the difficulty in treating
boundary vorticity. In this regard, an important advantage of
the LB method, the easy treatment of boundary conditions,
may be lost. In a recent paper �39�, an axisymmetric kinetic
BGK model of single-particle density distribution function f
has been derived from the continuous Boltzmann equation in
cylindrical coordinates. Due to a term in the kinetic model, a
new distribution function rf was employed to replace f when
devising axisymmetric LB model. The source term of the
devised model contains no gradient terms and is much sim-
pler than those in previous models.

Although previous models were criticized for the inclu-
sion of velocity gradient terms into the source term, it does
not mean their benefits can be ignored. Since these models
are within the framework of the standard LB method, the
general philosophy of the LB method is retained. When the
distribution function involves the coordinate r, people may
be bewildered by problems that are seemingly inconsistent
with the philosophy of the LB method, such as: why the
�radial� coordinate of one node can be propagated to its
neighboring node with the particle? In addition, the singular-
ity problem at the axis �r=0� cannot be solved. In numerical
applications, this problem is found to cause some inconve-
nience while treating boundary conditions. Nevertheless, this
problem can be well handled in previous models without
affecting the easy treatment of boundary conditions
�26–29,33–35�.

It is generally expected that a more consistent axisymmet-
ric LB scheme can be established if the problems that plague
previous schemes are overcome. However, from the avail-
able current literature on the axisymmetric LB method,
people may conclude that it is impossible to have such an
axisymmetric LB scheme. Hence, in this paper, we aim to
develop an improved axisymmetric LB scheme based on pre-
vious studies and to show that constructing a simple axisym-
metric LB scheme within the framework of the standard LB
method is possible. The rest of the paper is organized as
follows. The macroscopic governing equations for incom-
pressible axisymmetric flows and an original axisymmetric
LB scheme are described in Sec. II. The improved scheme is
proposed in Sec. III. Without loss of generality, both the
BGK and MRT collision models will be considered. In Sec.
IV, the numerical validation is presented. Finally, Sec. V con-
cludes the paper.

II. MACROSCOPIC EQUATIONS AND AN ORIGINAL
AXISYMMETRIC LB SCHEME

The problem of laminar axisymmetric flows of an incom-
pressible fluid with an axis in the z direction is considered.
The macroscopic equations for incompressible axisymmetric
flows in cylindrical coordinates are given as follows
�27,36,40�:

� juj = − ur/r , �1�

���tui + � j�uiuj�� = − �ip + �� j
2ui +

�

r
�rui −

�uiur

r
−

�ui

r2 �ir,

�2�

where i, j indicate the r or z component, � is the dynamic
viscosity, and �ir is the Kronecker delta with two indices.
Bearing in mind that, in the standard LB method the recov-
ered macroscopic momentum equation is

�t��ui� + � j��uiuj� = − �ip + � j����iuj + � jui�� , �3�

therefore we need to rewrite Eq. �2� as

���tui + � j�uiuj�� = − �ip + �� j�� jui + �iuj� +
�

r
��rui + �iur�

−
�uiur

r
−

2�ui

r2 �ir. �4�

The result −�� j��iuj�=−��i�� juj�=���iur−ui�ir /r� /r has
been used in the above derivation.

In Ref. �33�, Premnath and Abraham adopted the follow-
ing evolution equation for axisymmetric flows by integrating
the collision and source terms with the trapezium rule,

f��x + e��t,t + �t� − f��x,t� =
1

2
������x,t� +�����x+e��t,t+�t�

�

+
�t

2
��G���x,t� +�G���x+e��t,t+�t�

� ,

�5�

where ��=−�f�− f�
eq� /	, f� is the discrete single-particle

density distribution function, x is the spatial vector, i.e., x
= �r ,z�, e�= �e�r ,e�z� is the velocity vector of a particle in the
� link, �t is the time step, 	 is the dimensionless relaxation
time, and f�

eq is the equilibrium distribution, which can be
given by

f�
eq = w���1 +

�e� · u�
cs

2 +
�e� · u�2

2cs
4 −

u2

2cs
2� , �6�

for the two-dimensional nine-velocity �D2Q9� lattice �6�,
where cs=c /�3 �c=�x /�t� is the sound speed and the weights
w� are given by w0=4 /9, w1–4=1 /9, and w5–8=1 /36. If the
axisymmetric contributions of surface tension and phase seg-
regation effects are not considered, the source term G� is

