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We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which
is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an
explicit expression for the calculation of a weighted average over possible energy spectra, which can be
evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as func-
tion of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in
similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum
Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy
calculation.
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I. INTRODUCTION

Quantum Monte Carlo �QMC� simulations are a powerful
computational tool to calculate properties of interacting
quantum many-particle systems, such as spin models or
strongly correlated electron systems. Of particular interest in
those systems are dynamical correlation functions such as
single-particle spectra or susceptibilities, respectively, dy-
namical structure factors. However, QMC presently provides
data only on the imaginary-time axis, and the necessary ana-
lytic continuation of these data has proven to be difficult.

The standard tool to solve this problem is the maximum-
entropy method �MEM� �1�. It uses arguments of Bayesian
logic �2,3� to obtain the most probable energy spectrum. In
order to solve this optimization problem efficiently, the
maximum entropy method approximates all occurring prob-
ability distributions to be of a Gaussian shape.

In the past efforts were made to provide an alternative to
this approach �4–6�. It was proposed to perform a Monte
Carlo average over a wide range of spectra instead of select-
ing a single spectrum. So far, the method lacked a rigorous
rule to eliminate a regularization parameter inherent in the
algorithm. Although this approach has been interpreted in
terms of Bayesian inference �6�, none of the authors utilized
Bayesian logic to eliminate the regularization parameter.

We show that this stochastic approach can also be under-
stood in terms of Bayesian statistical inference. We derive
a strict criterion to eliminate the free parameter, which is
completely based on Bayesian logic. It uses Monte Carlo
techniques to both calculate the average spectrum and to
eliminate the regularization parameter. It treats all probabili-
ties exactly and hereby avoids the approximations made in
the maximum entropy method. We apply the algorithm to
imaginary-frequency quantum Monte Carlo data and com-
pare the resulting spectra with results from maximum en-
tropy calculations.

II. PROBLEM OF ANALYTIC CONTINUATION

For a finite temperature T quantum Monte Carlo simula-

tions can provide accurate estimates Ḡn for either imaginary-
time correlation function G��� at a finite set of N imaginary-
time points �n or, alternatively, for imaginary-frequency
correlation functions G�i�n� at a finite set of N Matsu-
bara frequencies �n. The frequencies are defined as �n
= �2n+1�� /� for fermions and as �n=2n� /� for bosons
with �=1 /kBT.

Because of the stochastic nature of Monte Carlo algo-

rithms each of the Ḡn possesses a known statistical error.
Moreover, the data for the different time or frequency points
are usually highly correlated. Therefore the input to the ana-
lytic continuation procedure consists of the Monte Carlo es-

timates Ḡi and their covariance matrix

Cnm = GnGm − ḠnḠm. �1�

In principle the spectral function A���=− 1
� Im G��+ i0+� can

be extracted from these data by inverting

G��n� =� d� Kn���A��� �2�

with

Kn��� = K��n,�� ª −
e−��

1 � e−�� �3�

for time-dependent data or

Kn��� = K�i�n,�� ª �
1

i�n − �
�4�

for frequency-dependent data, where the upper sign holds for
fermions and the lower one for bosons. The spectral function
is normalized to*fuchs@theorie.physik.uni-goettingen.de
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N =� d� A��� �5�

and is non-negative for all �. However, a direct inversion of
Eq. �2� is an ill-posed problem and numerically impossible.

A least-squares fit of A��� to the data Ḡn minimizes the �2

estimate

�2�A� = �
n,m

�Ḡn − G��n����Cnm
−1 �Ḡm − G��m�� �6�

with respect to A���. This approach leads to a multitude of
different solutions and consequently cannot solve the prob-
lem either.

A. Maximum-entropy method

The maximum-entropy method can be understood as an
attempt to regularize the least-squares fit described above.
One defines the entropy

S�A� = −� d� A���ln
A���
D���

�7�

relative to a default model D���. Any information, which is
known about the spectrum beforehand, can be encoded in the
default model. If D��� is non-negative and possesses the
same norm N as the spectrum A���, the entropy S will be
nonpositive and maximal for D���. Instead of just minimiz-
ing �2 the MEM minimizes the quantity

Q�A� =
1

2
�2�A� − 	S�A� �8�

introducing a regularization parameter 	. This optimization
problem can be numerically solved for fixed 	 to find the

minimizing spectrum Â	���. In the limit of 	→
 the spec-
trum minimizing Q is the default model D���. For 	→0 the
least-squares fit is regained. Thus the parameter 	 interpo-
lates between the fit result and the default model.

