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To efficiently solve the three-dimensional �3D� time-dependent linear and nonlinear Schrödinger equation,
we have developed a large-scale parallel code RSP-FEDVR �B. I. Schneider, L. A. Collins, and S. X. Hu, Phys.
Rev. E 73, 036708 �2006��, which combines the finite-element discrete variable representation �FEDVR� with
the real-space product algorithm. Using the similar algorithm, we have derived an accurate approach to solve
the time-dependent close-coupling �TDCC� equation for exploring two-electron dynamics in linearly polarized
intense laser pulses. However, when the number �N� of partial waves used for the TDCC expansion increases,
the FEDVR-TDCC code unfortunately slows down, because the potential-matrix operation scales as �O�N2�.
In this paper, we show that the full potential-matrix operation can be decomposed into a series of small-matrix
operations utilizing the sparse property of the �N�N� potential matrix. Such optimization speeds up the
FEDVR-TDCC code by an order of magnitude for N=256. This may facilitate the ultimate solution to the 3D
two-electron quantum dynamics in ultrashort intense optical laser pulses, where a large number of partial
waves are required.
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I. INTRODUCTION

Electron correlation plays an essential role in understand-
ing many-body phenomena ranging from atomic structure
formation, superconductivity, to chemical reactions. Even for
few-body atomic systems such as Helium, it has been a chal-
lenge to fully explore electron-electron interactions, espe-
cially in the case that the system is under strong driving by
external forces. For example, in the single-photon induced
double-ionization process of He, it is difficult to have an
insight into the dynamical energy sharing between the two
electrons without full quantum-mechanics calculations �1�.
Another example is the appearance of the “kneelike” double
ionization signal of He exposed to intense optical laser
pulses �2–7�, where electron-electron interaction is the key to
understand the nonsequential multiple ionizations in intense
laser-driven multielectron atoms �8�. Progress has been made
recently for both time-dependent and time-independent cal-
culations of single- and double-photon double ionization of
He, which have taken the full electron correlation into ac-
count �9–17�. However, when more and more photons in-
volved in the two-electron ionization process, it has become
very difficult for full-dimensional quantum calculations of
He exposed to intense optical laser pulses, although there
have been attempts to attack such a hard problem by directly
discretizing the five-dimensional spatial grid in past years
�18,19�.

For a two-electron system exposed to intense laser pulses,
a large and fine-enough spatial grid is demanded to well
accommodate and characterize the fast moving electron
wave packets. Equal-spacing grid requires enormous number
of points to span the space, which is unaffordable even with
nowadays supercomputers. While, variable-size grid �20�
cannot be easily implemented with finite-difference �FD�

based algorithms. To flexibly place fine grids to where they
are needed, we have found that the finite-element discrete
variable representation �FEDVR� has great advantages over
the FD-based method �21–24�. In the FEDVR method, one
naturally divides the space into various-size finite elements
along each dimension. In the Cartesian coordinate, these fi-
nite elements along x, y, and z axis are orthogonal and can be
directly taken their product to represent the three-
dimensional �3D� space. Within each finite element, one can
in principle use any complete basis function, such as the
Legendre polynomial �24� or the Fourier function �25�, to
represent the wave function in arbitrary order, though the
connection between neighbor elements needs special care.
Under such a representation, the kinetic-energy operator are
block diagonal and each block acts separately on the wave
function within its corresponding finite element. The sparse
kinetic-energy matrix can therefore be decomposed into even
and odd blocks, which alternatively act on the wave function
in the fashion of the real-space product �RSP� algorithm
�26�. For two-electron system, using the time-dependent
close-coupling �TDCC� method �27� one can expand the
two-electron wave function in terms of bipolar spherical har-
monics �partial waves�. Thus, the resulting potential-energy
matrix couples the N partial waves used in the expansion. In
the previous implementation of the FEDVR-TDCC code
�24�, we have directly diagonalized the potential-energy ma-
trix and made its action on the wave function by N�N ma-
trix operations, which obviously scales as �O�N2�. Calcula-
tions using such implemented FEDVR-TDCC code have
been performed for x-ray interactions with He �28–30�, for
electron-Rydberg-atom collisions �31�, and for three-body
electron-ion recombinations �32�, in which less than 100 par-
tial waves were involved in the expansion. However, when
the total partial waves �N� increases, as is in the case of He
exposed to intense optical pulses, the full-matrix operation
got so slow that such ab initio studies become impractical.
Full-dimensional quantum calculations for two-electron sys-*shu@lle.rochester.edu
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tems driven by intense optical laser pulses has long been
sought for advancing our understanding of electron correla-
tions in the strong-field physics community. The technique
demonstrated in this paper shall make such complete calcu-
lations practical.