G� = − w�

�ur

r
+

�e�i − ui�
�cs

2 f�
eq��

r
��rui + �iur� −

2�ui

r2 �ir

−
�uiur

r
� . �7�

The Chapman-Enskog analysis �41,42� of Eq. �5� can be
found in Ref. �33�. The implicitness of Eq. �5� is eliminated

with f̃�= f�−0.5��−0.5�tG� �31�,
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f̃��x + e��t,t + �t� − f̃��x,t� = − �� f̃��x,t� − f�
eq�x,t�� + �1

− 0.5���tG��x,t� , �8�

where �=1 / �	+0.5�. The macroscopic density and velocities
are calculated by

� = 	
�

f̃� −
�t

2

�ur

r
, �9�

�ui = 	
�

e�i f̃� +
�t

2
��

r
��rui + �iur� −

�uiur

r
−

2�ui

r2 �ir� .

�10�

III. IMPROVED LB SCHEME FOR INCOMPRESSIBLE
AXISYMMETRIC FLOWS

A. BGK collision model

In this section, an improved axisymmetric LB scheme
will be developed based on the above original scheme. Ac-
tually, from Eqs. �4�, �7�, and �10�, it can be seen that if we
want to devise a simple axisymmetric LB scheme based on
the standard LB method, the term ���rui+�iur� /r in the mac-
roscopic axisymmetric momentum equation should be recov-
ered in such a way that the difficulties arising from this term
can be avoided. Motivated by our recent work �43�, we pro-
pose the following evolution equation:

f��x + e��t,t + �t� − f��x,t� =
1

2
������x,t� +�����x+e��t,t+�t�

�

+
�t

2
��S���x,t� +�S���x+e��t,t+�t�

�

− �t
e�r

r
��f� − f�

eq���x,t�. �11�

Note that, in the Chapman-Enskog procedure, the last term
on the right-hand side of Eq. �11� will exist in the second-
order expansion of the evolution equation. Then no discrete
lattice effects need to be considered. The source term S� is
given by

S� = � �e�i − ui�Fi

�cs
2 −

ur

r
� f�

eq, Fi = −
2�ui�ir

r2 . �12�

Here it can be seen that S� is simple and contains no velocity
gradient terms. According to He et al. �31�, the implicitness
of Eq. �11� can be removed with a new distribution function

f��= f�−0.5��−0.5�tS�, from which the following LB
scheme can be obtained,

f���x + e��t,t + �t� − f���x,t� = − � f�f���x,t� − f�
eq�x,t�� + �1

− 0.5� f��tS��x,t� , �13�

where � f = �1+ �	�te�r /r�� / �	+0.5�. The macroscopic vari-
ables are defined as

� = 	
�

f�� −
�t

2

�ur

r
, �14�

�ui = 	
�

e�i f�� +
�t

2
�−

�uiur

r
−

2�ui

r2 �ir� . �15�

Multiplying Eq. �14� with ui and then substituting the result
into Eq. �15�, we can obtain

ui =

	
�

e�i f��

�	
�

f�� + ��t�/r2��ir� . �16�

In the incompressible limit �44� �i.e., �=�0+��
�0 and ��
is of the order Ma2, where Ma is the Mach number�, the
viscosity � used in Fi and Eq. �16� is replaced with �0. In
summary, Eq. �13� together with Eqs. �12�, �14�, and �16�
constitutes an improved axisymmetric BGK-LB scheme.

For the sake of demonstrating that the corresponding mac-
roscopic equations can be correctly recovered in the limit of
small Mach number, we proceed to perform the Chapman-
Enskog analysis of the evolution equation. First, taking a
second-order Taylor series expansion to Eq. �11� in time and
space around point �x , t�, we have

�t��t + e� · ��f� +
�t

2

2
��t + e� · ��2f� = −

1

	
�f� − f�

eq� −
�t

2	
��t

+ e� · ���f� − f�
eq� + �tS� +

�t
2

2
��t + e� · ��S� −

e�r

r
�t�f�

− f�
eq� + O��t

3� , �17�

where �= ��r ,�z� is the spatial gradient operator. According
to the Chapman-Enskog expansion �25,41,42�, the time de-
rivative, the distribution function, and the source term can be
written as

�t = �t0 + �t�t1, f� = f�
�0� + �t f�

�1� + �t
2f�

�2�, S� = S�
�0� + �tS�

�1�,

�18�

where S�
�0�=−urf�

eq /r and S�
�1�=

�e�i−ui�f�
eq

�cs
2 �−

2�cs
2	ui�ir

r2 �. With these
multiscale expansions, we can rewrite Eq. �17� in the con-
secutive orders of �t,