In order to find a criterion to eliminate the parameter dif-
ferent approaches exist. The simplest rule is to take the spec-
trum where �2�N. This choice ensures that the differences
between model and data are of the order of the error bars
thereby avoiding overfitting. In order to derive more sophis-
ticated methods the MEM needs to be reinterpreted by means
of Bayesian statistical inference �2,3�.

1. Bayesian statistical inference

The MEM can be reformulated by defining subjective
probabilities for the quantities involved in the analytic con-
tinuation problem. Let P�A� denote the prior probability of

the spectrum A���. P�A 	 Ḡ� denotes the posterior probability

of A given the input data Ḡ and P�Ḡ 	A� the likelihood func-
tion. Bayes’s Theorem �7� relates these probabilities to each
other:

P�A	Ḡ� = P�Ḡ	A�P�A�/P�Ḡ� . �9�

The probability P�Ḡ� is called the evidence and serves as

normalization for the posterior probability P�A 	 Ḡ�,

P�Ḡ� =� DA P�Ḡ	A�P�A� . �10�

One identifies

P�Ḡ	A� =
1

Z1
exp
−

1

2
�2�A�� �11�

and

P�A� =
1

Z2
exp�	S�A�� . �12�

The quantities

Z1 =� DḠ e−�2�A�/2 �13�

and

Z2 =� DA e	S�A� �14�

normalize the respective probabilities. This way the posterior
probability can be rewritten as

P�A	Ḡ� =
e−Q�A�

Z1Z2P�Ḡ�
. �15�

with

P�Ḡ� =
�DA e−Q�A�

Z1Z2
�16�

Thus the minimization of Q can be reinterpreted as the maxi-

mization of the posterior probability P�A 	 Ḡ��e−Q. The

MEM therefore determines the most probable spectrum Â	

given the input data Ḡ.

2. Bayesian inference and the regularization parameter �

This alternative formulation of the problem provides the
necessary tools to eliminate the free parameter 	 �8,9�. Equa-
tion �9� can be rewritten including 	,

P�A,		Ḡ� = P�Ḡ	A,	�P�A,	�/P�Ḡ� . �17�

If one applies Bayes’s theorem to factorize P�A ,	� and inte-
grates over A, the relation

P�		Ḡ� = P�	�� DA P�Ḡ	A,	�P�A		�/P�Ḡ�

=
P�	�

Z1Z2P�Ḡ�
� DA e−Q�A� �18�

for the posterior probability P�	 	 Ḡ� can be found.
Analogous to the argument given above, one identifies

P�Ḡ 	A ,	��exp�− 1
2�2�A�� and P�A 		��exp�	S�A��. The

evidence
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P�Ḡ� =� d	
P�	��DA e−Q�A�

Z1Z2
�19�

is an 	-independent normalization constant. All quantities in
this equation are known except P�	�, the prior probability of
	. It is either taken to be constant or to be the Jeffreys prior
1 /	 �9–11�. However, the choice of P�	� turns out to be of
little influence on the resulting spectra.

By assuming all probabilities involved to be of a Gaussian
shape a numerical treatment of Eqs. �15� and �18� is possible.
There are two alternatives:

�1� one calculates 	� as the 	 that maximizes P�	 	 Ḡ� and

takes Â	� as the final result for the spectral function �8,9�;
�2� one averages over all Â	 weighted by the posterior

probability of 	, i.e., the average spectrum


A� =� d	 P�		Ḡ�Â	, �20�

�3� is taken as the final result �11�.
It is not a priori clear, which of the two algorithms is

favorable.

B. Stochastic analytical inference

Stochastic analytical inference �SAI� is an alternative to
the standard MEM which does not employ the explicit regu-
larization of the fit by entropy Eq. �7�. Rather than maximiz-

ing P�A 	 Ḡ� an average over all possible spectra weighted by

w � exp
−
1

2
�2/	� �21�

is performed. Beach refined this approach, by introducing the
default model D��� of the MEM into the algorithm �5�. By
mapping � unto x� �0,1� using

x = ���� =
1

N
�

−


�

d��D���� , �22�

a dimensionless field n�x� can be defined as

n�x� =
A„�−1�x�…
D„�−1�x�…

. �23�

The field n�x� is normalized to 1,

1 = �
0

1

dxn�x� . �24�

By calculating the average field,


n�x��	 =
1

Z
� D�n�x� n�x� e−�2�n�x��/2	 �25�

with

Z =� D�n�x� e−�2�n�x��/2	. �26�

The measure

D�n�x� = Dn�x� ��n� 

�
0

1

dxn�x� − 1� �27�

restricts the integration to fields n�x� that satisfy norm rule
Eq. �24� and the positivity requirement. In Eq. �27�,

��n� = �1, if ∀ x: n�x� � 0

0 otherwise
� .