We will show that the full �N�N� potential-energy matrix
has special features which can be utilized for speeding up the
FEDVR-TDCC code. For example, the electron-nucleus Cou-
lomb interaction matrix is diagonal, while the electron-
electron interaction matrix is block diagonal in which only
those partial waves having same total angular-momentum
quantum number coupling to each other. Moreover, for lin-
early polarized laser pulses the laser-electron interaction ma-
trix is block tridiagonal. Thus, the N�N potential-energy
matrix is still sparse so that we can utilize this property to
further optimize the FEDVR-TDCC code, by decomposing
them into a series of small-matrix operations. In Sec. II, we
shall layout the fundamentals of using the time-dependent
close-coupling method to solve the two-electron Schrödinger
equation under the FEDVR scheme. We then describe how to
enhance the code performance by further decomposing the
N�N potential-energy matrix operations into a series of
small-matrix operations in Sec. III. Numerical testing results
and discussions will be presented in Sec. IV. Finally, we shall
summarize the paper.

II. RSP-FEDVR-TDCC METHOD FOR TWO-ELECTRON
DYNAMICS IN INTENSE LASER PULSES

To investigate the dynamics of two-electron quantum sys-
tems �in a central potential with nuclear charge Z� exposed to
intense laser pulses, we solve the following time-dependent
Schrödinger equation in full dimensions �atomic units are
used throughout�,

i
���r1,r2;t�

�t
= ��r1

+ �r2
−

Z

r1
−

Z

r2
+

1

�r1 − r2�

+ E�t� · �r1 + r2����r1,r2�t� , �1�

where � is the Laplace operator in three dimensions, and
variables with bold face represent vectors. Namely, r1 and r2
are the position vectors of the two electrons with respect to
the nucleus at the origin. The usual dipole approximation is
used for the laser-electron coupling. It is computationally
intractable to numerically solve Eq. �1� in its full six dimen-
sions. Instead, we can use the time-dependent close-coupling
method �27� to obtain a tractable form of Eq. �1�. Namely,
for the motion of two electrons in a central potential, we can
expand the total wave function ��r1 ,r2 ; t� in terms of the
bipolar spherical harmonics, Yl1l2

L,M��1 ,�2�
=	m1m2

Cl1m1l2m2

LM Yl1m1
��1 ,�1�Yl2m2

��2 ,�2� with the Clebsch-
Gordan coefficients Cl1m1l2m2

LM for the symmetry �LM�,

��r1,r2;t� = 	
LM

	
l1l2

�l1l2
�LM��r1,r2;t�

r1r2
Yl1l2

L,M��1,�2� . �2�

We note that the electron-electron Coulomb repulsion term
1 / �r1−r2� and the field interaction terms E�t� · �r1+r2� can

also be expanded in terms of bipolar spherical harmonics:

1

�r1 − r2�
= 	

l=0

�
�− 1�l4	


2l + 1
�

r

l

r�
l+1Yll

0,0��1,�2� �3�

where r
=min�r1 ,r2� and r�=max�r1 ,r2� and for linearly
polarized pulse �say, polarization along z axis�,

E�t� · �r1 + r2� =
4	


3
E�t��r1Y10

1,0��1,�2� + r2Y01
1,0��1,�2�� .

�4�

From now on, we drop the M dependence in the expansions
for the case of linear polarization �M =0�.