O��t
0�:f�

�0� = f�
eq, �19�

O��t
1�:��t0 + e� · ��f�

�0� +
1

	
f�

�0� = S�
�0�, �20�

O��t
2�:�t1f�

�0� + ��t0 + e� · ��f�
�1� +

1

2
��t0 + e� · ��2f�

�0� +
1

	
f�

�2�

+
1

2	
��t0 + e� · ��f�

�1� =
1

2
��t0 + e� · ��S�

�0� + S�
�1� −

e�r

r
f�

�1�.

�21�

Using Eq. �20�, Eq. �21� can be rewritten as

�t1f�
�0� + ��t0 + e� · ��f�

�1� +
1

	
f�

�2� = −
e�r

r
f�

�1� + S�
�1�. �22�

Summations of Eqs. �20� and �22� lead to, respectively,
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�t0� + � j��uj� = −
�ur

r
, �23�

�t1� = 0. �24�

Combining the above two equations ��t=�t0+�t�t1� gives

�t� + � j��uj� = −
�ur

r
. �25�

Taking the first-order moment, 	�e�i� · �, of Eqs. �20� and
�22�, respectively, we get

�t0��ui� + � j��uiuj� = − �ip −
�uiur

r
, �26�

�t1��ui� + � j�	
�

e�ie�j f�
�1�� = −

1

r
	
�

e�ie�rf�
�1� −

2�cs
2	ui

r2 �ir,

�27�

where the pressure p=�cs
2. From Eq. �20�, we can obtain

	
�

e�ie�j f�
�1� = − 	��t0
ij

�0� + �kPijk
�0� − 	

�

e�ie�jS�
�0�� ,

�28�

where 
ij
�0�=	�e�ie�j f�

�0� and Pijk
�0�=	�e�ie�je�kf�

�0�. For the
D2Q9 lattice model, 
ij

�0� and Pijk
�0� are given by


ij
�0� = �uiuj + �cs

2�ij, Pijk
�0� = �cs

2�ui� jk + uj�ik + uk�ij� .

�29�

Some standard algebra will show that

�t0
ij
�0� = cs

2�ij�t0� − cs
2uj�i� − cs

2ui� j� + O�u3� , �30�

�kPijk
�0� = cs

2�ij�k��uk� + �cs
2� jui + �cs

2�iuj + cs
2ui� j� + cs

2uj�i� .

�31�

With the above results, we have

�t0
ij
�0� + �kPijk

�0� = cs
2�ij��t0� + �k��uk�� + �cs

2�� jui + �iuj� .

�32�

Using Eq. �32� with Eq. �23� and noting that 	�e�ie�jS�
�0�=

−cs
2�ij�ur /r+O�u3�, we can simplify Eq. �28� as

	
�

e�ie�j f�
�1� = − 	�cs

2�� jui + �iuj� . �33�

Substituting Eq. �33� into Eq. �27� yields

�t1��ui� = � j�	�cs
2�� jui + �iuj�� +

1

r
	�cs

2��rui + �iur�

−
2�cs

2	ui

r2 �ir. �34�

Combining Eq. �34� with Eq. �26� ��t=�t0+�t�t1�, we can
obtain

�t��ui� + � j��uiuj� = − �ip + � j���� jui + �iuj�� +
�

r
��rui + �iur�

−
�uiur

r
−

2�ui

r2 �ir, �35�

where �=	�cs
2�t. Clearly, in the incompressible limit ��


�0�, Eqs. �25� and �35� reduce to the axisymmetric conti-
nuity Eq. �1� and momentum Eq. �4�, respectively.

Now a brief comparison between the improved and origi-
nal schemes is made. First, both schemes are within the
framework of the standard LB method using the single-
particle density distribution function and have a simple struc-
ture so that the general benefits of the standard LB method
are retained. On the other hand, in the improved scheme, the
term ���rui+�iur� /r is recovered in an efficient way that is
consistent with the philosophy of the LB method. As a con-
sequence, the source term and the calculations of macro-
scopic velocities are greatly simplified. Accordingly, the
problems that plague the original scheme are overcome.