The average spectrum 
A�	 can be regained via


A����	 = D���
n��������. �28�

If 1
2�2 is interpreted as a Hamiltonian of a fictitious physical

system, Eq. �25� possesses the structure of a canonical en-
semble average at a temperature 	. The laws of statistical
mechanics then state that the average spectral function 
A�	

minimizes the free energy

F =
1

2

�2�	 − 	S . �29�

This expression displays a similar structure as Eq. �8�. Thus
the averaging process implicitly generates an entropy S.
However, this entropy does not have the explicit form of
Eq. �7�. In the limit 	→0 the averaging process minimizes
�2. Whereas in the limit 	→
 the average in Eq. �25� is
completely unaffected by �2 and will—constrained by Eq.
�24�—result in 
n�x��=1. In this case the resulting spectrum
is the default model. The algorithm therefore exhibits the
same limiting cases as the MEM. Additionally, Beach
showed that a mean-field treatment of the fictitious physical
system described by �2 is formally equivalent to the MEM
�5�.

The remaining open question, namely, how to eliminate
the parameter 	, was addressed by all preceding authors dif-
ferently:

�1� Sandvik proposed to examine the plot of the average
entropy against 	 and identifies the final 	 by a sharp drop in
the entropy curve �4�;

�2� Beach examined a double-logarithmic plot of the av-
erage �2 and identifies the final 	 by a kink in the �2 curve
�5�; and

�3� Syljuåsen argues to take 	=1 �6�.
All criteria are merely based on heuristic arguments. The

simple rule to take �2�N is also applicable to this method
and should be mentioned here.

1. Bayesian statistical inference

In the following we will use Bayesian inference to derive
a criterion to eliminate the regularization parameter 	. In
contrast to the MEM the stochastic analytical inference does

not maximize the posterior probability P�A 	 Ḡ�. Instead, it
averages all possible fields n �omitting the argument x in the

progress� weighted by P�n 	 Ḡ�,


n� =� Dn n P�n	Ḡ� . �30�

Bayes’s theorem can be applied to factorize P�n 	 Ḡ� analo-
gous to Eq. �9�,
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P�n	Ḡ� = P�Ḡ	n�P�n�/P�Ḡ� . �31�

SAI does not introduce an explicit entropy term. Following
Ref. �6� only the positivity requirement and norm rule Eq.
�24� enter the prior probability

P�n� = ��n�

�
0

1

dx n�x� − 1� . �32�

The likelihood function is identified as

P�Ḡ	n� =
1

Z�
e−�2/2	. �33�

By evaluating a Gaussian integral the normalization Z� can
be readily calculated to be

Z� =� DḠ e−�2/2	 = �2�	�N/2�det C . �34�

Using

P�Ḡ� =� D�n
e−�2�n�/2	

Z�
=

Z

Z�
�35�

the posterior probability results in

P�n	Ḡ� = ��n�

�
0

1

dx n�x� − 1� 1

Z
e−�2�n�/2	, �36�

as expected from the comparison of the Eqs. �25� and �30�.

2. Bayesian inference and the regularization parameter �

Bayesian logic can also be utilized to calculate the poste-

rior probability P�	 	 Ḡ�. Substituting n for A in Eq. �18� and
identifying P�n 		�= P�n� with P�n� from Eq. �32� and cor-

respondingly P�Ḡ 	n ,	�= P�Ḡ 	n� with P�Ḡ 	n� from Eq.
�33�, one obtains

P�		Ḡ� = P�	�� Dn P�Ḡ	n,	�P�n		�/P�Ḡ�

=
P�	�

Z�P�Ḡ�
� D�n e−�2�n�/2	. �37�

The evidence

P�Ḡ� =� d	
P�	�e−�2/2	

Z��	�
�38�

is again an 	-independent normalization constant. The com-
bination of Eqs. �34� and �37� gives the final expression for
the 	-dependence of the posterior probability,

P�		Ḡ� � P�	�	−N/2� Dn e−�2�n�/2	. �39�

Analogous to the MEM one has two possibilities to treat the
regularization parameter:

�1� one calculates 	� as the 	 that maximizes P�	 	 Ḡ� and
takes 
n�	� as the final result;

�2� one averages over all 
n�	 weighted by the posterior
probability of 	, i.e., the average field



n�� =� d	 P�		Ḡ�
n�	 �40�

is taken as the final result.