Substituting these expansions into the above Schrödinger
equation �1� and integrating over the angles �1 and �2 �tak-
ing into account the orthonormal properties of spherical har-
monics� yields a set of coupled partial differential equations,

i
�

�t
�l1l2
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L �r1,r2;t�

+ 	
L�

	
l1�l2�

	
l=0

�
4	�− 1�l


2l + 1

r

l

r�
l+1F0�l1�l2�

L� �r1,r2;t�

+ 	
L�

	
l1�l2�

4	


3
E�t��r1F1
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L� �r1,r2;t� , �5�

where the kinetic-energy operator T̂= T̂1+ T̂2 and the

potential-energy operator V̂c for the coupling between
nucleus and electrons can be expressed as

T̂ = T̂1 + T̂2 = −
1

2

�2

�r1
2 −

1

2

�2

�r2
2 , �6�

Vc�r1,r2� =
l1�l1 + 1�

2r1
2 +

l2�l2 + 1�
2r2

2 −
Z

r1
−

Z

r2
. �7�

While, the second and third terms in the right hand of Eq. �5�
represent the electron-electron Coulomb repulsion and the
laser-electron coupling, respectively. The angular-momentum
dependent coupling functions have the following forms:

F0 = 
�2l + 1�2�2l1� + 1��2l2� + 1��2L� + 1�/�4	�2

� Cl0l1�0
l10

Cl0l2�0
l20

C00L�0
L0

� � l l1� l1

l l2� l2

0 L� L
� , �8�

F1 = 
9�2l1� + 1��2l2� + 1��2L� + 1�/�4	�2

� C10l1�0
l10

C00l2�0
l20

C10L�0
L0

� �1 l1� l1

0 l2� l2

1 L� L
� , �9�
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F2 = 
9�2l1� + 1��2l2� + 1��2L� + 1�/�4	�2

� C00l1�0
l10

C10l2�0
l20

C10L�0
L0

� �0 l1� l1

1 l2� l2

1 L� L
� , �10�

in which the Clebsch-Gordan coefficients �C� and the 9j
symbols are involved. By using the partial-wave indexing,
the coupled Eq. �5� can be rewritten in the following com-
pact form:

i
�

�t
�i�r1,r2;t� = �T̂ + V̂c��i�r1,r2;t�

+ 	
j

�V̂F0�i, j� + V̂F12�i, j��� j�r1,r2;t� ,

�11�

where the partial-wave index i or j stands for a combination
of angular-momentum numbers �l1l2L� or �l1�l2�L��. The non-

diagonal potential matrix V̂F0 and V̂F12 can be expressed in
terms of the above functions of F0 , F1, and F2,

V̂F0�i, j� = 	
l=0

�
4	�− 1�l


2l + 1

r

l

r�
l+1F0�i, j� , �12�

V̂F12�i, j� =
4	


3
E�t��r1F1�i, j� + r2F2�i, j�� . �13�

To discretize the radial space r1 and r2, we have used the
FEDVR, which has great advantages over the FD-based
method �21–24�. In the FEDVR method, one naturally divide
r1 and r2 into various-size finite elements. Within each finite
element, we use the Legendre polynomial �24� as the basis
DVR function to represent the wave function in arbitrary
order �M�. The connection between neighbor elements can
be done by using a bridge function that guarantees the con-
tinuity across the element boundaries. The potential-energy
matrix as well as the kinetic-energy matrix can be easily
evaluated by the M-point quadrature rule. Details about the
FEDVR method have been presented in Ref. �24�.

There are many numerical implementations for solving
the coupled partial differential Eq. �11�, such as the “stag-
gered leapfrog.” However, in order to keep the unitary propa-
gation of the Schrödinger equation, these methods can re-
quire very small time-steps. It can become very time-
consuming, particularly for calculations where large radial
meshes and many partial waves are required. For these con-
siderations, we have applied the RSP �26� algorithm to
propagate the coupled wave functions. The RSP algorithm
automatically guarantees a unitary propagation and signifi-
cantly reduces the computational efforts. Implementing with
three-point finite difference, the original idea of RSP �26�
was to split the tridiagonal kinetic-energy matrix into a series
of even and odd 2�2 matrices, which alternatively acts on
the corresponding wave function. The similar idea was also
working for splitting the total Hamiltonian into the kinetic-

energy part and the potential part. By gathering the total N
partial waves �at a radial point �r1 ,r2�� into a column vector,
i.e.,

��i�r1,r2;t�� = 

�1�r1,r2;t�
�2�r1,r2;t�

]

�i�r1,r2;t�
]

�N�r1,r2;t�
� , �14�

one can approximate the temporal propagation of the
coupled wave functions from time t to t+�t to have the
following form �with an accuracy of ���t�3�:

��i�r1,r2;t + �t�� = exp�−
i�t

2
TÎ�exp�−

i�t

2
VcÎ�

� exp�− i�t�V̂F�ij�

� exp�−
i�t

2
VcÎ�exp�−

i�t

2
TÎ�

� ��i�r1,r2;t�� , �15�

where Î is the N�N unitary matrix, and the nondiagonal

potential-energy operator �V̂F�ij = V̂F0�i , j�+ V̂F12�i , j�, which
is “sandwiched” by the kinetic energy and the diagonal
potential-energy operators. The diagonal action of the expo-
nential potential Vc just contributes a phase shift to each
partial wave. The only part that requires specific treatment is

the nondiagonal potential operator �V̂F�ij, which is a N�N
matrix that couples the partial waves at each radial point
�r1 ,r2�. Therefore, for its exponential operation on the partial
waves, we must diagonalize this matrix first, i.e.,

�D−1��V̂F�ij�D�= Î�, followed by the operation

e−i�t�V̂F�ij��i� = �D�e−i�t�Î�D−1���i� , �16�

at each radial point �r1 ,r2�. The diagonalization matrix �D�
and its inverse matrix �D−1� are also N by N matrices. One

needs to diagonalize the matrix �V̂F�ij only once for each grid
point �r1 ,r2� before the temporal propagation starts. The
stored matrices �D�, �D−1�, and the column vector � �consist-

ing of eigenvalues of �V̂F�ij� can be used throughout the tem-
poral propagation �24�. It is noted that the field term E�t� can
directly multiple the eigenvalue vector � in the exponential
factor. Obviously, such an implementation requires N�N
matrix operation for each spatial point �r1 ,r2�, which can
significantly slow down calculations as the number of partial
waves N becomes large.

III. OPTIMIZING THE NON-DIAGONAL POTENTIAL-
ENERGY MATRIX OPERATION

As we discussed above, the nondiagonal potential-energy

operator �V̂F�ij consists of the electron-electron Coulomb re-

pulsion V̂F0�i , j� and the laser-electron coupling V̂F12�i , j�.
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Each of them is a N�N matrix. The full diagonalization of

�V̂F�ij and carrying out the operation such as Eq. �16� are
very expansive when the number of partial waves N becomes
large, as it scales as �O�N2�. Taking a close look at the

matrix structures of V̂F0�i , j� and �V̂F12�ij, we find that the
former is block diagonal and the latter is block tridiagonal
�for linearly polarized fields�. This is due to the following
properties of the Clebsch-Gordan coefficients:

C00L�0
L0 = 0 for L� � L ,

C00L�0
L0 = 1 for L� = L , �17�

and

C10L�0
L0 = 0 if �L� − L� � 1, �18�

in Eqs. �8�–�10�. Namely, the matrices �V̂F0�i , j�� and �V̂F12�ij
are still sparse and can be further optimized for fast opera-
tions.

To be specific, if we organize the same total angular-
momentum partial waves in adjacent indices, the electron-

electron interaction matrix �V̂F0�i , j�� is block diagonal since
the partial waves couple to each other only within the same
total angular momentum. Therefore, it can be decomposed
into a sum of relatively small nonzero block matrices, each
of that corresponds to a specific total angular momentum L.
This is schematically shown by Fig. 1�a�, where each
“square” represents a nonzero block matrix having the same
total angular momentum. For the case of the maximum total
angular momentum L=M �L starting from 0�, we can decom-
pose the N�N matrix into M +1 nonoverlapping small nL

�nL matrices ��V̂F0B�L�. Here, nL is the number of partial
waves having the same total angular momentum L. We then
have the relationship of N=	L=0

L=MnL and nL can be much
smaller than the total number of partial waves N. Thus, in-
stead of doing the N�N operation, we now need only per-

form the fast nL�nL matrix multiplication by M +1 times,
that is,

e−i�t�V̂F0� = 
L=0
M e−i�t�V̂F0B�L. �19�

Namely, each nL�nL exponential matrix operation acts on
the corresponding subspace of the total partial waves.