B. MRT collision model

1. MRT-LB method

In Ref. �34�, the MRT collision model, which is an impor-
tant extension of the relaxation LB method proposed by
Higuera �2,3�, has been employed to construct an axisym-
metric MRT-LB scheme based on the above-mentioned origi-
nal scheme. This scheme was later extended to axisymmetric
two-phase flows with large density ratio in Ref. �35�. Much
research has shown that the MRT collision model can sig-
nificantly improve the numerical stability of LB schemes by
carefully separating the relaxation times of hydrodynamic
and nonhydrodynamic moments. A detailed description of
the MRT-LB method can be found in Refs. �8–13�. Accord-
ing to Refs. �12,13�, a D2Q9 MRT-LB scheme with a semi-
implicit treatment of the source term is given by

f��x + e��t,t + �t� − f��x,t� = − �̄����f� − f�
eq���x,t� +

�t

2
��S���x,t�

+�S���x+e��t,t+�t�
� , �36�

where �̄=M−1�M is the collision matrix, in which �
=diag�s� ,se ,s
 ,sj ,sq ,sj ,sq ,sv ,sv� is a diagonal Matrix and M
is a orthogonal transformation matrix �see Ref. �9��.

Through the transformation matrix, the distribution func-
tion f� and its equilibrium distribution f�

eq can be projected
onto the moment space with m=Mf and meq=Mfeq, where
f= �f0 , f1 , . . . , f8�T and feq= �f0

eq , . . . , f8
eq�T. For the D2Q9 lat-

tice model, m and meq are given by

m = ��,e,
, jx,qx, jy,qy,pxx,pxy�T, �37�

meq = ��,eeq,
eq, jx,qx
eq, jy,qy

eq,pxx
eq,pxy

eq�T = ��1,− 2 + 3u2,1

− 3u2,ux,− ux,uy,− uy,ux
2 − uy

2,uxuy�T, �38�

where � is the density; e is the energy mode; 
 is related to
energy square; �jx , jy� are the momentum components;
�qx ,qy� correspond to energy flux; and �pxx , pxy� are related to
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the diagonal and off-diagonal components of the stress ten-
sors �9�.

Because of the implicit treatment of the source term, Eq.
�36� cannot be directly applied in numerical simulations. The
following explicit MRT-LB scheme can be obtained with

f̄�= f�−0.5�tS� �12,13�:

f̄��x + e��t,t + �t� = f̄��x,t� −��̄��� f̄� − f�
eq���x,t� +��t�S�

− 0.5�̄��S����x,t�. �39�

Usually, as shown in Ref. �9�, the collision process of
MRT-LB schemes is carried out in the moment space

m̄+ = m̄ − ��m̄ − meq� + �t�I −
�

2
�S̃ , �40�

where m̄=Mf̄ and S̃=MS, in which S= �S0 ,S1 , . . . ,S8�T,
while the streaming process is implemented in the velocity
space

f̄��x + e��t,t + �t� = f̄�
+�x,t� , �41�

where f̄+=M−1m̄+. According to Eq. �40�, the collision pro-
cess of the momentum components can be written as

j̄x
+ = j̄x − sj� j̄x − jx

eq� + �t�1 − 0.5sj�S̃3, �42�

j̄y
+ = j̄y − sj� j̄y − jy

eq� + �t�1 − 0.5sj�S̃5. �43�

The macroscopic equations recovered form MRT-LB
schemes can also be derived through the Chapman-Enskog
analysis, which can be implemented in the moment space.
For the details of this procedure, readers are referred to Refs.
�9,12,13,45�. Several relationships are given below consider-
ing that they will be used in the next subsection,

− see
�1� = 2���xux + �yuy�, − svpxx

�1� =
2�

3
��xux − �yuy�,

− svpxy
�1� =

�

3
��xuy + �yux� , �44�

where e�1�, pxx
�1�, and pxy

�1� are defined as �tm
�1�
m−meq, cor-

responding to �t f�
�1�
 f�− f�

eq. Note that terms of O�Ma3�
have been neglected in Eq. �44�.

2. Axisymmetric MRT-LB scheme

It is known that, with the benefit of using MRT collision
model, the collision process of each moment can be manipu-
lated independently in the moment space. The approach of
modifying the collision process to adjust macroscopic equa-
tions has been used in Ref. �46�, in which the two moments
related to the energy flux were modified to achieve a consis-
tent viscosity in the macroscopic momentum and energy
equations.