III. MONTE CARLO EVALUATION

A. Configuration and update scheme

In order to calculate the quantities appearing in Eqs. �25�
and �39� a numerically treatable approximation for the field
configuration n�x� and the integration measure Dn has to be
found. Our implementation closely follows Ref. �5�. The
field configuration is represented by a superposition of delta
function walkers with residues rn and coordinates xn,

n�x� = �
n

rn
�x − xn� . �41�

The Monte Carlo updates consist of randomly proposed
shifts of the coordinates xn and random redistributions of the
residues rn. Redistributions that are not only norm conserv-
ing but also conserve higher moments of the configuration
�4,5� were also implemented. Both the higher moment con-
serving updates and the coordinate shifts of the walkers have
proven to be very effective in speeding up the algorithm.

Average Eq. �25� is evaluated by a standard Monte Carlo
simulation using Metropolis weights. The regularization pa-
rameter 	 is treated as the temperature of the system. The
simulation is performed for a wide range of different
	-values. A parallel tempering �12–14� algorithm is neces-
sary to ensure convergence for small 	. In order to measure
the average field configuration a histogram of the delta func-
tion walkers is recorded.

B. Calculation of the probability P[� � Ḡ]

A particular problem in the proposed approach is that a
numerical treatment of Eq. �39� involves the calculation of
the quantity

Z =� D�n e−�2/2	. �42�

This is equivalent to calculating a partition function in a
canonical ensemble at temperature 	. Standard Monte Carlo
techniques are only able to calculate thermal expectation val-
ues but not the partition function itself. We use a Wang-
Landau algorithm �15,16� to generate the density of states
��E� of the system. Once ��E� is calculated, the partition
function can be obtained by

Z =� dE ��E�e−E/	. �43�

The Wang-Landau algorithm performs a random walk in en-
ergy space with probability p�E�=1 /��E� using the usual
metropolis weights. Since the density of states is unknown at
the beginning of the simulation, one starts with an arbitrary
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starting value, e.g., ��E�=1. For each visited energy one up-
dates an energy histogram and multiplies the density of states
by an modification factor f �1. When the histogram is rea-
sonably flat, one resets the histogram and restarts the simu-
lation with a new modification factor f�=�f . The starting
value of f is usually taken to be Euler’s constant and the
procedure is repeated until f is very close to 1 �16 times in
our implementation�. The resulting ��E� is the density of
states of the system up to an unknown normalization factor.
In order to speed up the convergence of the algorithm, it is
advisable to divide the energy range of interest into several
slightly overlapping smaller intervals.

IV. SIMULATION RESULTS

A. Model

We apply the algorithm to imaginary-time data from
quantum Monte Carlo simulations. As test case we consider
the two-dimensional single-band Hubbard model

H = − t �

i,j��

ci�
† cj� + U�

i

ni↑ni↓. �44�

Here i and j are lattice site indices, the operators ci�
† �ci��

create �destroy� an electron with spin �� �↑ ,↓� at site i,
ni�=ci�

† ci� is their corresponding number density, t is the
hopping parameter between neighboring sites �denoted by

i , j�� and U implements the local Coulomb repulsion. The
full lattice model was approximated by a two by two cluster
embedded in a mean field using the dynamical cluster ap-
proximation �17–19�. Using a weak-coupling expansion in
continuous imaginary time �20,21� the single-particle
Green’s function

G�i�n� = − �
0

�

d� ei�n�
Tci���ci
†� �45�

was calculated for a certain number of Matsubara frequen-
cies �n= �2n+1�� /�. Here T is the imaginary-time ordering
operator, 
 · � denotes a thermal expectation value and ci���
=e−H�cie

H�. The model was simulated for U=W, where W
=8t denotes the bandwidth, and a fixed filling 
ni�=0.9 for
several temperatures T. Within the weak-coupling expansion
it is possible to calculate the Green’s function directly in
frequency space �21� so that no Fourier transformation or
discretization of the imaginary-time axis is necessary. In all
simulations the number of measured Matsubara frequencies
was restricted to nmax=2U�, which has proven to be suffi-
cient for all calculation. A further increase in the number of
frequencies had no influence on the analytic continuation
results.