The similar idea can also work for the laser-electron cou-

pling matrix. As is indicated in Fig. 1�b�, the matrix �V̂F12�ij
is block tridiagonal since for linearly polarized laser pulses
the partial-wave coupling only occurs between those that
have adjacent total angular momentum L. For example, the
L=1 partial waves only couple to the L=0 and L=2 partial
waves. In Fig. 1�b�, each “0” in the diagram represents a zero
block matrix. Each nonzero block belongs to a coupling ma-
trix between the partial waves having adjacent total angular
momentum. For instance, the second block in the first row
represents the coupling matrix elements between the L=0
and L=1 partial waves. Thus, we can further decompose
such a sparse and block-tridiagonal matrix into the sum of

relatively small and nonoverlapping even ��V̂F12�even� and

odd ��V̂F12�odd� 2�2-block matrices. Each of them can alter-
natively act on the corresponding partial waves. To wrap it
up, we write the procedure in the following form:

exp�− i�t�V̂F12�� = exp�− i
�t

2
�V̂F12�odd�

� exp�− i�t�V̂F12�even�

� exp�− i
�t

2
�V̂F12�odd� . �20�

Splitting the block-tridiagonal matrix into even and odd
small 2�2 block matrices is similar to the idea of splitting
the kinetic and potential matrices in Eq. �15�, which results
in the similar accuracy to the order ���t�3. Again, each of
these 2�2-block matrices are smaller than the total N�N
matrix, so that such decomposition can be very helpful for
large N.

Finally, we summarize the above optimization procedures
in the following “sandwich” form, for the nondiagonal
potential-energy propagator in Eq. �15�,

exp�− i�t�V̂F�� = 
L=0
M exp�− i

�t

2
�V̂F0B�L�

� exp�− i
�t

2
�V̂F12�odd�

� exp�− i�t�V̂F12�even�

� exp�− i
�t

2
�V̂F12�odd�

� 
L=0
M exp�− i

�t

2
�V̂F0B�L� . �21�

Such optimizations can significantly reduce the time cost for
the potential propagator. It is noted that the two-dimensional
domain decomposition has been used to parallelize the radial

FIG. 1. �Color online� The schematics for decomposing �a� the

block-diagonal electron-electron coupling matrix �V̂F0�i , j�� and �b�
the linearly polarized laser-electron coupling matrix �V̂F12�ij, which
is block tridiagonal.
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spaces with the message-passing interface �MPI� scheme
�24�.

IV. RESULTS AND DISCUSSIONS

We have explored the quantum dynamics of He exposed
to an intense few-cycle pulse �FCP�. In the radial space r1
and r2, we have used 160 finite elements with FE-sizes vary-
ing from 0.4 to 1.2 bohr. A five-point DVR has been applied
within each finite element. The grid of 641 DVR points in
each dimension spans a radial space up to �175.8 a.u., with
the smallest �r�0.069 bohr. Using this grid, we have
dumped a wave packet in imaginary time to get the ground
state of He. Eight partial waves �l1= l2=0–7 and L=0� have
been included in the imaginary-time propagation for �0.5 fs
with a time step �t�4.1�10−3 a.u.. Finally, we obtained a
very accurate ground state of He with energy of E0�
−2.9015 a.u., which is well compared with the theoretical
and experimental value of E0�−2.9033 a.u.. It is also noted
that the TDCC method has been extensively used for calcu-
lations of single- or two-photon double ionization of He by
XUV pulses. Those calculations have been well compared
with experimental results and benchmarked with other meth-
ods in Refs. �33,34�. This paper is devoted to show how we
can speed up such full-dimensional quantum calculations.

Using the same grid setup, we have studied how the
ground-state He responds to an intense few-cycle optical
pulse. The FCP is shown in Fig. 2�a�, which has a wave-
length of �=780 nm and a pulse duration of 5 fs with an
sin2 envelope. The FCP’s peak intensity is around I
=1013 W /cm2. For this testing calculation, we have used
256 partial waves in the expansion, with the largest total
angular momentum L=23 and 8–12 combinations of l1l2 for
each L. We compare the calculated observables in Figs. 2�b�
and 2�c�, for cases of with and without potential-matrix op-
timization �discussed in Sec. III�. Figures 2�b� and 2�c� show,
respectively, the populations on the ground-state and on the
ps partial wave �l1=1 , l2=0� as a function of the interaction
time. The black dashed line represents the case of optimiza-
tion, while the red solid line stands for the case of without
optimization �i.e., using the full matrix�. We see that these
curves are essentially identical, which means the optimiza-
tion of decomposing the full matrix into small-matrices op-
erations does not cause significant errors. We knew that for
the block-diagonal electron-electron Coulomb potential the
decomposition is exact, but for the block-tridiagonal laser-
electron coupling matrix the alternative splitting can cause
some errors, since the odd and even 2�2 blocks do not
commute with each other. However, since we have arranged
the odd and even block operations in a sandwich form �Eq.
�21��, the noncommute errors are significantly reduced.