In the present work, it is found that the collision process
of the momentum components can be appropriately manipu-
lated to recover the velocity gradient term ���rui+�iur� /r in
the axisymmetric momentum equation. To this end, we need
to evaluate ���rui+�iur� /r in a way consistent with the phi-

losophy of the MRT-LB method. Note that, from Eq. �44�,
we have

− �1

6
see

�1� +
1

2
svpxx

�1�� =
�

3
��xux + �xux� . �45�

Using Eqs. �44� and �45�, we can obtain

�

r
��rur + �rur� = −

�

sv
�1

6
see

�1� +
1

2
svpxx

�1�� , �46�

�

r
��ruz + �zur� = − �pxy

�1�, �47�

where �= �1 /sv−0.5��t� /3, �= �1−0.5sv��t /r, and �r ,z� cor-
respond to �x ,y�. Thus we can modify the collision process
of the momentum components as follows:

� j̄x
+�new = j̄x

+ − �t���se/6sv�e�1� + 0.5pxx
�1�� , �48�

� j̄y
+�new = j̄y

+ − �t�pxy
�1�. �49�

Here e�1�, pxx
�1�, and pxy

�1� are given by m�1�=m̄�1�+0.5S̃ �recall-

ing the equation f̄�= f�−0.5�tS��, in which m̄�1� is approxi-
mated by �tm̄

�1�
m̄−meq. The source term in the moment

space is S̃=−�ur /r�meq+ S̃� with S̃�� given as follows �12�:

S̃0� = 0, S̃1� = 6u · F, S̃2� = − 6u · F ,

S̃3� = Fx, S̃4� = − Fx, S̃5� = Fy, S̃6� = − Fy ,

S̃7� = 2�uxFx − uyFy�, S̃8� = �uxFy + uyFx� , �50�

where Fx=Fr and Fy =Fz are given in Eq. �12�. It can be
readily proved that, with such a choice of the source term,
the relationships shown in Eq. �44� will not change. Finally,
Eqs. �40� and �41� together with the modified collision pro-
cess of the momentum components, Eqs. �48� and �49�, con-
stitute a consistent axisymmetric MRT-LB scheme for in-
compressible axisymmetric flows. The macroscopic variables

are calculated by Eqs. �14� and �16� through replacing f��

with f̄�.

C. Extension to axisymmetric rotational flows

By including the effect of azimuthal rotation, the pro-
posed scheme can be applied to axisymmetric rotational
flows. The macroscopic governing equation for azimuthal
velocity u� in cylindrical coordinates is given by �40�

���tu� + � j�uju��� = �� j�� ju�� +
�

r
�ru� −

2�u�ur

r
−

�u�

r2 .

�51�

It is seen that the above equation is an advection-diffusion
equation. Usually, a D2Q4 or D2Q5 lattice model is enough
for an advection-diffusion equation in terms of the computa-
tional accuracy as well as the computational efficiency �47�.
Furthermore, as suggested in Ref. �37�, the source term of an

IMPROVED AXISYMMETRIC LATTICE BOLTZMANN SCHEME PHYSICAL REVIEW E 81, 056707 �2010�

056707-5



advection-diffusion equation can be treated more simply than
the usual forcing strategy. Hence, in this study, the following
evolution equation with a D2Q4 lattice �e� :�=1,2 ,3 ,4.� is
adopted to solve the azimuthal velocity,

g��x + e��t,t + �t� − g��x,t� = − �g�g��x,t� − g�
eq�x,t��

+ �tS�
g�x,t� . �52�

Here g� is the distribution function for azimuthal velocity,
�g= �1+ �	g�te�r /r�� / �	g+0.5�, and

g�
eq =

�u�

4
�1 + 2

�e� · u�
c2 �, S�

g = −
1

r
�2ur +

�

r
�g�

eq,

�53�

where �=�t	gc2 /2 is the kinematic viscosity and 	g=2	 /3.
Clearly, the source term S�

g is also simple and contains no
gradient terms. Note that, when the effect of azimuthal rota-
tion is considered, an “inertial force” �u�

2�ir /r should be in-
cluded in Fi of Eq. �12�. Moreover, in the incompressible
limit, the density � in the equilibrium distribution function
g�

eq can be directly replaced by �0, and then the macroscopic
azimuthal velocity is calculated by u�=	�g� /�0.

IV. NUMERICAL VALIDATION

A. Hagen-Poiseuille flow and 3D Womersley flow

To validate the proposed scheme, numerical simulations
are carried out for some typical axisymmetric flows. First,
we consider the Hagen-Poiseuille flow, which is an axisym-
metric steady, laminar flow of a viscous fluid through a pipe
of uniform circular cross section and driven by a constant
external force in the axial direction. The analytical solution
for the axial velocity of the Hagen-Poiseuille flow is given
by

u�r� = U0�1 −
r2

R2� , �54�

where U0=aR2 / �4�� is the maximum axial velocity in the
pipe, a is the external force, and R is the radius of the pipe.