B. Monte Carlo results

Figure 1 shows the 	 dependence of the single-particle
spectra calculated by the parallel tempering Monte Carlo
simulation ��=14W−1�. A Gaussian default model

D��� =
1

�2��
e−�2/2� �46�

with �=1 was used. The shape of the default model is
clearly visible for large 	. One can see how several different
peaks and other structures appear for decreasing 	. Since the
	 dependence is so strong one definitely needs a criterion to
eliminate the regularization parameter.

The density of states calculated by the Wang-Landau

simulation and the probability distribution P�	 	 Ḡ� following

Eq. �39� is shown in Fig. 2. P�	 	 Ḡ� is plotted for the two
most common choices for P�	�, i.e., P�	�=constant and
P�	�=1 /	. The density of states varies over at least 15 or-
ders of magnitude �note the logarithmic scales�. The prob-

ability distributions P�	 	 Ḡ� exhibit a well-defined peak at
	̂�0.2. Note that the two different choices for P�	� have
only weak influence on the position of the peak. The two
different probability distributions are used to calculate the
final single-particle spectrum. Following the discussion in
Sec. II, Fig. 2 shows the average of all spectra of Fig. 1

weighted by P�	 	 Ḡ� and the spectrum whose 	 maximizes

P�	 	 Ḡ�. The resulting spectra are nearly indistinguishable
and show that neither the ambiguity in the treatment of the
probability distribution nor the choice of P�	� has a signifi-
cant influence on the resulting spectrum.

Let us compare our results from the stochastic analytical
inference with those obtained with other methods to fix 	.
Figure 3 shows that the point where �2�N corresponds to
	�1. That means that the 	 determined by this rule is iden-
tical to Syljuåsen’s choice. The �2 estimate also exhibits a
kink in the very same 	 region. Thus, the spectra determined
by all three methods are identical �Fig. 3�c��. The chosen 	
�1 is larger than 	̂�0.2. That indicates that the spectra
determined with this criterion are stronger regularized than
the spectra calculated by the probability distributions in Fig.
2. However, at least for the QMC data under consideration,
the difference between the two spectra is only small. The
entropy �Fig. 3�b�� shows no significant features and gives
no indication how to choose the 	 parameter. A sharp drop in
the entropy curve is not visible in the simulated area.

10
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10
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10
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10
5

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

0.6

0.8
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ω

0 0.2 0.4 0.6 0.8

FIG. 1. �Color online� Simulated spectra for a range of regular-
ization parameters 	 ��=14W−1�. For large 	 the Gaussian shape of
the default model is visible. For decreasing 	 several features begin
to appear.
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Finally, we compare the SAI with the standard MEM ap-
proach. Figure 4 shows results of a maximum-entropy calcu-
lation using Bryan’s algorithm �11� for the same QMC data
as before. The qualitative behavior is similar to the SAI

simulation: The probability distribution P�	 	 Ḡ� shows a no-
ticeable dependence on the prior probability P�	�. However,
the resulting spectra depend neither on P�	� nor on whether

one averages over P�	 	 Ḡ� or whether one takes the maxi-
mum. The �2�N rule determines an 	 which is again larger
than the one calculated by Bayesian inference. Accordingly
the spectrum calculated by this criterion is more regularized,
although here the difference is relatively small. Interestingly,
in MEM the interesting values for 	 are about one or two
orders of magnitude larger compared to those appearing in
the SAI simulations. There seems to be no direct correspon-
dence between the 	 values of the two methods.

An extended comparison of SAI spectra with results of
maximum entropy calculations for several temperatures is
collected in Fig. 5. All calculations are based on the Gauss-
ian default model Eq. �46�. As already noted before, MEM
tends to stronger regularize the spectra and consequently do
the SAI spectra exhibit noticeably sharper features for all
temperatures shown. Especially the pseudogap, which opens
at �=34W−1, is captured nicely by SAI while the MEM can-
not resolve it yet at that temperature.

An important question concerns the dependence of the
spectra on the default model. To this end we show in Fig.
6 again SAI and the MEM results for the spectrum at

�=34W−1, this time, however, based on a different default
model, namely, a rectangular default model of width 3.6. The
resulting spectra are very similar to the one obtained for the
Gaussian default model presented in Fig. 5. Thus, even at
low temperatures the resulting spectra are quite independent
of the default model. More precisely, we could not detect a
significant default model dependence at any temperature.