Next, we tested the speeding up of the FEDVR-TDCC
code with the potential-matrix optimization for different
number of total partial waves. The timing tests have been
conducted on the Kraken �Cray XT5� supercomputer at the
National Institute for Computational Sciences �NICS�, by us-
ing 256 cores for the same problem discussed in Fig. 1.
Results are shown in Figs. 3 and 4. In Fig. 3�a� we have
compared the total time costs per step as a function of the

total number �N� of partial waves used, for cases with and
without optimization. The similar comparison of time cost
for the total potential operations was plotted in Fig. 3�b�. We
see that at N=32 there is no much difference between the full
potential-matrix operation �no optimization� and the opti-
mized case. However, when the number of partial waves N
increases the advantage of optimization shows up. At N
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FIG. 2. �Color online� �a� A few-cycle laser pulse shape; �b� the
ground-state population as a function of time in the cases of with
�black dashed line� and without �read solid line� optimization; �c�
same as �b� but for the probability of ps-partial wave.
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FIG. 3. �Color online� The comparison on time cost per step as
a function of the number of partial waves used for TDCC expan-
sion: �a� the total time cost and �b� the time cost only for the po-
tential operation. Tests are performed with 256 cores on the NICS’
Kraken �Cray XT5� supercomputer.
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=256, we get more than a factor of 10 faster for the opti-
mized potential-matrix operation than that of without optimi-
zation.

Taking the time-cost ratio between no-optimization and
optimization cases, we obtained a speeding up factor
�fspeeding� that was plotted vs N in Fig. 4. We see that at N
=256 the optimized potential operation got speeding up by
more than an order of magnitude �fspeeding�11.2�. If one
uses the same number �n� of l1l2 combinations to expand
each L, then the total N partial waves are grouped into N /n
blocks. Each block is a n�n nonzero matrix. In the full-
matrix operations, we have separated the electron-electron
Coulomb potential matrix and the laser-electron coupling
matrix, since the latter has time dependence in the laser field.
Thus, the full-matrix operations actually scale as �O�2N2�
in our previous implementation. Now, the optimized
electron-electron Coulomb potential takes only N

n � �n�n�
=nN operations, while the laser-electron coupling operations
scale as � 3

2 �
N
2n � �2n�2n�=3nN. The factor of 3

2 comes
from the sandwich format, and 2�2-block matrix operation
requires 2n�2n multiplications. In the end, we can estimate
the speeding up factor to be fspeeding=2N2 / �nN+3nN�
=N /2n�11.6 for N=256 and n�11, which is consistent
with our numerical testing results fspeeding�11.2 �even

though we have used a varied number of n=8–12.� Finally,
the overall �including kinetic-energy operations� speeding up
is about �8.1. As the potential-energy operations weigh
more in one time-step operation with increasing N, we ex-
pect more dramatical speeding up for N�256.

V. SUMMARY

In summary, we have shown that the potential-energy ma-
trix in the FEDVR-TDCC code can be further decomposed into
a series of small matrices, due to its block diagonal and
block tridiagonal structures of the electron-electron Cou-
lomb potential and the linearly polarized laser-electron cou-
pling. Specifically, the block tridiagonal electron-electron
coupling is split into N /n operations of small n�n matrices,
while the laser-electron coupling matrix is decomposed into
even and odd 2n�2n matrices. Such optimization speeds up
the total potential operation by a factor of N /2n, if each total
angular-momentum L is expanded with the same number �n�
of partial-wave combinations �l1l2�. Our numerical tests in-
dicated more than ten times faster with such optimization at
N=256. More dramatic speeding up is expected for large
number of N partial waves. This may facilitate the long-
sought solution to the 3D two-electron quantum dynamics in
ultrashort intense optical laser pulses, and it may also find a
variety of important applications such as electron-Rydberg-
atom collisions. The technique we have proposed and dem-
onstrated in this paper is particularly useful for the quantum-
dynamics calculation of two-electron systems exposed to
intense laser pulses. However, the similar idea of decompos-
ing large matrix with many zeros to a series of small-matrix
operations can be applied to other problems, for which one
needs to work out the decomposing strategy specific to prob-
lems at hand.
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