In the simulation, we adopt a Nz�Nr=40�20 lattice �Nz
and Nr exclude the extra layers outside the boundaries� with
a line of symmetry at r=0 and a solid wall at r=20. The
no-slip boundary condition is imposed along the solid wall
�48�, the periodic boundary conditions are applied to the inlet
and outlet, and the specular reflection boundary �26� is em-
ployed along the axisymmetric line. The singularity at r=0 is
treated following previous studies. In Refs. �29,33�, the
source term at r=0 was evaluated with the L’Hôpital’s rule;
after applying this rule, the source term was set to be zero.
Similarly, in Ref. �26�, all the terms related to �1 /r� were
only applied at the position of r�0. In other words, these
terms were approximately taken as zero at r=0. In the
present paper, a similar treatment is adopted. The maximum
velocity U0 is set to be 0.05 with a=10−4 and �=0.2. The
numerical axial velocity is shown in Fig. 1, in which the
analytical solution is also presented for comparison. The
relative global error Eu= 
u�r�−ua�r�
 / 
ua�r�
 is evaluated.
Here, the subscript a denotes “analytical” and the norm is

defined as 
u�r�
= �	ru
2�r��1/2. The obtained Eu is 2.3

�10−3, which indicates the present numerical solution agrees
well with the analytical one.

When the constant force in the Hagen-Poiseuille flow os-
cillates with a period T, the flow will become a 3D Womer-
sley flow, which is an unsteady axisymmetric flow in a cir-
cular pipe driven by a periodic force a=a0 cos��t�, where a0
is the maximum amplitude and the �=2� /T is the angular
frequency �49�. The Reynolds number is defined as Re
=�0UcD /� with the characteristic length D=2R and the
characteristic velocity Uc=a0�2 / �4�0��. Here, �
=R��0� /� is the Womersley number. The analytical solu-
tion for the Womersley flow is �27,49�

u�r,t� = Re� a0

i�0�
�1 −

J0�r�/R�
J0��� �ei�t� , �55�

where J0 is the zeroth-order Bessel function of the first type
and i is the imaginary unit, �= �−�+ i�� /�2. Note that Re in
Eq. �55� denotes the real part of a complex number rather
than the Reynolds number.

In this test, the boundary conditions and the grid system
are the same as those used in the simulation of Hagen-
Poiseuille flow. Following previous studies, in the computa-
tion we set Re=1200, T=1200, a0=10−3 /3, �=7.927, �
=�0=1, and �=0.1 /3; the simulations begin with an initial
condition of zero velocity and the numerical results at differ-
ent times are obtained after running ten periods. Figures 2
and 3 compare the axial velocity predicted by the present
scheme with the analytical solutions. It can be found that the
numerical results are in excellent agreement with the analyti-
cal one. To quantify the results, a relative error defined as
�=	i�u�ri�−ua�ri�� /	i�ua�ri�� �27� �the subscript a denotes
“analytical”� is adopted to enable a comparison between the
present solution and the numerical solution in Ref. �27�,
which is seemingly a better one among the results reported in
previous studies. The global error ��� is the average of � over
the period. The present ��� is 0.33%, which is smaller than
the result 1.3% reported in Ref. �27�.

B. Axisymmetric rotational flows

In this subsection, the Wheeler benchmark problem in the
Czochralski crystal growth �26,50–52� and the lid-driven ro-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u(
r)
/U

0

r/R

FIG. 1. Analytical �solid line� and numerical �symbol� results of
Hagen-Poiseuille flow.
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tational flow in cylindrical cavities �53–59� are taken as the
test examples to validate the capability of the proposed
scheme for the simulation of axisymmetric rotational flows.
The configuration of the Wheeler problem is descried in Fig.
4. In the problem, a vertical cylindrical crucible of radius Rc
filled with a melt to a height H=Rc rotates with an angular
velocity �c. On the top of the melt, it is bounded by a co-
axial crystal with radius Rx=�Rc ��=0.4�, which rotates
with an angular velocity �x. The flow structure depends on
the Reynolds number Rec=Rc

2�c /� and Rex=Rc
2�x /�.