Finally, in order to make a definite statement about the
accuracy of our method, we test it on a case where the actual
spectrum is known. To this end we create artificial input data
by constructing a spectrum

A��� = � 	x	
�x2 − 1

4

− 1 if 	x	 �
1
2

0 otherwise
� . �47�

This function is particularly difficult example for any ana-
lytic continuation method, since the actually divergent peak
is almost impossible to resolve. The spectrum was trans-
formed into fermionic Matsubara frequency space at �=10
via the integration kernel in Eq. �4�. The first 20 frequencies
were calculated. Artificial Gaussian distributed random num-
bers with a standard deviation �=5�10−4 where added,
simulating a somewhat simplified version of statistical errors
of real Monte Carlo data by omitting any correlations be-
tween the data points. Figure 7 shows that the SAI is more
successful in reconstructing the peak than the MEM. It
also indicates, that the Wang-Landau criterion developed in
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FIG. 2. �Color online� The probability distributions P�	 	 Ḡ� �a�
based on a Wang-Landau simulation of the density of states �b�. The
different choices for P�	� only have a weak influence on the posi-
tion of the peak. The resulting spectra �c� are calculated by either

averaging all spectra over P�	 	 Ḡ� or by taking the spectrum that
maximizes them. The four different spectra are practically identical.
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FIG. 3. �Color online� The double-logarithmic plot of �2 �a�
shows a kink at 	�0.8 which is very close to the choice of Syl-
juåsen �	=1�. It is also the region where �2�N. Thus, all three
methods give about the same answer and the resulting spectra �c�
are identical. A comparison shows that this solution is quite close to
the spectrum shown in Fig. 2�c�. The entropy �b� exhibits no sig-
nificant features and gives at least for this data set no indication
how to determine 	.
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this paper leads to an even sharper contour and a better re-
construction of the input spectrum compared to the simple
�2�N rule.

V. CONCLUSION

We have demonstrated that the stochastic analytic con-
tinuation method introduced by Sandvik and Beach can be

interpreted in terms of Bayesian probability theory. We de-
veloped an algorithm that uses Monte Carlo techniques to
both calculate the average spectrum and to eliminate the
regularization parameter. It treats all probabilities exactly
and hereby avoids the approximations made in the maximum
entropy method.

Comparisons to the standard MEM show that the SAI
results in robust spectral functions which are less regularized
and consequently show more pronounced features, in par-
ticular with decreasing temperature in the model calcula-
tions. As known from standard MEM, no significant depen-
dence on the default model could be observed. Comparisons
to other approaches to fix the regularization parameter 	
show that the method identifies a smaller 	 and thus a typi-
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FIG. 4. �Color online� Results of a maximum-entropy calcula-
tion for the same QMC data as in Figs. 2 and 3. The probability

distribution P�	 	 Ḡ� �a� shows a noticeable dependence on P�	�,
but analogous to SAI, the resulting spectra �c� are identical. The 	

where �2�N �b� is larger �	�500� than the one for which P�	 	 Ḡ�
is maximal �	�90�. Accordingly the spectrum chosen by the �2

�N rule is more regularized than the one calculated by Bayesian
inference.
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cally less regularized spectrum, although for the high-quality
Monte Carlo data used here the results differ only slightly.
Note that this observation adds additional confidence to the
method and this type of analytical continuation in general
because it proves that in the limit of infinitely precise data,
all methods give the same result.

A comparison of the Wang-Landau criterion and the �2

�N rule using artificially constructed input data based on a
sharply peaked spectrum with a hard gap shows a significant
improvement due to the new method; while at the same time
the stochastic analytical inference in both cases seems to be
more accurate in approximating the singular structure than
the classical maximum entropy. As to when simple rules such
as �2�N or the choice 	=1 may or may not present a good
way to fix the regularization parameter depends sensitively
on the model, the quality of the data, and structures occur-

ring in the spectral function. However, we can expect the
stochastic analytical continuation to result in spectra which
are in general closer to the exact one, with the Wang-Landau
approach typically giving the most accurate image.

One apparent drawback of the method is the necessity to
perform simulations for a broad range of values for 	, inde-
pendent of whether one chooses the Wang-Landau approach
or �2�N, respectively, 	=1 �23� to fix 	. Although this can
be performed efficiently with parallel tempering techniques,
the required computer resources for one single spectrum can
sum up to about 20 processor hours and are hence orders of
magnitude larger than for standard MEM approaches. Espe-
cially for QMC data at higher temperatures, more computer
time may be needed for the analytic continuation than for the
simulation of the Monte Carlo data itself. As the resulting
spectra tend to be less regularized one has to ponder the gain
in details in the structures against the significant increase in
computer time.
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