In the computations, the value of the characteristic veloc-
ity Ut=�Rc�x is taken as Ut�0.1 so that the Mach number
of the flow is sufficiently small. The relaxation times can be
determined with Ut and Rex. The nonequilibrium extrapola-
tion scheme �60� is employed to treat different boundary

conditions of f�� and g�, except that the specular reflection

boundary is applied to f�� along the axisymmetric line. The
zero velocities are initialized everywhere. A steady state can
be reached after a number of iterations and the convergence
criterion is

max���uz
2 + ur

2�n+1 − ��uz
2 + ur

2�n� � � , �56�

where n and n+1 represent the old and new time levels,
respectively. � is set to be 10−8 in this test �26�.

0.0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

.0

n = 3

n = 2

n = 1

n = 0

n = 15

n = 14

n = 13

n = 12

u(
r,t
)

r/R

FIG. 2. Analytical �solid line� and numerical �symbol� results of
Womersley flow at different time t=nT /16 with n
=0,1 ,2 ,3 ,12,13,14,15.
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FIG. 3. Analytical �solid line� and numerical �symbol� results
of Womersley flow at different time t=nT /6 with n
=4,5 ,6 ,7 ,8 ,9 ,10,11.
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FIG. 4. Configuration of the Wheeler problem.
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FIG. 5. Streamlines of the Wheeler problem: �a� Rex=102, Rec

=−25; �b� Rex=103, Rec=−250.

IMPROVED AXISYMMETRIC LATTICE BOLTZMANN SCHEME PHYSICAL REVIEW E 81, 056707 �2010�

056707-7



The streamlines of �Rec ,Rex�= �102 ,−25� and �103 ,
−250� are presented in Fig. 5, from which we can see that
two vortices with opposite directions appear in the upper left
corner and the lower right corner. With the increase of the
Reynolds number, the upper left vortex moves toward right
corner and the lower right primary vortex moves to left and
dominates the whole flow field. These behaviors are also
found in previous numerical studies. To quantify the results,
the stream function defined as �r�=−ruz, �z�=rur is calcu-
lated. Table I shows the comparisons of �min and �max be-
tween the present results and the results reported in Refs.
�26,51�. Good agreement can be concluded from the table.
The grid dependence of the results has been examined before
the comparison. Three different grid sizes are considered
with the same characteristic velocity. The example of Rex
=103, Rec=−250 is given in Table II, where we can see that
the gird size of Nr�Nz=100�100 is sufficient to obtain
accurate results.

In the Wheeler problem, if we set Rec=�c=0 and Rx
=Rc, the flow will become the lid-driven rotational flow in
cylindrical cavities, which is an important generic problem
investigated both experimentally �53–55� and numerically
�56–59�. The cylindrical cavity rotational flow is known to
depend on two parameters, the aspect ratio A=H /R and the
Reynolds number Re=R2� /�. In the literature, it has been
confirmed that, at certain combinations of A and Re, a recir-
culation region will form along the axis of the cylinder. Such
a recirculation region is called the vortex breakdown bubble.
In this study, the cases Re=990 and 1290 with A=1.5 are
considered following Ref. �59�. The experimental results of
these two cases are available �55�. In this test, the boundary
treatments are similar to those used in the Wheeler problem.
The relaxation time 	 is chosen as 	=0.02 to ensure the
characteristic velocity Ut=�R�0.1 and the convergence cri-
terion is set to be 10−9. The obtained streamlines are pre-
sented in Fig. 6. From the figure it is seen that a single vortex
breakdown appears at Re=1290, whereas the result of Re

=990 do not reveal any vortex breakdown. Table III shows
the magnitude �uz,max� and the location �hmax /H� of the maxi-
mum axial velocity on the axis, in which the experiment
results �55� and the numerical results obtained from 3D-LB
model �59� are also listed for comparison. To sum up, the
present results are well consistent with the previous ones.
Similarly, the grid-dependence study has been conducted be-
fore the comparison. The example of Re=990 is given in
Table IV, from which we can see that, when Nr�Nz in-
creases from 100�150 to 150�225, there is little change
for the results. So we can say that the grid size of 100
�150 can give sufficient accurate results. Through a similar
study, the same grid size is also adopted for the case Re
=1290.

The comparison between the BGK and MRT collision
models is made through simulating the cylindrical cavity ro-
tational flow at Re=1290 with a low viscosity v=1.67
�10−3, which corresponds to 	=0.005 and sv=1 / �0.5
+0.005�. The convergence criterion � is set to be 10−10 as the
characteristic velocity Ut is greatly decreased. The simula-
tion results are presented in Fig. 7. It can be observed that
the BGK model is numerically unstable when 	=0.005, but
the MRT model can give a stable and correct solution under
the same condition. The comparison illustrates that the en-
hanced numerical stability of the MRT model compared with
the BGK model in that the MRT model is able to achieve
stable results at lower viscosities �12�.

Finally, an important issue should be pointed out. Strictly
speaking, in the axisymmetric MRT-LB method the bulk vis-
cosity should be equal to the dynamic viscosity, which re-

TABLE I. Comparisons of minimum and maximum stream
function for the Wheeler problem.

Reference

Rex=102, Rec=−25 Rex=103, Rec=−250

�min �max �min �max

Present −0.0494 0.1180 −1.444 1.128

Ref. �26� −0.0514 0.1140 −1.478 1.114

Ref. �51� −0.0443 0.1177 −1.478 1.148

TABLE II. Grid-dependence study for the Wheeler problem at
Rex=103, Rec=−250.

Grid size �min �max

50�50 −1.301 1.052

100�100 −1.444 1.128

150�150 −1.488 1.158

Ref. �51� −1.478 1.148

r/R
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0.5

1

1.5

r/R

z/
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0 0.5 1
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0.5

1

1.5

(a) (b)

FIG. 6. Streamlines of the cylindrical cavity rotational flow: �a�
Re=990; �b� Re=1290.

TABLE III. Comparisons of magnitude and location of the
maximum axial velocity on the axis for the cylindrical cavity rota-
tional flow.

Reference

Re=990 Re=1290

uz,max hmax /H uz,max hmax /H

Present 0.0987 0.213 0.0716 0.147

Experimental �55� 0.097 0.21 0.068 0.14

3D LB model �59� 0.093 0.22 0.072 0.16
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quires se=sv. This is because, for an axisymmetric LB
scheme in cylindrical coordinates, the pseudodivergence of
velocity �iui=−ur /r is nonzero. While in the Cartesian coor-
dinate system, the real divergence of velocity is zero for
incompressible flows. In simulations, an appropriate differ-
ence between sv and se may be permitted if needed. How-
ever, when se significantly differs from sv, large errors will
be introduced. The stable solution presented in Fig. 7 is ob-
tained with se=sv. In fact, a MRT collision model with se
=sv is similar to a TRT collision model �14–16�, which is an
important and natural simplification of MRT collision model
�61�. In TRT collision models, the moments of even �se=s


=sv� and odd orders are relaxed at different rates. For con-
venience, one can directly set se=s
=sv in the applications of
the present axisymmetric MRT-LB scheme.

V. CONCLUSIONS

In this paper, an improved axisymmetric LB scheme has
been developed for incompressible axisymmetric flows. It
has been shown that constructing a simple axisymmetric LB
scheme within the framework of the standard LB method
using the single-particle density distribution function is pos-
sible. The main strategy is to recover the term ���rui
+�iur� /r in the macroscopic momentum equation in an effi-
cient way that is consistent with the philosophy of the LB
method. The Chapman-Enskog analysis has been employed
to demonstrate that the macroscopic equations can be cor-
rectly recovered in the limit of small Mach number. As a
result of the strategy, the source term becomes simple and
contains no velocity gradient terms. Furthermore, the calcu-
lations of macroscopic velocities are greatly simplified. The
singularity problem at the axis is appropriately treated fol-
lowing previous studies, retaining the easy treatment of
boundary conditions. In the proposed scheme, both the BGK
and MRT collision models have been considered. In addition,
its extension to axisymmetric rotational flows is also pre-
sented. Numerical simulations have been carried out for
some typical axisymmetric flows. The numerical experi-
ments show that the results predicted by the present scheme
are in good agreement with the analytical solutions and the
results reported in previous studies. The comparison between
the BGK and MRT collision models has also been made. It is
shown that the MRT collision model exhibits an excellent
numerical stability compared with the BGK model when the
viscosity approaches zero. This feature makes MRT-LB
schemes more useful in practical applications.
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TABLE IV. Grid-dependence study for the cylindrical cavity
rotational flow at Re=990.

Grid size uz,max hmax /H

50�75 0.0987 0.227

100�150 0.0987 0.213

150�225 0.0992 0.213

Experimental �55� 0.097 0.21
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Re=1290 with a low viscosity �=1.67�10−3 using the BGK �left�
and MRT �right� collision models.
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